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A Parallel Intelligence-driven Resource Scheduling
Scheme for Digital Twins-based Intelligent

Vehicular Systems
Junchao Yang, Feng Lin, Chinmay Chakraborty, Senior Member, IEEE, Keping Yu, Member, IEEE,

Zhiwei Guo, Member, IEEE, Anh-Tu Nguyen, Member, IEEE, and Joel J. P. C. Rodrigues, Fellow, IEEE

Abstract—Real-time digital twin technology can enhance traffic
safety of intelligent vehicular system and provide scientific
strategies for intelligent traffic management. At the same time,
real-time digital twin depends on strong computation from vehicle
side to cloud side. Aiming at the problem of delay caused by the
dual dependency of timing and data between computation tasks,
and the problem of unbalanced load of mobile edge computing
servers, a parallel intelligence-driven resource scheduling scheme
for computation tasks with dual dependencies of timing and
data in the intelligent vehicular systems (IVS) is proposed. First,
the delay and energy consumption models of each computing
platform are formulated by considering the dual dependence
of sub-tasks. Then, based on the bidding idea of the auction
algorithm, the allocation model of computing resources and
communication resources is defined, and the load balance model
of the mobile edge computing (MEC) server cluster is formulated
according to the load status of each MEC server. Secondly, joint
optimization problem for offloading, resource allocation, and load
balance is formulated. Finally, an adaptive particle swarm with
genetic algorithm is proposed to solve the optimization problem.
The simulation results show that the proposed scheme can
reduce the total cost of the system while satisfying the maximum
tolerable delay, and effectively improve the load balance of the
edge server cluster.

Index Terms—Parallel intelligence, digital twins, intelligent
vehicular networks, resource scheduling, computation offloading.
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I. INTRODUCTION

THE growing number of automobiles raised tremendous
pressure on the transportation system in recent decades.

Issues like traffic accidents, environmental pollution and en-
ergy wastage due to inadequate gasoline combustion due to
traffic congestion need to be solved urgently [1]. Internet
of Vehicles(IoV) is a key technology to realize Intelligent
Traffic System (ITS) based on in-vehicle network, inter-
vehicle network and mobile Internet [2], [3]. The continuous
development of IoV in recent years and the commercial-
ization of 5G networks have led to the emergence of IoV
services, such as image-assisted navigation, augmented real-
ity driving, identity recognition, natural language processing,
image/audio/video processing and other computation intensive
and latency-sensitive applications. Usually these applications
require a large amount of computation resources, storage
resources and energy consumption, but the computation ca-
pacity of the vehicle’s terminal device is difficult to meet
the maximum tolerable latency of those applications [4], as
well as the energy consumption of the vehicle is limited. This
will affect the quality of experience (Quality of Experience,
QoE) of vehicle users for in-vehicle applications, as well as
the safety of vehicle driving [5]. Therefore, such computation-
intensive and latency-sensitive tasks pose a great challenge to
the development of IoV [6].

Computation tasks in IoV can be classified into latency-
sensitive and non-latency-sensitive tasks based on their latency
characteristics [7]–[9]. For latency-sensitive tasks, such as
autonomous driving, AR/VR applications, and online games
with high latency requirements, while such applications are
related to driving safety and require a large amount of com-
putation power, while the vehicle itself has limited compu-
tation power and energy. Therefore, computation offloading
is required to meet the maximum tolerable latency of the
tasks. The non-latency-sensitive applications, such as music
and video downloads do not have high requirements of latency,
and exceeding a certain latency does not have a significant
impact on the user experience. Computation tasks can be
divided into decomposable and indecomposable computation
tasks according to their computation characteristics [10]. Most
of the computation tasks are decomposable tasks, so the
computation tasks can be split into multiple sub-tasks for
distributed computation offloading, which can be computed
in parallel on multiple computing platforms and also reduce
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the computation pressure of computing platform. However,
after the task is divided into multiple sub-tasks, there is a
dependency relationship between the sub-tasks, i.e the result
of the former sub-task is the input of the latter one, so the latter
sub-task must wait for the completion of the former sub-task,
which will also bring additional latency of the computation
task [11].

In order to cope with the limitation of computing power
of vehicles, Mobile Cloud Computing (MCC) technology was
introduced into the IoV, MCC extends the computing power
of cloud computing to vehicles and uses cloud computing
applications to process and serve computation intensive appli-
cations [12]. This MCC solution is to transfer all or some of
the computation intensive tasks that cannot be satisfied by the
computation power of the vehicles to a remote cloud server
over a cellular network, and then feedback the computation
results to the vehicle [13]. For example, in the work [14],
[15], a cloud migration decision algorithm for computation
intensive tasks is proposed to overcome the problem of limited
computation resources of mobile devices, which determines
whether to compute at the remote cloud server or at the
mobile device based on the size of the task, and the results
show that the computation latency of computation inten-
sive tasks can be effectively reduced by utilizing the MCC
technology. Although mobile cloud computing can provide
powerful computing power for vehicles and solve the problem
of insufficient computing resources for vehicles, the remote
cloud servers are usually far away from vehicles because
of the distance [16], [17]. Moreover, for computation tasks
with relatively large amount of data size, such as autonomous
driving, image and speech processing applications, it may lead
to high transmission latency, which is unacceptable for those
applications [18]. Secondly, a large number of vehicles offload
computation tasks to remote cloud computing centers, which
can put a huge pressure on the backbone network and may
lead to network blockage or even paralysis [11],hence, MCC
is not an ideal solution for computation task offloading in IoV.

In order to further reduce the transmission latency of com-
putation tasks, mobile edge computing (MEC) is introduced
into the vehicular network [19]–[21]. MEC mainly deploys
servers at the edge of road, such as on Road Side Unit
(RSU), Base Station (BS), etc. Thus, computation resources
and storage resources are pushed to the edge of the road so
that computation services can be provided near the vehicles,
thus reducing the transmission latency of computation tasks
and the return latency of computation results [22]. Compared
with MCC, MEC not only reduces the transmission latency of
computation tasks and the pressure on the backbone network,
but also has the feature of flexible deployment, but the
computation capacity of MEC is still insufficient to cope when
there are too many vehicles needs to offload computation
tasks. Therefore, the work [23] proposed MCC cooperated
with MEC for offloading computation tasks, by offloading part
of the computation tasks to the MEC server for computation
through V2I, and by offloading the computation tasks to
the MCC server through V2N, part of the computation can
also be performed at the vehicle, thus effectively overcoming
the problems of large transmission and return latencys and

network blockage caused by offloading to the MCC, and
avoiding the problem of insufficient computation resources at
the MEC when too many task of are offloaded.

In work [24], the computation task is offloaded to the
adjacent vehicles to assist the computation, and the dependent
sub-task is modeled as a task scheduling problem. With the
goal of minimizing the latency, Min-min, Max-min and HEFT
algorithms are used to solve the task scheduling problem.
The work [25] considered the situation of single MEC server
with multiple users, offloaded the task to MEC or local
computation, and proposed a binary search method to obtain
the optimal offloading strategy with the goal of minimizing
the weighted sum of latency and energy consumption. The
work [26] presented a computation offloading strategy based
on Particle Swarm Optimization ( PSO ). The computation
task is offloaded to the local and MEC for computation. The
latency and energy consumption are balanced, and the load
balance of MEC server is considered. The work [27] proposed
a joint computation offloading strategy and the optimization
objective was to minimize the latency. The work [28] used the
joint offloading method, and proposed a model-free method
based on reinforcement learning to minimize the latency under
the constraint of energy consumption and task dependency.
The objective of work [29]is to minimize the weighted sum
of latency and energy consumption. The computation task is
offloaded to the local, MEC server and remote cloud for com-
putation. The task-dependent migration scheme is considered
and an improved Genetic Algorithm ( GA ) is used to solve
the offloading decision [30].

In the aforementioned research, few studies jointly con-
sidered offloading strategy, resource allocation, load balance
of MEC server cluster in the optimization objective, which
leads the computing resources have not been fully utilized
[12], [31]–[33]. In addition, the timing and data dual de-
pendent tasks in IoV is not well studied [18]. Motivated
by this, this paper proposes a joint computation offloading
and resource allocation algorithm based on dual dependent
tasks. This algorithm first considers the dependent tasks of
multiple vehicles offloading to multiple computing platforms
(i.e, local vehicle, MEC server , idle vehicle,cloud server ) at
the same time, and the latency and energy consumption models
of each computing platform is formulated. Then, based on
the bidding idea of auction algorithm, the allocation model of
computing resources and communication resources is defined.
According to the load state MEC server, the load balance
model of MEC server cluster is formulated. Secondly, the op-
timization objective of offloading, resource allocation and load
balance of MEC server is jointly constructed as Mixed-Integer
Nonlinear Programming (MINLP) problem. Finally, combined
with the characteristics of fast convergence of particle swarm
optimization and strong global search of genetic algorithm and
an adaptive hybrid particle swarm with genetic algorithm is
proposed to solve the optimization problem.

II. INTELLIGENT VEHICULAR SYSTEMS MODEL

A. Network Model
The intelligent vehicular system model of this paper is

shown in Fig.1. In this paper, we consider deploying the
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Fig. 1: Intelligent Vehicular Systems Model

MEC server on the RSU, without losing generality, and
define the MEC server set that provides the computa-
tion offloading service within the coverage of BS as M
= {mec1,mec2, ...,mecn, ...,mecm}, The vehicle set that
needs to be offloaded for the computation task is V =
{v1, v2, ..., vi, ..., vk}, and each vehicle has a computation
intensive task Si,The set of computation intensive tasks is
S = {S1, S2, ..., Si, ..., Sk} Where Si is a separable task, in-
cluding several sub-tasks with temporal and data dependence.
Assuming that each offloaded vehicle has a corresponding
idle vehicle to provide computation offload, each MEC server
mecn has a separate computing resource Fn and storage
resource Wn. In this paper, Dispatch Server (DS) is set up
at BS. Its function is to make a unified offloading strategy
for all offloading vehicles covered by BS, and to manage and
coordinate the resource allocation of all MEC servers within its
scope, as well as the bandwidth resource allocation of BS. The
decision-making process of computation offloading is regarded
as semi-dynamic. Within a scheduling cycle T (namely several

hundred milliseconds), the vehicle set V and the computation
intensive task set S remain unchanged, however V and S may
change in different scheduling cycles. Optical fiber links are
adopted between RSU and RSU, RSU and BS, BS and cloud
servers, respectively. PC5 communication is used between
vehicles, vehicles and RSU, respectively. And cellular network
communication is used between vehicles and BS.

In order to avoid the interference between cellular links
and PC5 links, this paper assumes that the system allocates
different bandwidth resources to cellular links and PC5 links.
The total bandwidth available for BS is B1, and each PC5 link
can be allocated to an orthogonal channel with bandwidth B2.
The uplink and downlink of the vehicle are Rayleigh channels.

The uplink / downlink data transmission rates of vehicle vi
and BS are defined as R1

i and Ri
b, respectively :

R1
i = λiB1 log2

(
1 +

Pu
i h1

N1

)
(1)
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Fig. 2: Dependency Model of computation tasks

Ri
b = λiB1 log2

(
1 +

Pu
b h1

N1

)
(2)

where λi represents the BS bandwidth allocation factor of
task Si of vehicle vi, Pu

i represents the transmitting power
of vehicle vi, Pu

b represents the transmitting power of BS, h1

represents the channel gain of the transmission link between
vehicle vi and BS, and N1 represents the Gaussian white noise
power of the transmission link between vehicle and BS.

Vehicle vi and MEC, idle vehicle uplink data transmission
rate R2

i :

R2
i = B2 log2

(
1 +

Pu
i h2

N2

)
(3)

The downlink data transmission rates of vi, MEC and idle
vehicles are Ri

m, Ri
a:

Ri
m = B2 log2

(
1 +

Pu
mh2

N2

)
(4)

Ri
a = B2 log2

(
1 +

Pu
a h2

N2

)
(5)

where Pu
m and Pu

a represent the transmission power of MEC
server and idle assistance vehicle respectively; h2 represents
the channel gain of transmission link between vehicle and
MEC and idle assistance vehicle; N2 represents the Gaussian
white noise power of transmission link between vehicle and
MEC and idle assistance vehicle.

This paper considers the computation tasks can be processed
in the local vehicle, or offloaded to MEC server, idle vehicle
and cloud server for computation, and then the computation
results are returned. The offloading of cloud server needs to be
transmitted to BS through cellular network, and then to cloud
server through optical fiber. Therefore, it results large com-
munication latency of task transmission. The communication
latency of MEC server offloading is relatively low, however
the computation ability is limited. The characteristics of idle

vehicle offloading are low communication latency and weak
computing ability. Therefore, according to the characteristics
of each computing platform, as well as the timing and data
dependence of sub-tasks, a reasonable offloading strategy can
effectively reduce the total system cost.

B. Task Dependent model

In this paper, the computation-intensive task set S of
multiple vehicles is mainly studied. The computation-in-
tensive task Si of offloading vehicle Vi is represented as
Si= {i, Tmax

i , Ii,Smi,J}, where i represents the number of
computation task Si of vehicle Vi, Tmax

i represents the maxi-
mum tolerance latency of task Si, and Ii represents the amount
of data of task Si. Smi represents the number of sub-task
Smi =

{
s1i , s

2
i , s

3
i ...., s

j
i , ..., s

J
i

}
that can be independently

calculated, and J represents the number of sub-tasks that task
Si is segmented . sub-tasks have dual dependence on timing
and data, sub-tasks rely on the execution results of other sub-
tasks, and then can successfully perform this task. As shown
in Fig.2, the dependency between sub-tasks is represented by
Directed Acyclic Graph ( DAG ), where the nodes of DAG
represent the sub-tasks that can be independently calculated,
each edge of the graph represents the dependency between
sub-tasks, and the weight represents the amount of data
transmitted between sub-tasks.

In this paper, each sub-task of the offloading compu-
tation task Si of vehicle Vi is modeled as a ten-tuple
sji= {j, Iji ,O

j
i ,U

j
i ,E

j
i ,Z

j
i , L

j
i , Y

j
i ,K

j
i ,Q

j
i}. where j represents

the number of sub-tasks, and Iji represents the data volume
of sub-task sji . Oj

i = δ · Iji is the output result data volume,
and δ is the output data volume coefficient, indicating the
relationship between the output data volume and the input
data volume. Uj

i ∈ {0, 1, 2, 3} represents the location of
the sub-task sji to be offloaded, which represents the local
computation, offloaded to the MEC server, to the idle vehicle
and the remote cloud server, respectively. Zj

i represents the
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number of the MEC server corresponding to the Uj
i=1, in

other cases Zj
i=0. Lj

i denotes the transmission latency of sub-
task sji from offloading vehicle vi to computing position Uj

i ,
and Y j

i denotes the sum of the computation latency and the
computation result Oj

i of sub-task sji at computing position
Uj

i to the next computing position Kj
i . Kj

i denotes the set of
computing positions of follow-up sub-tasks of sji . For example,
the follow-up sub-tasks of s3i in Fig.2 are s4i , s5i and s6i ,
so K3

i ={U4
i , U

5
i , U

6
i }, Q3

i={Z4
i , Z

5
i , Z

6
i } and Qj

i represent
the index of MEC server when the follow-up sub-task is
offloaded to MEC. Ej

i represents the total energy consumption
of sub-task sji from offloading vehicle vi to calculating result
Oj

i within the computation position set Kj
i . For example,

the dependent task in Fig.2 ends with sub-task s10i , so the
K10

i = {0} of s10i , that is, the result of the computation task is
finally returned to the vehicle Vi.

III. COMPUTATION MODEL BASED ON DUAL DEPENDENT
TASKS

As shown in Fig. 3, the relationship between the offloading
of the computation sub-task sji and the transmission of the
computation result Oj

i between the local vehicle, the idle
assistance vehicle, the MEC server and the remote cloud
server is shown. For example, when vehicle vi offload sji to
MEC server, it is divided into two cases : the local MEC
server where the vehicle is associated and other MEC servers
under DS, so as to consider whether there is a transmission
latency between MEC servers. Offloading sji to the cloud
server requires transport through BS and then transmitting to
the cloud server. Similarly, it is also necessary to consider
whether there is a transmission latency between the MEC
servers and the transmission latency between the MEC server
and the BS when the computation result Oj

i is returned to the
computation position of the follow-up sub-task. And in the
following we will give the latency and energy consumption
model under different situations.

A. Local vehicle computing model

When U j
i = 0, it means that sub-task sji is executed in

local vehicle vi, and vehicle vi is represented by a five-tuple
Vi= {di, Gv, Fi, Pi, P

u
i }. where di represents the number of

MEC server where vehicle vi is located. Gv is the number of
CPU cycles required for the local computation of 1 bit data
for vehicles, i.e, cycle / bit. Fi is the local computing power of
vehicle vi, that is, the number of CPU cycles per second. Pi is
the device power when the task is executed locally in vehicle
V. If sub-task sji is locally executed, and transmission latency
Lj
i = 0. The computation latency of sub-task sji offloading to

local is tlcij :

tlcij =
IjiGv

Fi
(6)

In this study, it is considered that the vehicle can commu-
nicate with idle vehicles, MEC servers and BSs at the same
time.

tOmrelay
ij = min

(∣∣∣di − Zj
i

∣∣∣ , 1) · Oj
i

Rm
f

(7)

where tOmrelay
ij denotes the transmission latency of the

calculation result Oj
i of sub-task sji over the fiber link between

MEC servers, and Rm
f represents the data transmission rate of

the optical fiber link between the MEC servers.

tOcrelay
ij =

Oj
i

Rc
f

(8)

where tOcrelay
ij is the transmission latency of the calculation

result Oj
i of sub-task sji over the fiber link between BS and

the cloud server, and Rc
f is the transmission rate of the optical

fiber link between BS and cloud server.
In this paper, we define the following function to model

the latency and energy consumption during the task offloading.
When kji=U j

i , ξ=0, it shows that the computation results need
to be back-transmitted is the current position, so there is no
back-transmitting computation results and no back-transmit-
ting latency. When kji ̸= U j

i , ξ= 1, the computation results of
sub-task sji need to be transmitted to the next computation
position, so there is a return latency.

ξ= min
(
|kji − U j

i |, 1
)

(9)

Since the data transmission with idle vehicles may require
the relay of other vehicles, the relay latency between ve-
hicles and idle vehicles is taw. δ(t) is the impulse func-
tion, Under the condition of kji ̸= U j

i , such as when
kji= 1, min(δ(kji−1), 1) = min(∞, 1) = 1 ; when kji ̸= 1,
min(δ(kji−1), 1) = min(0, 1) = 0, indicating that the compu-
tation position of the follow-up sub-task is MEC server, only
the computation result Oj

i is transmitted to the MEC server
latency, the other latency is 0.

Γ1= min(δ(kji−1), 1) (10)

Γ2= min(δ(kji−2), 1) (11)

Γ3= min(δ(kji−3), 1) (12)

So the computation result Oj
i of the sub-task sji is transmit-

ted from the local vehicle to the latency of the computation
position set Kj

i of the rear drive sub-task, and the maximum
latency should be taken, that is, tlrij :

tlrij= max
kj
i∈Kj

i

ξ ·

 Γ1 ·
(

Oj
i

R2
i
+ tOmrelay

ij

)
+Γ2 ·

(
Oj

i

R2
i
+ taw

)
+Γ3 ·

(
Oj

i

R1
i
+ tOcrelay

ij

) 
(13)

When di = Zj
i , the MEC server that represents the

vehicle vi to unload is the current MEC server. Therefore,
|di − Zj

i |= 0, min
(
|di − Zj

i |, 1
)
=0, so there is no trans-

mission latency between MEC servers, so tOmrelay
ij = 0.

When di ̸= Zj
i , it indicates that the MEC server to be
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Fig. 3: Computation tasks offloading scenarios in IVS

offloaded by vehicle vi is not the current MEC server.
|di−Zj

i | ≥ 1, there is the transmission latency between MEC
servers, min

(
|di − Zj

i |, 1
)
= 1, then the transmission latency

tOmrelay
ij =

Oj
i

Rm
f

between MEC servers. The computation

latency of sub-task sji in local computation and the latency
sum of computation result Oj

i transmitted to the computation
position set Kj

i of follow-up sub-task is tlcij + tlrij .

elrij=
∑

kj
i∈Kj

i

ξ ·


Γ1 ·

(
Oj

i

R2
i
· Pu

i + tOmrelay
ij · Pu

m

)
+Γ2 ·

(
Oj

i

R2
i
+ taw

)
· Pu

i

+Γ3 ·
(

Oj
i

R1
i
· Pu

i + tOcrelay
ij · Pu

b

)


(14)

where elrij represents the energy consumption of the compu-
tation result from the local vehicle to the computation position
of all follow-up sub-tasks.

The total energy consumption of sub-task sji offloaded to
local computations elocalij if formulated as:

elocalij = tlcij · Pi + elrij (15)

B. MEC server computation model

When U j
i = 1, and Zj

i = n, the sub-task sji is per-
formed on the mecn server, which is represented by a six-
tuple MEn= {n,Gm,Fn,Wn, Pm,Pu

m}. where n represents
the number of MEC server, Gm is the number of CPU cycles
required by MEC server to process 1 bit data, unit cycle / bit.
Fn is the computing resource cycle / s for the mecn server.
Pm is the device power when the task is executed on the MEC
server, and Pu

m is the transmit power of the MEC server.

Transmission latency of sub-task sji from offloading vehicle
vi to MEC server tms

ij :

tms
ij = tvmij + tImrelay

ij

=
Iji
R2

i

+min
(∣∣∣di − Zj

i

∣∣∣ , 1) · Iji
Rm

f

(16)

where tvmij represents the latency of sub-task sji transmitting
to the MEC server where the vehicle is located, and tImrelay

ij

represents the transmission latency of the optical fiber link
between the sub-task sji and the MEC server.

The computation latency of sub-task sji on MEC server tmc
ij :

tmc
ij =

Iji ·Gm

F i
n

(17)

where F i
n denotes the computing resource allocated to

vehicle vi by MEC server, unit cycle / s. The latency of the
computation result Oj

i of the sub-task sji from the MEC server
to the computation position set Kj

i of the follow-up sub-task
is tmr

ij :

tmr
ij = max

kj
i∈Kj

i ,q
j
i∈Qj

i


ξ ·


Γ1 ·

(
Oj

i

Ri
m

+ tOmrelay
ij

)
+Γ2 ·

(
Oj

i

Ri
m

+ tOmrelay
ij

)
+Γ3 ·

(
tObrelay
ij +

Oj
i

Rc
f

)


+Θ · tOmrelay
ij


(18)

tObrelay
ij =

Oj
i

Rb
f

(19)

Θ = min (|δ(kji−1) · (qji−di)|, 1) (20)

Since the idle assistance vehicle is connected to the MEC
server through the PC5 link, the return latency when the
computation result Oj

i is transmitted from the MEC server
to the idle vehicle is Oj

i

Ri
m

+ tOmrelay
ij . tObrelay

ij represents the
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latency of the computation result Oj
i of the sub-task sji from

the MEC server through the optical fiber to the BS, and Rb
f is

the transmission rate of the optical fiber link between the MEC
server and the BS. Θ · tOmrelay

ij indicates that when the current
computing location is MEC server, it may not be the same
MEC server, and may have a transmission latency between
MEC servers.

The sum of computation latency and computation result
Oj

i of sub-task sji on MEC server to follow-up sub-task
computation position set sji is written as: tmc

ij + tmr
ij .

The energy consumption of the computation results trans-
mitted from the current MEC server to all the position of
follow-up sub-tasks emr

ij is defined.

emr
ij =

∑
kj
i∈Kj

i


ξ ·


Γ1 ·

(
Oj

i

Ri
m

+ tOmrelay
ij

)
· Pu

m

+Γ2 ·
(

Oj
i

Ri
m

+ tOmrelay
ij

)
· Pu

m

+Γ3 ·
(
tObrelay
ij · Pu

m +
Oj

i

Rc
f
· Pu

b

)


+Θ · tOmrelay
ij · Pu

m


(21)

The total energy consumption of sub-task sji offloading to
MEC emec

ij can be defined as:

emec
ij = tvmij · Pu

i + tImreleay
ij · Pu

m + tmc
ij · Pm + emr

ij (22)

C. Computation model of idle vehicle

When U j
i = 2, the sub-task sji performs in idle

assistance vehicles, which are represented by a quad
A = {Ga,Fa,Pa,P

u
a }. where Ga is the number of CPU cycles,

unit cycles / bit, required to idle vehicles in processing 1 bit
data. Fa is idle vehicle computing capacity, unit cycle / s.
Pa is the equipment power when the task is idle to assist the
vehicle, and Pu

a is the transmitting power of the idle to assist
the vehicle.

sub-task sji from offloading vehicle vi to idle vehicle trans-
mission latency tasij :

tasij = tvaij + taw =
Iji
R2

i

+ taw (23)

where tvaij represents the latency of data transmission from
sub-task sji to idle assistance vehicles, and taw is the relay
latency between vehicles and idle vehicles.

The computation latency of sub-task sji in idle vehicle tacij :

tacij =
Iji ·Ga

Fa
(24)

The result Oj
i of the sub-task sji is transmitted from the idle

vehicle to the follow-up sub-task computation location set Kj
i

with time latency tarij :

tarij = max
kj
i∈Kj

i

ξ ·


Γ1 ·

(
Oj

i

Ri
a
+ taw

)
+Γ2 ·

(
Oj

i

R2
i
+ tOmrelay

ij

)
+Γ3 ·

(
Oj

i

R1
i
+ tOcrelay

ij

)

 (25)

Fig. 4: An example of critical paths of computation tasks

The computation latency of sub-task sji in idle assistance
vehicle and the latency sum of the computation result Oj

i

returning to the computation position set Kj
i of follow-up sub-

task is tacij + tarij
The energy consumption of the computation process from

idle vehicles to all follow-up sub-task locations earij is defined
as:

earij =
∑

kj
i∈Kj

i

ξ ·


Γ1 ·

(
Oj

i

Ri
a
+ taw

)
· Pu

a

+Γ2 ·
(

Oj
i

R2
i
· Pu

a + tOmrelay
ij · Pu

m

)
+Γ3 ·

(
Oj

i

R1
i
· Pu

a + tOcrelay
ij · Pu

b

)



(26)
Total energy consumption of sub-task sji offloaded to idle

Vehicle eassiti is formulated as:

eassitij = tasij · Pu
i +tacij · Pa + earij (27)

D. Cloud Server Computing Model

When U j
i = 3, sub-task sji is performed on the cloud server,

which is represented by a quad C= {Gc,Fc,Pc,P
u
c }. where Gc

is the number of CPU cycles required by the cloud server to
process 1 bit data, unit cycle / bit. Fc is the computing power
of cloud server, unit cycle / s. Pc is the device power when the
task is executed on the cloud server, and Pu

c is the transmitting
power of the cloud server.

The transmission latency of sub-task sji from offloading ve-
hicle vi to cloud server tcsi is formulated as:

tcsij = tvbij + tIcrelayij =
Iji
R1

i

+
Iji
Rc

f

(28)

where tvbij represents the latency of data transmission from
sub-task sji to BS, tIcrelayij represents the transmission latency
of optical fiber link between sub-task sji and cloud server, and
Rc

f is the transmission rate of optical fiber link between cloud
server and BS.

The computing latency of sub-task sji in cloud server is tccij :

tccij =
Iji ·Gc

Fc
(29)
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The computation result Oj
i of the sub-task sji is transmitted

from the cloud server to the latency tcrij of the computation
position set Kj

i of the follow-up task:

tcrij= max
kj
i∈Kj

i

ξ ·


Γ1 ·

(
Oj

i

Rc
f
+

Oj
i

Ri
b

)
+Γ2 ·

(
Oj

i

Rc
f
+

Oj
i

Rb
f

)
+Γ3 ·

(
Oj

i

Rc
f
+

Oj
i

Ri
b

)

 (30)

The sum of computing latency and computing result Oj
i of

sub-task sji in cloud server back to the computing position set
Kj

i of follow-up task is tccij + tcrij
The energy consumption of the computation process from

idle vehicles to all follow-up sub-task locations ecrij is defined
as:

ecrij=
∑

kj
i∈Kj

i

ξ ·


Γ1 ·

(
Oj

i

Rc
f
· Pu

c +
Oj

i

Ri
b

· Pu
b

)
+Γ2 ·

(
Oj

i

Rc
f
· Pu

c +
Oj

i

Rb
f

· Pu
b

)
+Γ3 ·

(
Oj

i

Rc
f
· Pu

c +
Oj

i

Ri
b

· Pu
b

)

 (31)

Total energy consumption of sub-task sji offloading to cloud
servers ecloudij is formulated as:

ecloudij = tcsij · Pu
i +tccij · Pc + ecrij (32)

E. Total system cost formulation

Since we consider the dual dependence of timing and data
between sub-tasks. In this study, the vehicle is assumed to be
a multi-antenna offloading mode, so the total latency is not
a simple sum of sub-task latency. Therefore, considering the
total time latency of the task Si, this paper uses the Critical
Path Method ( CPM ), which is the longest path in this paper.
All paths are obtained by the breadth-first traversal algorithm
of DAG graph. For example, there are seven paths to complete
the dependency task as shown in Fig.4.

Assuming that the path set of task Si of vehicle vi is
Pathi= {path1

i ,path
2
i , ..., path

p
i }, there are a total of p paths.

The total latency of task Si path pathp
i of vehicle vi is T p

i

:

T p
i = T send

i +
∑

j=1∧j∈Pathp
i

Y j
i

= max

 J∑
j=1,Uj

i =1

Lj
i ,

J∑
j=1,Uj

i =2

Lj
i ,

J∑
j=1,Uj

i =3

Lj
i


+

∑
j=1∧j∈Pathp

i

Y j
i

(33)
Where T send

i represents the maximum latency of simulta-
neous transmission task Si completion. Since all tasks that
are not calculated locally need to be offloaded, the latency in
this part should be the maximum latency in the MEC, idle
assistance vehicles and cloud servers. And the dependencies
between tasks must wait until the precursor task is finished and
the results are passed to the next sub-task to start execution,

so the computation latency and the backhaul latency on the
pathp

i should be additive.
The total offloading latency of vehicle vi task Si is Ti, and

the total energy consumption is Ei. The latency sum of all
computation intensive task set S of vehicle set V , namely, the
total system latency is T , and the total energy consumption is
E:

T=
k∑

i=1

max
(
T 1
i ,T

2
i , ..., T

p
i

)
(34)

E =
k∑

i=1

J∑
j=1

Ej
i (35)

The total system cost is H:

H = βT + (1− β)E (36)

Where β ∈ (0, 1) is the latency coefficient, (1 − β) is the
energy consumption coefficient. β=0.8 in this paper.

IV. RESOURCE ALLOCATION AND LOAD BALANCE MODEL
FOR MEC SERVER

A. MEC Server Resource Allocation Model

The scheduling server calculates the amount of tasks that
each vehicle offloads to each MEC server, and the amount
of offloading of the cloud server. According to the bidding
idea of auction algorithm, the computation resources and BS
bandwidth are allocated to each offloading vehicle.Vehicle vi
with computation task Si for MEC server computing resources
bidding for Fbin:

F i
n

=Fbin · Fn

=

a1 ·

J∑
j=1∧Zj

i =n

Iji

k∑
i=1

J∑
j=1∧Zj

i =n

Iji

+ a2 ·min(δ(di−n), 1)

 · Fn

(37)

Where a1=0.75, a2=0.25. a1 represents the weight
of the computation resource request, and a2 represents
the priority weight of the vehicle. When di=n,
min(δ(di−n), 1) = min(∞, 1) = 1; when di ̸= n,
min(δ(di−n), 1) = min(0, 1) = 0. Because when vehicle vi
is under the mecn server, the priority of vehicle vi will be
higher, which can reduce the return latency of computation
results.

Vehicle vi with computation task Si bids for BS bandwidth
resources, where BS bandwidth allocation factor λi:

Bi = λi ·B1 =

J∑
j=1∧Uj

i =3

Iji

k∑
i=1

J∑
j=1∧Uj

i =3

Iji

·B1 (38)
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Because the more vehicles offloaded to the cloud server,
the more bandwidth resources should be allocated, which
can reduce the transmission latency and the result backhaul
latency.

The allocation of storage resources for mecn server by task
S of vehicle vi is W i

n:

W i
n =

J∑
j=0∧Zj

i =n

(
Iji +Oj

i

)
(39)

Because all sub-tasks of task Si offloaded to the mecn
server must be stored first, and the computation results of sub-
tasks also need to be stored to be transmitted to the follow-up
sub-task.

Fig. 5: The flow chart of proposed algorithm

B. MEC Server Load Balance Model

In the vehicle networking environment, due to the mobility
of vehicles, the distribution of offloading vehicles under the
MEC server is uneven, resulting in unbalanced load of the
MEC server. It not only makes the resources not fully utilized,

but also leads to poor QoE. Therefore, it is necessary to con-
sider load balance of MEC servers when offloading strategies
and resource allocation are made.

When balancing the load of the MEC server, it is first
necessary to determine the load of the mecn server. In this
paper, the computing resources Fn and storage resources Fn

of the MEC server are needed. Therefore, the determination of
the load of the MEC server in this paper is mainly considered
from two aspects : computing resources and storage resources.

The load state of mecn server is expressed as γn =
(γcpu

n , γmem
n ), where γcpu

n represents the current computing
resource usage of mecn server, and γmem

n represents the
current memory usage of mecn server.
mecn server CPU usage is Gcpu

n , memory usage is Gmem
n :

Gcpu
n =

γcpu
n

Fn
, Gmem

n =
γmem
n

Wn
(40)

Therefore, the load of mecn server is Gn:

Gn = α1 ·Gcpu
n + α2 ·Gmem

n (41)

where α1+α2=1 and α1 represent the degree of attention
to the use of computing resources, and α2 represents the
degree of attention to the use of memory resources. This study
pays the same attention to computing resources and storage
resources, so α1=α2= 0.5.

Under the scheduling server, MEC server set is M =
{mec1,mec2, ...,mecn, ...,mecm}, then the load set of MEC
server cluster is GM = {G1, G2, ..., Gn, ..., Gm}.

In this paper, the standard deviation ω of MEC server cluster
load is used to represent the load balance of cluster:

ω=

√√√√ 1

m
·

m∑
n=1

(
Gn − 1

m
·

m∑
n=1

Gn

)2

(42)

The smaller ω indicates the higher load balance of MEC
server cluster, and the larger ω indicates the lower load balance
of MEC server cluster.

C. Problem Formulation

In the scheduling cycle ∆t, the whole process of offloading
system is : Firstly, k offloading vehicles upload the relevant
information of their computing-intensive tasks, such as the
dependency matrix of sub-tasks, the size of sub-tasks, etc.
After receiving the offloading request of the vehicle, DS
considers multi-platform offloading based on the uploaded
information. The resource status of m MEC servers in DS
range is comprehensively analyzed to minimize the cost (
weighted sum of latency and energy consumption ) and load
balance of the whole system. The offloading, MEC server
resource allocation and BS bandwidth resource allocation are
jointly optimized.

Finally, the offloading strategy results are returned to the
offloading vehicles, BS and MEC. Each vehicle completes the
computation of offloading according to the strategy results.
BS and MEC allocate bandwidth and computation resources
respectively. Under the premise of meeting the dependence of
each vehicle’s computation intensive task Si, as well as the
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maximum tolerance of latency and resource constraints, the
goal is to minimize the total cost and load balance of the joint
offloading system. Therefore, the task offloading and resource
allocation of the system are modeled as:

min
K,U,Z,F,W,B

[µ ·H + (1− µ) · ω]

s.t.C1 :
J∑

j=1

Iji = Ii

C2 : Ti ≤ Tmax
i ,∀i ∈ [1, k]

C3 : 0 ≤ F i
n ≤ Fn, 0 ≤

k∑
i=1

F i
n ≤ Fn,∀i ∈ [1, k],∀n ∈ [1,m]

C4 : 0 < λi < 1, 0 <
k∑

i=1

λi ·B1 ≤ B1,∀i ∈ [1, k]

C5 : 0 ≤
k∑

i=1

 J∑
j=1,Uj

i =1∧Zj
i =n

(Iji +Oj
i )

 ≤ Wn,∀n ∈ [1,m]

C6 : U j
i ∈ {0, 1, 2, 3}, Zj

i , Q
j
i ∈ {1, 2, ...,m},Kj

i ∈ {0, 1, 2, 3},
∀i ∈ [1, k],∀j ∈ [1, J ]

(43)
Where µ represents the weight of the total cost of the

system in the objective function, and (1−µ) represents
the weight of the load balance in the objective function.
K = [K1,K2, ...,Ki, ...,Kk] is the task-dependent topological
matrix of all vehicles, and the i element in K corresponds
to the topological vector Ki of the computing task Si of
vehicle vi. U = [U1, U2, ..., Ui, ..., Uk] is the offloading ma-
trix of all vehicle computation tasks. The ith element in
Ui = [U1

i , U
2
i , ..., U

j
i , ..., U

J
i ] corresponds to the offloading

strategy vector U of the computation task Si of vehicle vi,
that is, the offloading position corresponding to the Ki neu-
tron task. Z = [Z1, Z2, ..., Zi, ..., Zk] represents the number
of the MEC server when the offloading location is MEC.
Zi = [Z1

i , Z
2
i , ..., Z

j
i , ..., Z

J
i ], when Zj

i = 0, indicates not
offloading to the MEC server. F = [F1, F2, ..., Fn, ..., Fm]
and W = [W1,W2, ...,Wn, ...,Wm] are the computation
resource allocation matrix and storage resource allocation
matrix for all MEC servers, respectively. The nth row in
F corresponds to the computation resource allocation vector
Fn = [F 1

n , F
2
n , ..., F

i
n, ..., F

k
n ] for the mecn server, and the nth

row in W corresponds to the storage resource allocation vector
Wn = [W 1

n ,W
2
n , ...,W

i
n, ...,W

k
n ] for the MEC server. B is the

bandwidth resource allocation vector of BS, and the elements
in the vector represent the bandwidth allocation coefficient
B = [λ1, λ2, ..., λi, ..., λk]

T for each vehicle.
In the constraint condition, C1 denotes the amount of data

that vehicle vi cuts Si into multiple dependent sub-tasks Iji
equals to that of task Si ; C2 denotes that the latency Ti

of the computation-intensive task Si that completes vehicle
vi cannot exceed the maximum tolerance latency Tmax

i of
task Si ; C3 means that the mecn server allocated to the
vehicle vi computing resources F i

n, can not exceed the mecn
server ’ s total computing resources Fn, and the mecn server
allocated to all offloaded vehicle computing resources and can
not exceed the mecn server ’ s total computing resources Fn

; C4 indicates that the BS bandwidth allocation factor λi of
vehicle vi should be greater than 0 and less than 1, and the
sum of BS allocation bands of all vehicle vi is less than the

total BS bandwidth B1. C5 represents the sum of the data
amount of sub-tasks and computation results offloaded by all
vehicles to the mecn server, which cannot exceed the total
storage resource Wn of the mecn server ; C6 represents the
range of discrete variables.

V. ALGORITHM DESIGN FOR THE PROBLEM SOLUTION

It can be seen that the objective function has discrete integer
variables such as U j

i and Zj
i , and continuous variables such as

F i
n and λi. Therefore, the optimization problem is a MINLP

problem. At present, many studies use intelligent optimization
algorithms to solve MINLP problems. PSO algorithm has
memory and good convergence, but the particle is a single
direction of information transmission, easy to fall into lo-
cal optimum. Two-way transmission of information between
chromosomes in GA algorithm has good global optimization
effect, but slow convergence. Aiming at the objective function
of this paper, the PSO and GA algorithm are improved, and an
adaptive particle swarm genetic hybrid algorithm is proposed,
which not only makes the algorithm have fast convergence
ability, but also has better global search ability. In order to
ensure that all the precursor tasks execute before it when the
task is executed, this paper uses the DAG topology sorting
algorithm to solve it. Different topological sorting will also
lead to different results, so it is necessary to obtain all
topological sorting results. The climbing search algorithm is
used to local search for different sorting results to obtain the
optimal results. The specific algorithm flow chart is described
in Fig.5.

A. Initialization of Particle and Genetic Population

According to the objective function, it is necessary to
solve the K,U,Z, F,W,B six matrices. Therefore, this paper
improves the coding method of PSO algorithm and GA algo-
rithm, and uses a multi-matrix coding method. The example of
multi-matrix coding is shown in Fig.6. The particle population
and the genetic population are composed of six large matrices
KZ,UZ,ZZ, FZ,WZ,BZ, where N is the population size
and k is the number of vehicles. To obtain the coding of the i
particle/chromosome, only the corresponding lines (i−1)∗k+1
to i ∗ k of each matrix need to be taken out and operated
correspondingly.

Topological matrix KZ initialization is randomly selected
from all topological of vehicle tasks. The random number of
offloading strategy matrix U and MEC index matrix Z is ini-
tialized with in (0,1], and then mapped to integers, when the
number of MEC server n = 3, the mapping relationship is
shown as Eq.48 and Eq.49 , respectively.

U j
i =


0, 0 < Uj

i ≤ 0.25

1, 0.26 < Uj
i ≤ 0.5

2, 0.51 < Uj
i ≤ 0.75

3, 0.76 < Uj
i ≤ 1

(44)

Zj
i =


1, 0 < Zj

i ≤ (1/3)

2, (1/3) < Zj
i ≤ (2/3)

3, (2/3) < Zj
i ≤ 1

. (45)
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Algorithm 1 Select crossover and mutation by PMX and elitism scheme

INPUT: Genetic populations
OUTPUT: New populations after completion of selection, crossover and mutation
Initialization: Number of crossover points per time NoPoint=round(k ∗ sub− taskNum ∗ Pc)
temp=randperm(k ∗ sub− taskNum) Generate non-repeating random integers from 1 to k ∗ sub− taskNum
Location of gene crossover PoPoint=temp(:, 1 : NoPoint)
Emper = Pg global optimal individual
1 : For j = 1 : (N/2) do
2 : ParentU = UZ((2 ∗ j − 1) ∗ sub− taskNum+ 1 : 2 ∗ j ∗ sub− taskNum, :)
3 : ParentZ = ZZ((2 ∗ j − 1) ∗ sub− taskNum+ 1 : 2 ∗ j ∗ sub− taskNum, :)
4 : Transform ParentU and ParentZ to 1 row with length k ∗ sub− taskNum
5 : PMX crossover operation based on NoPoint and PoPoint to obtain new ChildU , ChildZ
6 : /* Mutation operations on ChildU , ChildZ
7 : For m = 1 : k ∗ sub− taskNum do
8 : r = rand(1, 1)
9 : If r ≤ Pm

10 : ChildU , ChildZ=rand(1,1)∗(Xmax−Xmin) +Xmin;
12 : ChildU , ChildZ map back to integers
13 : end if
14 : After transforming ChildU , ChildZ back into matrices and obtaining the corresponding F , W , B matrices
15 : end For
16 : end For
17 : Search the topological paths of the topological matrix with climbing search strategy
18 : Calculate the fitness
19 : Update New Matrix K
20 : Merging parent and sub-populations after crossover and mutation
21 : Sort the merged populations in ascending order according to fitness values
22 : Select the top N individuals as the new populations

The whole evolution process is mainly for the computation
of offloading strategy matrix U and MEC numbering matrix
Z, because after the offloading strategy is determined, the
offloading MEC server can be selected according to the
offloading results, and the resource allocation is carried out,
so as the MEC server load balance.

B. Constructing the Fitness Function

The objective optimization model is to minimize the system
cost and load balance with constraints. Using particle swarm
genetic hybrid algorithm, the constraint problem needs to be
transformed into a non-constrained problem, and the penalty
function is only one of the commonly used methods in
the optimization algorithm. This paper uses adaptive penalty
function to constraint the objective function.

In the objective function, C1 and C6 constraints are pro-
cessed in coding, and C3, C4 and C5 are bound to meet when
allocating resources in bidding. Therefore, only punishment
is needed for C2 constraints, so the fitness function can be
obtained as follows:

fit = µ ·H+(1−µ) ·w ·Ψ+ c(ρ) · (
k∑

i=1

max(0, Ti − Tmax
i ))

(46)

c(ρ) = eα(1−ρ) − 1 (47)

ρ=
fok
fsum

(48)

Where the Ψ value is set as 1000, since the load balance
is low, it is necessary to improve its proportion in the fitness
function. c(ρ) is the penalty coefficient, and ρ is the proportion
of feasible solutions. ρ is inversely proportional to c(ρ), and
the larger ρ is, the more feasible solution is, and c(ρ) should
be reduced. When c(ρ)=0, it means that there is no feasible
solution of the current population, and when c(ρ)=1, it means
that the current population is all feasible. Because in the initial
iteration, the number of feasible solutions in the population is
low, and the penalty coefficient should be higher to guide the
search into the feasible region.

C. Operations of particle swarm optimization and genetic
algorithm

1) Particle velocity and position update: Large inertia
weight makes particles have better global search ability, and
small inertia weight is conducive to local search. Fixed inertia
weight will fall into local optimization. Therefore, adaptive
inertia weight is adopted in this paper, which can make
particles move to the optimal position.

wt =

{
wmin + (wmax − wmin) · ft

i−ft
min

ft
avg−ft

min
, f

t

i ≤ f t
avg

wmax, f
t

i > f t
avg

(49)
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Fig. 6: Multi-matrix coding for problem solving

Where wmin and wmax are the initial minimum and max-
imum inertia coefficients, fx

i is the fitness value of the first
particle in the t iteration, fx

avg is the average fitness value
of all particles in the t iteration, and fx

min is the minimum
fitness value of all particles in the t iteration. The inertia weight
decreases with the number of iterations, so that it has better
global search ability in the early stage and better local search
ability in the later stage.

Particle velocity and position update strategy is according
to the following equations :

vi(t) =wt · vi(t) + c1 · rand · [pi(t)− xi(t)]

+ c2 · rand · [pg(t)− xi(t)]
(50)

xi(t+ 1) = xi(t) + vi(t) (51)

Where C1 and C2 are learning factors, pi(t) and pg(t)
are individual history optimal position and population global
optimal position respectively.

2) Select crossover and mutation operations: In the GA
algorithm, the crossover probability is too low, which affects
the richness of the population in the iteration process, leading
to slow convergence, but too large crossover probability will
affect the inheritance of good individuals. Small mutation
probability is not easy to produce new individuals, affecting
population diversity, mutation probability will fall into local
optimum. Therefore, this paper adopts the adaptive crossover
probability and mutation probability. When the fitness value
of the population is dispersed, it indicates that the population
is rich, so the crossover probability and mutation probability
should be reduced. On the contrary, when the fitness value
of the population is relatively concentrated, it indicates that
the richness of the population is not enough, so the crossover
probability and mutation probability should increase.

Adaptive cross probability Pc:

Pc =

 k1 ·
arcsin

(
favg
fmax

)
π/2 , arcsin

(
favg

fmax

)
< π/6

k1 · (1−
arcsin

(
favg
fmax

)
π/2 ), arcsin

(
favg

fmax

)
≥ π/6

(52)

Adaptive mutation probability Pm:

Pm =

 k2 · (1−
arcsin

(
favg
fmax

)
π/2 ), arcsin

(
favg

fmax

)
< π/6

k2 ·
arcsin

(
favg
fmax

)
π/2 , arcsin

(
favg

fmax

)
≥ π/6

(53)
Where favg is the average fitness of the current population,

fmax is the maximum fitness of the current population, k1
and k2 are constants in the range of ( 0,1 ]. Partial-Mapped
Crossover ( PMX ) and monarch scheme are combined to
select and cross operation. Firstly, the population is arranged in
ascending order according to the fitness value, and the optimal
individual is crossed with other even-numbered individuals.
Two new individuals are generated each time. Secondly, after
the crossover, the newly generated individuals are mutated
to generate sub-groups, and then their fitness values are
calculated. After that, they are merged with the parent group,
and are arranged in ascending order according to the fitness
values. The former N individuals are taken as new groups for
the next operation.

VI. SIMULATION AND RESULTS ANALYSIS

A. Simulation parameter setting

In this section, in order to verify the effectiveness of the
algorithm in this paper. In the initial simulation, we consider a
cellular network deployed within a circular area with a radius
r = 1 Km, where the vehicles are randomly distributed in
this cellular network area. MEC server are deployed within
a RSU, which provide storage and computation resource. For
simplicity, we only consider a BS with n=3 MEC servers, i.e.,
3 RSUs, the number of vehicles k is initially set to 12, and
the corresponding bandwidth and computing power settings
are shown in Table 1. For the computational task, we consider
the dot product operation, which is the most commonly used in
deep learning, and randomly loop the dot product according to
the amount of operations to generate the corresponding com-
putational task. For comparison with other algorithm. Random
algorithm, PSAO algorithm proposed in work [33] and JODTS
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Fig. 7: Convergence performance of different algorithms

Fig. 8: The impact of tasks data size on the total cost of the
system with different algorithms

algorithm proposed in work [11] are simulated and compared,
The detail of compared algorithms is described as following:

Random algorithm : the dependent tasks are randomly
offloaded to the local, MEC server, idle vehicle and cloud
server for computation.

PSAO algorithm : Based on the offloading strategy of
improved particle swarm algorithm, the computation task is
offloaded to the local and the MEC server is calculated.

JODTS algorithm : Based on the offloading strategy of
improved genetic algorithm, the computation task is offloaded
to the local, MEC server and cloud server for computation.

B. Analysis of simulation results

Fig.7 shows the convergence performance of different al-
gorithms. It can be seen that the convergence speed of this
algorithm is the fastest, and it converges about 120 iterations.
The convergence degree of PSAO is in the middle, and it
converges about 140 iterations. The slowest convergence is
JODTS algorithm, which converges about 210 iterations. In

Fig. 9: The influence of the number of vehicles on the load
balance

Fig. 10: The output data volume factor influence on the total
system cost

terms of global optimization, the algorithm in this paper is
good, followed by JODTS algorithm, and PSAO algorithm
is the worst. Because particle swarm algorithm is one-way to
transmit information, genetic algorithm is two-way, so particle
swarm algorithm convergence faster than genetic algorithm,
but it is easy to fall into local optimum, so the particle swarm
optimization ability is not strong genetic algorithm. This algo-
rithm combines the characteristics of the two algorithms, and
adds hill-climbing search strategy for local quadratic search, so
the global optimization ability and convergence performance
of this paper are improved.

Fig.8 shows that when the number of vehicles under DS and
the number of MEC servers are fixed, the impact of computing
tasks on the total cost of the system. It can be seen from the
figure that with the increase of computation tasks, the total
system cost of the four algorithms also increase. The total
system cost of the proposed algorithm is the lowest, about
49.15% of Random algorithm, 68.10% of PSAO algorithm
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TABLE I: Parameters of simulation

Parameters Value
Number of vehicles to be offloaded under BS k 4 ∼ 14
Number of MEC servers under BS n 3
Channel gain h1 , h2 0.8 × 10−4, 1.2 × 10−4

Channel gain of vehicle with MEC/ idle vehicle h2 1.3× 10−4

Bandwidth between the car and BS B1 8.4× 104 Hz
Bandwidth between vehicle and MEC/ idle vehicle B2 4.8× 104 Hz
Transmitting power Pu

i , Pu
m, Pu

a , Pu
b , Pu

c 1.89,3.5,1.89,20,40 w
Computation power Fi,Fn,Fa,Fc 3× 105, 8.9× 106,3× 105,5.6× 106cycles/s
Noise power N1, N2 6× 10−14,5× 10−14 w
Task computation Complexity Gv , Gm,Ga,Gc 20∼40 cycles/bit
Maximum allowable latency of the task Tmax

i 100∼300ms
Transmitting power Pi, Pm,Pa,Pc 5.31, 15,5.31,35 w
Coefficient of latency weight β, µ, α1, α2 0.8, 0.5, 0.7, 0.3
Coefficient of output data δ 0.015∼ 0.04
Relay latency between vehicles and idle vehicles taw 6∼8 ms
Transmission rate of Optical link Rc

f ,Rb
f 20, 10 Mbps

Particle swarm size N 600
Learning factor c1, c2 2, 1.8
Maximum/ Minimum Velocity Vmin, Vmax -0.18,0.18
k1, k2 0.53,0.42
Maximum/ Minimum Xmin,Xmax 0, 1
Maximum iteration 300

and 87.62% of JODTS algorithm. And when the amount of
computing tasks is more than 12, the increase is significantly
increased, because when the amount of computing tasks is too
large, resulting in data transmission and backhaul overhead,
and MEC computing overhead increased significantly. It can
be seen from the figure that the average latency of each vehicle
in this algorithm is less than the maximum latency of the
computation task, indicating that this algorithm can minimize
the total system cost while meeting the maximum tolerance
latency. Fig.9 shows the influence of the number of vehicles
on the load balance when the number of MEC servers, the
number of computation tasks and the number of sub-tasks are
fixed under DS. It can be seen from the figure that the proposed
algorithm has the smallest load balance and the smallest
increase compared with the other three algorithms, indicating
that the proposed algorithm can effectively balance the load
of MEC server under DS. Due to the uneven distribution of
vehicle mobility, the load balance of Random algorithm is the
largest and fluctuates.

It can be seen from Fig.10 that when the number of vehicles,
the number of MEC servers and the amount of computing
tasks under DS are fixed, the total system cost increases as
the output data volume factor δ increases. Compared with the
other three algorithms, the proposed algorithm has the smallest
total system cost. It can be seen that the output data volume
has little effect on the total cost of the system, because the
output data volume is relatively small, and the optical fiber
is used between MEC servers, between MEC and BS, and
between BS and cloud servers in this paper, so the bandwidth
is large, so the output data volume has little effect on the total
cost of the system.

Fig.11 shows the impact of the number of sub-tasks of
vehicle tasks on the total cost of the system when the number
of vehicles, the number of MEC servers and the amount of
computation tasks are fixed under DS. It can be seen from
the diagram that the total system cost of the four algorithms
increase with the increase of the number of vehicle sub-tasks,

Fig. 11: The impact of the number of sub-tasks of vehicle
tasks on the total cost of the system

and the increase is obvious when the number of sub-tasks
exceeds 19. The reason is that when the number of sub-tasks
increases, the dependencies between tasks become complex,
which increases a lot of transmission overhead. And when the
number of sub-tasks exceeds a certain number, the follow-up
sub-task may wait for the completion of the previous sub-task
computation, resulting in waiting latency. Compared with other
algorithms, the algorithm in this paper has the smallest total
system cost and the smallest increase, which can effectively
deal with the dependence between sub-tasks.

The impact of two different coefficients on the value of the
objective function is given in Fig.12. From the figure, we can
find the effect of β for the system delay and the total system
cost weight µ on the value of the objective function, and 1−β
is defined as the energy consumption coefficient. It can be set
according to the demand of computation intensive tasks and
the state of vehicles. 1 − µ is defined as the weight of load
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Fig. 12: The impact of the coefficients β and µ on the objective
function values

balance in the objective function.

Fig. 13: The impact of the number of idle vehicles on the total
cost of the system

Finally, we evaluated the impact of idle vehicles on the
total system cost for different algorithms, as shown in Fig.13.
From the figure, we can see that the total system cost with
different algorithms decreases as the number of idle vehicles
in the system increases, and our proposed algorithm maintains
a low system cost for different idle vehicles in the system,
which is due to the fact that our algorithm adopts an optimal
computation task offloading strategy considering the timing
and data dependencies of computational tasks.

VII. CONCLUSION

In this paper, in order to solve the problem of dependent
latency caused by the dual dependence of timing and data
between sub-tasks, the uneven distribution of vehicle mobility
causes the load imbalance of MEC server, and in order to
reduce latency and energy consumption. This paper proposes a

joint computation offloading and resource allocation algorithm
based on dual-dependent tasks. Considering that multiple
vehicle dependent tasks are offloaded to multiple computing
platforms at the same time, an adaptive hybrid particle swarm
with genetic algorithm is proposed to jointly optimize offload-
ing strategy, resource allocation and load balance. Through the
simulation latency, it is verified that the proposed algorithm
can reduce the total system cost while meeting the maximum
latency, and effectively improve the load balance of the edge
server cluster.
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