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Reduced-Complexity LMI Conditions for
Admissibility Analysis and Control Design of

Singular Nonlinear Systems
Amine Dehak, Anh-Tu Nguyen∗, Senior Member, IEEE, Antoine Dequidt, Laurent Vermeiren, Michel Dambrine

Abstract—We present a reduced-complexity control approach
for a class of descriptor nonlinear systems with a nonlinear
derivative matrix, possibly singular. To this end, a systematic
approach is proposed to obtain an equivalent polytopic rep-
resentation of a given nonlinear system within a compact set
of the state space. This modeling approach has two particular
features compared to the related Takagi-Sugeno (TS) fuzzy
model-based framework. First, the model complexity only grows
proportionally, rather than exponentially, with the number of
premise variables. Second, the vertices of the proposed polytopic
models can admit an infinite number of representations for the
same predefined set of premise variables. This non-uniqueness
feature allows introducing some specific slack variables at the
modeling step to reduce the control design conservatism. Based
on the proposed polytopic representation and Lyapunov stability
theory, we derive reduced-complexity admissibility analysis and
design conditions, expressed in terms of linear matrix inequalities,
for the considered class of descriptor systems. In particular, a
new nonlinear control law is proposed for regular descriptor
systems to avoid using the extended redundancy form, which may
yield numerically complex and conservative results due to the
imposed special control structure. Both numerical and physically
motivated examples are given to demonstrate the interests of the
new control approach with respect to existing TS fuzzy model-
based control results.

Index Terms—Admissibility, Takagi–Sugeno fuzzy descriptor
systems, linear matrix inequality (LMI), complexity reduction.

I. INTRODUCTION

Differential-algebraic systems, also known as descriptor
systems or generalized state-space systems, provide a natural
framework to represent and analyze a large class of engineer-
ing applications, including robotics [1], rehabilitation systems
[2], chemical processes [3], transportation and power systems
[4], etc. However, the analysis of such systems requires more
involved techniques when compared to the classical state-
space systems since not only stability but also regularity and
admissibility have to be addressed [5], [6]. Stability analysis
of descriptor systems has been classically studied based on
the system index or the coordinates reduction techniques [4].
However, such methods require extensive algebraic manipula-
tions, which can be unsuitable for a large class of engineering
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problems [7]. To avoid this drawback, Lyapunov methods
directly based on descriptor system formulation have been
proposed [8]–[11]. Despite significant advances in numerical
analysis and simulation, the problem of stability analysis and
control for general descriptor systems remains challenging,
especially for systems with a large number of nonlinearities.

Takagi-Sugeno (TS) fuzzy paradigm has become one of the
most popular techniques for nonlinear control systems [12]–
[15], which is due to several factors. First, TS fuzzy models
can be used to approximate any smooth nonlinear system
with any degree of accuracy. In particular, an exact TS fuzzy
model of a given nonlinear system can be obtained within
a state-space compact set via the sector nonlinearity approach
[12]. Second, using TS fuzzy modeling and Lyapunov stability
theory, stability analysis and control design conditions can be
derived for nonlinear systems in the form of linear matrix
inequalities (LMIs), which can be efficiently solved using
convex optimization techniques [16]. Third, TS fuzzy model-
based technique has been successfully applied to various engi-
neering applications [17]–[19]. From a theoretical viewpoint,
it is possible to derive asymptotically necessary and sufficient
stability conditions for TS fuzzy systems [20]. Nevertheless,
in practice these stability conditions are conceptual rather
than implementable since the computational burden swiftly
increases such that most numerical solvers crash [15]. This
leads to another challenge of TS fuzzy approaches in deriving
less conservative sufficient conditions for stability analysis
of nonlinear systems with a reasonable numerical burden.
To reduce the design conservatism, various fuzzy Lyapunov
functions have been effectively exploited for TS fuzzy systems
[9], [21]–[24]. In contrast to quadratic stability, exploiting
the information on the membership functions and their time-
derivatives plays a key role for fuzzy Lyapunov-based stability
of TS fuzzy systems [9], [24]. However, the information on the
time-derivative of premise variables is generally not available
for control design, which implies much more numerical and
theoretical challenges when using fuzzy Lyapunov functions
for TS fuzzy stability analysis and control design. Note that
within local TS fuzzy control framework, it is still not possible
to theoretically demonstrate that nonquadratic results include
those derived from quadratic Lyapunov functions [15].

Concerning descriptor nonlinear systems, most of TS fuzzy
based approaches have been devoted to the case with regular
derivative matrices, see for instance [25]–[28] and related
references, for which the regularity and admissibility analysis
is not required. However, such a class of descriptor systems



cannot take into account the physical differential-algebraic
equations into the model description. TS fuzzy model-based
admissibility analysis conditions, in the form of LMI con-
straints, have been proposed in [29]–[37]. However, these
results can only be applied to singular TS fuzzy systems with a
constant derivative matrix, which may be restrictive for many
engineering problems. To avoid this drawback, LMI-based
design conditions have been developed for singular TS fuzzy
systems with a nonlinear derivative matrix, which is more
challenging [9], [11], [38]. For existing TS fuzzy approaches,
the numerical complexity of stability analysis, observation and
control design conditions exponentially grows with respect to
the number of premise variables [12]. This limits the applica-
bility of these results to systems with only few nonlinearities.
To overcome this major limitation, several approaches have
been proposed to reduce the numerical complexity of TS
fuzzy systems. A singular value decomposition was proposed
in [39] to reduce the fuzzy rules, leading to approximate
TS fuzzy models. The authors in [40] proposed to transform
some nonlinearities into system uncertainties to reduce the
number of vertices of TS fuzzy models. Based on the linear
dependencies between the TS fuzzy local sub-models obtained
with the sector nonlinearity approach, a reduced-complexity
model can be directly derived from the initial TS fuzzy model
in [41]. However, the reduction methods in [40], [41] can lead
to over-conservative design results. Data-based methods have
been proposed for dimensionality reduction of the premise
variables, e.g., principal component analysis [42], deep neural
network [43]. However, these modeling methods suffer some
major drawbacks. First, we can only deal with nonlinear
systems in the sense of approximation, which could be un-
suitable for fast dynamical systems. Second, these methods
fundamentally rely on experimental data obtained from typical
trajectories of the premise variables, which require not only
additional optimization steps but also extensive simulations
to collect data. Third, due to the “data-based” feature, the
stability analysis and control performance obtained with the
resulting TS fuzzy models highly depend on the collected data.

Motivated by the above technical and practical issues,
this paper aims at finding an effective solution to reduce
the numerical complexity of LMI-based stability analysis
and design conditions with respect to classical TS fuzzy
approaches. A special focus is paid on a class of descriptor
systems with a nonlinear derivative matrix. We propose a
new approach to derive an equivalent polytopic representation
for a given nonlinear system within a compact set. Although
all powerful tools of TS fuzzy framework can be directly
applied to the proposed approach, the model complexity only
grows proportionally with the number of premise variables,
rather than exponentially when compared to the conventional
TS fuzzy modeling. Moreover, for the same predefined set
of premise variables, the vertices of the proposed polytopic
models can admit an infinite number of representations. This
non-uniqueness feature allows introducing specific slack vari-
ables at the modeling step, which are useful to reduce the
control design conservatism. Using the proposed modeling
and the descriptor redundancy approach [25], [27], reduced-
complexity admissibility analysis and control design condi-

tions for singular nonlinear systems are derived in terms of
LMIs. Then, we propose a new nonlinear control law for the
nonsingular case to avoid using the extended redundancy form,
which is unnecessarily complex from a numerical viewpoint
and may yield conservative results due to the imposed special
control structure as similarly discussed in [26], [28] for fuzzy
descriptor observer design. The main contributions can be
summarized as follows.

• A reduced-complexity polytopic representation of non-
linear systems, which offers a possibility to introduce
specific slack variables for control design relaxation.

• LMI-based admissibility analysis and control design con-
ditions for descriptor nonlinear systems with less complex
and less conservative results compared to related TS
fuzzy model-based results.

This paper is organized as follows. Section II formalizes
the control problem of singular nonlinear systems. Section III
presents the LMI-based control design of descriptor nonlin-
ear systems for both singular and regular cases. Numerical
and physically motivated examples are given in Section IV
to demonstrated the proposed control approach. Section V
concludes the paper and discusses future works.
Notations. In denotes the set of natural numbers {1, 2, . . . , n}.
For a vector z, we denote by zi its ith entry. Rm×n denotes
the set of m× n matrices with real elements. I is an identity
matrix of appropriate dimensions. For a matrix X , X> is the
transpose of X , X−1 is its inverse, det(X) is its determinant,
and He[X] = X +X>. The expression X � Y (respectively
X ≺ Y ) means that X−Y (respectively Y −X) is a symmetric
positive (respectively negative) definite matrix. The symbol ?
stands for matrix blocks that can be deduced by symmetry.
Arguments are omitted when their meaning is straightforward.

II. PROBLEM FORMULATION

This section first recalls preliminary results on admissibility
analysis and TS fuzzy modeling of singular nonlinear systems.
Then, we propose a new polytopic representation to reduce the
numerical complexity compared to the conventional TS fuzzy
technique. Finally, the control problem is formalized.

A. Preliminaries

We consider the nonlinear differential-algebraic system

E1(z)ẋd(t) = A11(z)xd(t) +A12(z)xa(t) +B1(z)u(t),(1a)
0 = A21(z)xd(t) +A22(z)xa(t) +B2(z)u(t),(1b)

where xd(t) ∈ Rq is the differential state vector, xa(t) ∈ Rs is
the vector of algebraic variables, and u(t) ∈ Rm is the control
input. The vector of premise variables z(t) ∈ Rr continuously
depends on the system state and

z(t) ∈ Dz = {z ∈ Rr : zimin ≤ zi ≤ zimax, ∀i ∈ Ir} , (2)

where zimin and zimax are given bounds. The system matrices
E1(z) ∈ Rq×q , A11(z) ∈ Rq×q , A12(z) ∈ Rq×s, A21(z) ∈
Rs×q , A22(z) ∈ Rs×s, B1(z) ∈ Rq×m, and B2(z) ∈ Rs×m
affinely depend on z(t). Moreover, we consider the case where



E1(z) is regular for all z ∈ Dz . For compactness, system (1)
can be rewritten in the singular form

E(z)ẋ(t) = A(z)x(t) +B(z)u(t), (3)

where x =
[
x>d x>a

]> ∈ Rn, with n = q + s, E(z) =
diag(E1(z), 0) and

A(z) =

[
A11(z) A12(z)
A21(z) A22(z)

]
, B(z) =

[
B1(z)
B2(z)

]
.

Remark 1. Various engineering systems can be represented
in the form (1), e.g., constrained robot systems [44], chemical
processes [3], etc. Moreover, if x = xd and xa ∈ ∅, then
system (1a) becomes regular, which has been widely studied
in the literature [1], [12], [25], [40].

The following definition is important to analyze the regu-
larity and impulse-free proprieties of system (3).

Definition 1 ([45]). The unforced singular system (3), i.e., u =
0, is of index-one if there exists a unique solution xa = f(xd)
in some neighborhood of the equilibrium x(0) = 0 satisfying
f(0) = 0 and

A21(z)xd(t) +A22(z)f(xd(t)) = 0. (4)

We consider the following assumption for system (1).

Assumption 1. The premise variables only depend on xd, i.e.,
z(x) = g(xd), where g : Rq → Rr is a differentiable function
with respect to xd.

Under Assumption 1, the unforced system (3) is of index-
one if det(A22(z)) 6= 0, ∀z(∈ Dz . Moreover, in this case the
unique solution of equation (4) is given by

xa = f(xd) = −A22(z)−1A21(z)xd. (5)

Note from (5) that if xd → 0, then xa → 0. The following
definition is useful for the admissibility analysis of system (1).

Definition 2. The unforced singular system (3), i.e., u = 0,
is admissible if it is of index-one and its solution x = 0 is
asymptotically stable.

The nonlinear singular system (3) can be described by the
following TS fuzzy model with IF-THEN fuzzy rules:

RULE Ri : IF z1(t) is Mi
1 and . . . and zr(t) is Mi

r,

THEN Ẽiẋ(t) = Ãix(t) + B̃iu(t),
(6)

where (Ẽi, Ãi, B̃i) are known constant matrices with appro-
priate dimensions, Ri denotes the ith fuzzy inference rule, and
Mi

j is the fuzzy set, for i ∈ I2r and j ∈ Ir. The fuzzy mem-

bership functions are defined as hi(z) =
∏r

j=1 µ
i
j(zj)∑2r

i=1

∏r
j=1 µ

i
j(zj)

,

∀i ∈ I2r , where µij(zj) represents the membership grade of
zj in the respective fuzzy set Mi

j . Using the fuzzy method in
[12], system (6) can be inferred as

2r∑
i=1

hi(z)Ẽiẋ(t) =

2r∑
i=1

hi(z)(Ãix(t) + B̃iu(t)). (7)

The membership functions hi(z), for i ∈ I2r , satisfy the
property

∑2r

i=1 hi(z) = 1 and 0 ≤ hi(z) ≤ 1, ∀i ∈ I2r .

TS fuzzy model-based technique has been shown as one of
the most promising approaches for LMI-based admissibility
analysis and control design of the singular system (3), see
e.g., [11], [32], [34], [37], [38], [45]. However, the numerical
complexity of model (7), specifically the number of vertices
2r and by conjunction the number of related LMI conditions,
exponentially grows with the number of premise variables r.
This may prevent the use of the TS fuzzy model (7) to deal
with complex engineering systems, i.e., r � 1. To avoid this
major drawback, we propose hereafter a reduced-complexity
polytopic representation of the nonlinear singular system (3),
where the number of vertices only grows proportionally with
r rather than exponentially as for TS fuzzy model (7).

B. Reduced-Complexity Polytopic Representation

Since the matrices E(z), A(z) and B(z) of the nonlinear
system (3) affinely depend on z, then they can be represented
in the form

X(z) = X̂0 +

r∑
p=1

zpX̂p, (8)

where X ∈ {E,A,B} and X̂i, for i ∈ Ir ∪ {0}, are constant
matrices of appropriate dimensions, which can be directly
obtained from the affine structure of X(z). Moreover, for
z ∈ Dz , the term zp can be convexly rewritten as

zp = ω0
p(z)zpmin + ω1

p(z)zpmax, (9)

with ω0
p(z) =

zpmax−zp
zpmax−zpmin

and ω1
p(z) = 1− ω0

p(z), ∀p ∈ Ir.
Then, it follows from (9) that expression (8) can be equiva-
lently rewritten as

X(z) = X̂0 +

r∑
p=1

(
ω1
p(z)zpmax + ω0

p(z)zpmin

)
X̂p (10)

=

r∑
p=1

(w2p−1(z)X2p−1 + w2p(z)X2p) =

2r∑
i=1

wi(z)Xi,

with

w2p−1(z) =
1

r
ω1
p(z), X2p−1 = X̂0 + rzpmaxX̂p,

w2p(z) =
1

r
ω0
p(z), X2p = X̂0 + rzpminX̂p.

(11)

Using the matrix decomposition (10), the nonlinear singular
system (3) can be rewritten in the polytopic form

2r∑
i=1

wi(z)Eiẋ(t) =

2r∑
i=1

wi(z)(Aix(t) +Biu(t)), (12)

where the nonlinear functions wi(z), ∀i ∈ I2r, satisfy the
following properties:

2r∑
i=1

wi(z) = 1, 0 ≤ wi(z) ≤ 1,

w2p−1(z) + w2p(z) =
1

r
, ∀p ∈ Ir.

(13)

Let Ω be the set of nonlinear functions wi(z), ∀i ∈ I2r,
satisfying (13), i.e., w(z) =

[
w1(z), w2(z), . . . , w2r(z)

]
∈ Ω.



The vertices Xi can be directly obtained from X(z), for
X ∈ {E,A,B} and i ∈ I2r. To this end, we define the vectors
ζ1, . . . , ζr forming the canonical basis of Rr as

ζi = [0, . . . , 0,

ith︷︸︸︷
1 , 0, . . . , 0]>, i ∈ Ir.

Then, it follows from the matrix decomposition (10)–(11) that

Xi =

{
X(r · zpmax · ζp) if i = 2p− 1,

X(r · zpmin · ζp) if i = 2p, for i ∈ I2r.
(14)

It is important to note that the polytopic model (12) is an
algebraic rewriting of the nonlinear model (3), i.e., there is
no approximation error between these two models. For model
(12), the nonlinear functions wi(z), ∀i ∈ I2r, precisely defined
in (11), capture the nonlinearities in model (3).

Remark 2. Note that the nonlinear functions wj(z), j ∈ I2r,
in (11), of the new polytopic model (12) only depend on
the jth component zj of z. Indeed, their construction is
fundamentally different compared to that of the membership
functions hi(z), for i ∈ I2r , of the TS fuzzy model (7), for
which a combination product is required [12], i.e.,

hi(z) =

r∏
p=1

ωipp (zp), i ∈ I2r , ip ∈ {0, 1},

with ωipp (zp) defined in (9). Hence, model (12) only has 2r ver-
tices, which can significantly reduce the numerical complexity
of LMI-based design conditions of system (3) compared to
the conventional TS fuzzy model (7) with 2r vertices. This
feature is particularly interesting when dealing with nonlinear
complex systems with a large number r of premise variables.
However, as shown in (14), the bounds zpmin and zpmax,
p ∈ Ir, are multiplied by r when constructing the vertices
of model (12). This may lead to a modeling overbounding
[42], thus the design conservatism.

Remark 3. Let {Tp}p∈I2r be a family of matrices with
appropriate dimensions such that T2p = T2p−1, for p ∈ Ir,
and T = 1

r

∑r
p=1 T2p. We define

X∗i = Xi + Ti − T, X ∈ {E,A,B}, i ∈ I2r. (15)

Then, for X ∈ {E,A,B}, it follows from (13) and (15) that
2r∑
i=1

wi(z)X
∗
i =

2r∑
i=1

wi(z)(Xi + Ti − T )

=

2r∑
i=1

wi(z)Xi +

2r∑
i=1

wi(z)Ti − T

= X(z) +

r∑
p=1

(w2p−1(z)T2p−1 + w2p(z)T2p)− T

= X(z) +
1

r

r∑
p=1

T2p − T = X(z). (16)

Note from (16) that X(z) can admit an infinite number of
representations of the form (10) with the same predefined set
of nonlinear functions w(z) ∈ Ω. This non-uniqueness feature
of the vertices of model (12) offers a flexibility to introduce r

slack variables, i.e., similar to matrices Tp in (15), into LMI-
based design conditions to further reduce the conservatism that
may be induced by the overbounding discussed in Remark 2.
This will be numerically illustrated in Section IV.

This paper investigates the following control problem.

Problem 1. Consider the singular nonlinear system (3) under
Assumption 1. Determine a control law u(t) such that the
closed-loop system (3) is admissible and the corresponding
trajectory x(t) exponentially converges towards the origin with
a decay rate less than a predefined positive scalar α. More-
over, for any admissible initial state xd(0), the corresponding
closed-loop trajectory xd(t) of system (3) is required to remain
inside the validity domain Dxd

⊆ Rq , described by

Dxd
=
{
xd ∈ Rq : H(l)xd ≤ 1, l ∈ Ins

}
, (17)

where H(l) denotes the lth row of the matrix H ∈ Rns×q ,
which characterizes the domain Dxd

.

Remark 4. The system states are generally bounded in
engineering applications due to physical and/or safety reasons
[12], [46]. Then, the characterizing matrix H can be directly
derived from the ultimate bounds xdimin and xdimax of the
state xd, i.e., xdimin ≤ xdi ≤ xdimax, for i ∈ Iq , as
illustrated in Example 3 in Section IV. Note that due to
Assumption 1 and the admissibility property, any limitation
bounds on the algebraic variables xa of system (3) can be also
transformed into those on the differential state xd. Moreover,
since z(x) = g(xd), from (17) we can directly obtain the
ultimate bounds zimin and zimax, for i ∈ Ir, defining the
admissible set Dz in (2) of the premise variables. Hence, if
xd(t) ∈ Dxd

, then the bounds of the premise variables in (2)
are always valid for the proposed polytopic representation.

The following lemma is useful for the control design.

Lemma 1 ([47]). Let Υij be symmetric matrices of appropri-
ate dimensions where i, j ∈ Ir. Then, the inequality

r∑
i=1

r∑
j=1

wi(z)wj(z)Υij ≺ 0, (18)

holds if
Υii ≺ 0, i ∈ Ir

2

r − 1
Υii + Υij + Υji ≺ 0, i, j ∈ Ir, i 6= j.

Note that other relaxation results to convert (18) into a finite
set of LMI constraints with different degrees of complexity
and/or conservatism can be found in [12], [20].

III. LMI-BASED CONTROL DESIGN FOR NONLINEAR
DESCRIPTOR SYSTEMS

This section first presents the control design for system
(1) using the proposed model (12). Then, we pay a special
attention to the control design of regular systems, i.e., there is
no algebraic equation (1b), which has been widely treated in
TS fuzzy control framework.



A. Descriptor-Redundancy Based Control Design

We consider the nonlinear singular system (3), which can
be rewritten in the following extended form:

Ēẋe(t) = Ā(z)xe(t) + B̄(z)u(t), (19)

with

xe =

xdẋd
xa

 , Ā(z) =

 0 I 0
A11(z) −E1(z) A12(z)
A21(z) 0 A22(z)

 ,
B̄(z) =

 0
B1(z)
B2(z)

 , Ē =

I 0 0
0 0 0
0 0 0

 .
Applying the reduced-complexity modeling in (12), system
(19) can be equivalently represented as

Ēẋe(t) =

2r∑
i=1

wi(z)(Āixe(t) + B̄iu(t)). (20)

For the admissibilization of system (20), we consider the
following control law:

u(t) =

2r∑
i=1

wi(z)K̄ixe(t)
.
= K̄(z)xe(t), (21)

where the feedback gains K̄i =
[
Ki 0

]
, with Ki ∈ Rm×q ,

i ∈ I2r, are to be determined such that the closed-loop
system (3) is admissible. The following theorem provides LMI
conditions to design controller (21).

Theorem 1. Consider system (3) with Assumption 1. If there
exist a positive definite matrix V ∈ Rq×q , symmetric matrices
Ti, Sj ∈ R2(n+q)×2(n+q), matrices Lj , Rj ∈ R(n+q)×(n+q),
Fj ∈ Rm×q , Wij ∈ Rn×q , Zij ∈ Rn×n, for i, j ∈ I2r, and a
positive scalar α, such that

Ξii ≺ 0, i ∈ I2r, (22)
2

2r − 1
Ξii + Ξij + Ξji ≺ 0, i, j ∈ I2r, i 6= j, (23)[

V ?
H(l)V 1

]
� 0, l ∈ Ins , (24)

with T2p = T2p−1, S2p = S2p−1, ∀p ∈ Ir, and

Ξij = Ψij + Ti + Sj −
1

r
(T + S),

S =

r∑
p=1

S2p, T =

r∑
p=1

T2p,

Ψij = He

[
(Āi + αĒ)Lj + B̄iF̄j ĀiRj

Pij − Lj −Rj

]
,

F̄j =
[
Fj 0

]
, Pij =

[
V 0
Wij Zij

]
.

Then, the closed-loop system (20) is admissible with a decay
rate less than α, and for any xd(0) belonging to the set EV ,
specified in (38), the corresponding trajectory xd(t) remains
inside Dxd

. Moreover, the feedback gains of the control law
(21) are given by

Ki = FiV
−1, i ∈ I2r. (25)

Proof. For brevity, we denote

Θ(z) =

2r∑
j=1

wj(z)Θj , Θ ∈ {L,R, F},

Λ(z) =

2r∑
i=1

2r∑
j=1

wi(z)wj(z)Λij , Λ ∈ {Ξ,Ψ} ,

P(z) =

[
V 0

W (z) Z(z)

]
=

2r∑
i=1

2r∑
j=1

wi(z)wj(z)Pij .

It follows from the definition of Ψij that

Ψ(z) = He

[
(Ā(z) + αĒ)L(z) + B̄(z)F̄ (z) Ā(z)R(z)

P(z)− L(z) −R(z)

]
,

with F̄ (z) =
[
F (z) 0

]
. Moreover, it follows from (13) that

2r∑
i=1

2r∑
j=1

wi(z)wj(z)(Ti + Sj) =

2r∑
i=1

wi(z)Ti +

2r∑
j=1

wj(z)Sj

=

r∑
k=1

(w2k−1(z)T2k + w2k(z)T2k)

+

r∑
`=1

(w2`−1(z)S2` + w2`(z)S2`) (26)

=
1

r

r∑
p=1

(T2p + S2p) =
1

r
(T + S).

Then, it follows from the definition of Ψ(z) and relation (26)
that Ξ(z) = Ψ(z). Applying Lemma 1, LMI conditions (22)
and (23) imply that Ξ(z) ≺ 0, thus

He

[
(Ā(z) + αĒ)L(z) + B̄(z)F̄ (z) Ā(z)R(z)

P(z)− L(z) −R(z)

]
≺ 0.(27)

Pre- and post-multiplying (27) with
[
I (Ā(z) + αĒ)>

]
and

its transpose, it follows that

∆(z) = He
[
(Ā(z) + αĒ)P(z) + B̄(z)F̄ (z)

]
≺ 0. (28)

Note that

∆(z) =

[
• •
• −He[Ā22(z)Z(z)]

]
, (29)

where “•” denotes the matrix terms irrelevant to the theoretical
developments, and

Ā22(z) =

[
−E1(z) A12(z)

0 A22(z)

]
∈ Rn×n.

It follows from (28) and (29) that

Ā22(z)Z(z) + Z(z)>Ā22(z)> � 0,

which ensures that det(Ā22(z)Z(z)) 6= 0, thus det(Z(z)) 6=
0, ∀z ∈ Dz . Combining with the fact that V � 0, it follows
that P(z) is invertible on Dz with

P(z)−1 =

[
V −1 0

−Z−1(z)W (z)V −1 Z−1(z)

]
. (30)

Note from (30) that

Ē>P−1(z) = P−1(z)Ē = diag(V −1, 0) � 0. (31)



From (25) and (30), it follows that

K̄(z) = F̄ (z)P(z)−1. (32)

Pre- and post-multiplying (28) with P(z)−> and P(z)−1

while considering expression (32), it follows that

He
[
P(z)−>(Ā(z) + B̄(z)K̄(z)) + 2αĒ>P(z)−1

]
≺ 0.(33)

We consider the Lyapunov function candidate

V(z, xe) = x>e Ē
>P(z)−1xe. (34)

It follows from (31) and (34) that V(z, xe) = x>d V
−1xd > 0,

∀xe 6= 0. The time derivative of V(z, xe) in (34) along the
solution of system (19) is given by

V̇(z, xe) = He
[
x>e P(z)−>(Ā(z) + B̄(z)K̄(z))xe

]
. (35)

It is clear from (33) and (35) that V̇(z, xe) + 2αV(z, xe) <
0, ∀xe 6= 0. Hence, the solution xe = 0 of system (19) is
asymptotically stable with a decay rate less than α. Moreover,
since E(z) is regular, the expression of V̇(z, xe) can be also
computed using (1) as

V̇(z, xe) = He
[
ẋ>d V

−1xd
]

= He
[
ẋ>d E1(z)>E1(z)−>V −1xd

]
= He

[
(Ac11(z)xd +A12(z)xa)>Y (z)−1xd

]
, (36)

with Ac11(z) = A11(z) +B1(z)K(z) and Y (z) = V E1(z)>.
Note that

Ac21(z)xd +A22(z)xa = 0,
with Ac21(z) = A21(z) +B2(z)K(z). Then, V̇(z, xe) in (36)
can be rewritten as follows:

V̇(z, xe) = He
[
(Ac11(z)xd +A12(z)xa)>Y (z)−1xd

]
+ He

[
(Ac21(z)xd +A22(z)xa)>Y (z)−1xa

]
=

[
xd
xa

]> [• •
• He

[
A22(z)>Y (z)−1

]] [xd
xa

]
. (37)

Since V̇(z, xe) < 0, ∀x 6= 0, it follows from (37) that
He
[
A22(z)>Y (z)−1

]
≺ 0, or det(A22(z)Y (z)−1) 6= 0. This

latter ensures that det(A22(z)) 6= 0. Hence, the nonlinear
singular system (3) under Assumption 1 is of index-one.

Following the same line as in [16], [46], we can prove that
condition (24) guarantees the inclusion EV ⊆ Dxd

, with

EV = {xd ∈ Rq : x>d V
−1xd ≤ 1}. (38)

Since V̇(z, xe) < 0, ∀x 6= 0, then by the set invariance
property [48], we deduce that ∀xd(0) ∈ EV , the corresponding
trajectory xd(t) converges to the origin while remaining inside
this set, thus xd(t) ∈ Dxd

. This concludes the proof.

The following corollary provides LMI-based design con-
ditions without using slack variables Ti and Si, ∀i ∈ I2r,
specifically offered by the proposed polytopic model (12).

Corollary 1. Consider system (3) with Assumption 1. If
there exist a positive definite matrix V ∈ Rq×q , matrices
Lj , Rj ∈ R(n+q)×(n+q), Fj ∈ Rm×q , Wij ∈ R(n+q)×q ,
Zij ∈ R(n+q)×(n+q), for i, j ∈ I2r, and a positive scalar α,

such that condition (24) is verified, and

Φii ≺ 0, i ∈ I2r, (39)
2

2r − 1
Φii + Φij + Φji ≺ 0, i, j ∈ I2r, i 6= j, (40)

with

Φij = He

[
(Āi + αĒ)Lj + B̄iF̄j ĀiRj

Pij − Lj −Rj

]
.

Then, the closed-loop system (20) is admissible with a decay
rate less than α, and for any xd(0) ∈ EV , the corresponding
trajectory xd(t) remains inside the set Dxd

. Moreover, the
feedback gains of the control law (21) are given in (25).

Proof. In Theorem 1, setting Ti = Sj = 0, ∀i, j ∈ I2r, it
follows that Φij = Ξij . Then, conditions (22) and (23) become
(39) and (40), respectively. The proof is concluded following
the result of Theorem 1.

Remark 5. Following the same lines of fuzzy Lyapunov-based
control approaches for TS fuzzy systems, see [9], [21]–[24]
and related references, the Lyapunov function candidate

V (z, xe) = x>e Ē
>P(z)−1xe, (41)

with

P(z) =

[
V (z) 0
W (z) Z(z)

]
=

2r∑
i=1

2r∑
j=1

wi(z)wj(z)

[
Vij 0
Wij Zij

]
,

can be directly applied to reduce the design conservatism.
However, such control results require a fundamental assump-
tion that

x ∈ R = {x ∈ Rn : |ẇi(z)| ≤ φi, ∀i ∈ I2r} ,

for some predefined positive scalars φi. Note that such an
assumption can be only verified a posteriori by extensive
simulations with the designed controllers. Hence, as for con-
ventional TS fuzzy control approaches [15], it is still not
possible to theoretically demonstrate that control results based
on V (z, xe) in (41) include those derived from the quadratic
Lyapunov function V(z, xe) in (34). By numerical experiments
in Section IV, we show that in many cases, the proposed
quadratic control approach with specific slack variables in
Theorem 1, i.e., Si and Ti, for i ∈ I2r, offered by the new
representation (12) can provide a better performance, in terms
of conservatism reduction, compared to many existing fuzzy
Lyapunov based control results in TS fuzzy control framework.

B. Control Design without Descriptor-Redundancy Approach

In the following, a special attention is paid to the control
design of regular systems, for which the use of the well-known
descriptor-redundancy approach [27], i.e., the extended form
(19), is still possible but can be unnecessarily complex and
conservative from a numerical viewpoint. To this end, let us
consider the following descriptor nonlinear system:

E(z)ẋ(t) = A(z)x(t) +B(z)u(t), (42)



where x ∈ Rn, u ∈ Rm, the matrix E(z) is non-singular, i.e.,
rank(E(z)) = n, and[

E(z) A(z) B(z)
]

=

2r∑
i=1

wi(z)
[
Ei Ai Bi

]
.

In this case, as in (17) we consider the validity domain

Dx =
{
x ∈ Rn : H(l)x ≤ 1, l ∈ Ins

}
, (43)

where the matrix H ∈ Rns×n characterizes the domain Dx.
Note that system (42) is admissible as long as it admits
an asymptotically stable solution x = 0. We consider the
nonlinear control law

u(t) = K(z)x(t). (44)

The following theorem provides LMI conditions to determine
a feedback gain K(z) ∈ Rm×n such that the origin of system
(42) is asymptotically stable, and its trajectory x(t) remains
inside Dx defined in (43) under an admissible initial condition.

Theorem 2. If there exist a positive definite matrix P ∈
Rn×n, symmetric matrices Ti, Sj ∈ R2n×2n, matrices Fi ∈
Rm×n, Li, Rj ∈ Rn×n, for i, j ∈ I2r, and a positive scalar
α, such that

Γii ≺ 0, i ∈ I2r, (45)
2

2r − 1
Γii + Γij + Γji ≺ 0, i, j ∈ I2r, i 6= j, (46)[

P ?
H(l)P 1

]
� 0, l ∈ In, (47)

with T2p = T2p−1, S2p = S2p−1, ∀p ∈ Ir, and

Γij = Σij + Ti + Sj −
1

r
(T + S),

S =

r∑
p=1

S2p, T =

r∑
p=1

T2p,

Σij = He

[
(Ai + αEi)Lj +BiFj AiRj

PE>i − Lj −Rj

]
.

Then, the solution x = 0 of the non-singular system (42) is
asymptotically stable with a decay rate less than α, and ∀x(0)
belonging to the set EP , specified in (51), the corresponding
trajectory x(t) remains inside Dx. Moreover, the feedback gain
of the control law (44) is given by

K(z) = F (z)E(z)−>P−1, F (z) =

2r∑
j=1

wj(z)Fj . (48)

Proof. Following the same steps in the proof of Theorem 1,
we can prove that conditions (45)–(46) guarantee that

He
[
(A(z) + αE(z))PE(z)> +B(z)F (z)

]
≺ 0. (49)

Since P � 0 and E(z) is non-singular, pre- and post-
multiplying (49) with P−1E(z)−1 and E(z)−>P−1, it follows
that

Π = He
[
P−1E(z)−1(A(z) + αE(z) +B(z)K(z))

]
≺ 0

(50)

Condition (50) ensures that V̇ (z, x) + 2αV (z, x) = x>Πx <
0, ∀x 6= 0, where V̇ (x, z) is the time derivative of the

Lyapunov function candidate V (z, x) = x>P−1x along the
solution of system (42).

As in the proof of Theorem 1, we can prove that condition
(47) guarantees the inclusion EP ⊆ Dx, with

EP = {x ∈ Rn : x>P−1x ≤ 1}. (51)

Since V̇ (z, x) < 0, ∀x 6= 0, using again the set invariance
property [48], we deduce that ∀x(0) ∈ EP , the corresponding
trajectory x(t) converges to the origin while remaining inside
this set, thus x(t) ∈ Dx. This concludes the proof.

Remark 6. The new nonlinear control law (44) with the
feedback gain (48) exploits the invertibility of E(z) to avoid
using the extended form as in (19). Then, no specific matrix
structure is required for the feedback gain as K̄(z) in (21) or
the Lyapunov matrix as Ē>P−1(z) in (31). Compared to the
conventional TS fuzzy descriptor approaches, see for instance
[9], [11], [12], [25], these features can further reduce not only
the numerical complexity but also the conservatism of the
control results for complex non-singular nonlinear systems as
illustrated in Example 3.

Remark 7. The computational complexity of LMI-based
optimization problems can be evaluated with the number
of scalar decision variables Nvar and the number of LMI
constraints Nrow. To illustrate the complexity reduction of
the proposed approach, Table I shows these characteristics
numbers corresponding to the LMI constraints of different
control results for non-singular descriptor systems with n = q
states, m control inputs and r = re + ra premise variables,
where re and ra respectively represent the number of the
premise variables in the matrix E(z) and in both matrices A(z)
and B(z). For illustrations, the evolution of Nvar and Nrow
with respect to r for the case of stability analysis with n = 5
and m = 0 is depicted in Fig. 1. Note that for a relatively
low number of premise variables, i.e., r ≤ 6, all considered
methods have a similar level of numerical complexity. We
can also observe an exponential growth of Nvar and Nrow
with respect to r for TS fuzzy model-based results, which
is not the case of the proposed approach. Further numerical
studies are performed in the next section to demonstrate the
interests of the new method in reducing both computational
complexity and design conservatism compared to existing TS
fuzzy model-based results.

Remark 8. The decay rate α is related to the closed-loop
time performance, i.e., a larger value of α leads to a faster
convergence time [12].

Remark 9. When there are no required state constraints, i.e.,
Dxd

≡ Rq for system (3) or Dx ≡ Rn for system (42), the
control design for these systems can be performed by simply
removing condition (24) in Theorem 1 and Corollary 1, or
condition (47) in Theorem 2, respectively. Moreover, it is
possible to maximize the size of the invariant sets EV and
EP using convex optimization techniques. This issue, omitted
here, has been well addressed in [16] and related references.



TABLE I: Complexity Characteristics Numbers of Different Control Results.

Control Design Theorem 1 Theorem 2 [11, Theorem 3.3] [25, Theorem 2]
Number of vertices 2r 2r 2r 2r

Nrow n(16r2 + 1) n(8r2 + 1) n(2r+ra+2 + 2r + 2r+1) n(2r+ra+1 + 2r + 2r+1) +m2r+ra+1

Nvar
n2(8r2 + 32r + 1

2
) n2(12r + 1

2
) n2( 5

2
2r + 2re−1 + 2ra−1 + 6)+ n2(1 + 22ra+1 + 2r−1)+

+n( 1
2
+ 4r) + 2rmn +n

2
+ 2rmn n(2r−1 + 2re−1 + 2ra−1) + nm2r n(1 + 2r−1 + 3m2r +m22ra ) +m22r
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(a)
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100

105

1010

1015
(b)

Fig. 1: Characteristics numbers of numerical complexity with
respect to the number of premise variables r for the case n = 5
and m = 0: Theorem 1 ; Theorem 2 ; [11, Theorem 3.3]

; [25, Theorem 2] .

IV. NUMERICAL EXAMPLES

This section presents three examples with different degrees
of numerical complexity to illustrate the effectiveness of the
proposed approach. All the involved LMI-based conditions are
solved using YALMIP toolbox with SeDuMi solver [49]. Note
that without an explicit statement, all the design conditions are
solved with the decay rate α = 0 for fair comparisons with
related existing results. Moreover, for Examples 1 and 2 where
Dxd

≡ Rq , the LMI condition (24) is not considered in the
admissibility analysis and control design, see Remark 9.

Example 1. This example is used for two purposes: i) to
illustrate the proposed polytopic modeling procedure, ii) to put
in evidence the interest of the specific slack variables offered
by the proposed modeling method. To this end, we consider a
simple unforced singular nonlinear system of the form[

1 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
−1 z1(t) + 5z2(t)

az2(t) b

] [
x1(t)
x2(t)

]
, (52)

where a ∈ [−10, 10] and b ∈ [−10, 10] are the parameters.
The two premise variables are given by z1 = cos(x1) and
z2 = sin(x1), i.e., z =

[
z1 z2

]>
, which both depend on the

differential state x1. We consider the validity domain Dxd
≡

R. The matrices of system (52) are given by

E =

[
1 0
0 0

]
, A(z) =

[
−1 z1 + 5z2
az2 b

]
. (53)

Applying the proposed modeling procedure in (10), (11) and
(14) to matrix A(z) with −1 ≤ z1 ≤ 1 and −1 ≤ z2 ≤ 1,
∀x1 ∈ R, we obtain 2× r = 4 following vertices:

A1 =

[
−1 −2
0 b

]
, A2 =

[
−1 2
0 b

]
,

A3 =

[
−1 −10
−2a b

]
, A4 =

[
−1 10
2a b

]
.

(54)

The nonlinear functions wi(z), for i ∈ I4, corresponding to
the four above vertices are given by

w1(z) =
1− cos(x1)

4
, w2(z) =

cos(x1) + 1

4
,

w3(z) =
1− sin(x1)

4
, w4(z) =

sin(x1) + 1

4
.

(55)

Let us define x =
[
x1 x2

]>
. From (53), (54) and (55), the

singular nonlinear system (52) can be equivalently rewritten
in the polytopic form Eẋ =

∑4
i=1 wi(z)Aix. We examine

the conservatism of the admissibility analysis for system (52)
using the following approaches:

• Theorem 1 with u(t) = 0, i.e, Fi = 0, for i ∈ I4,
• Corollary 1 with u(t) = 0, i.e, Fi = 0, for i ∈ I4,
• Affine TS fuzzy-model-based result in [41, Theorem 2]

adapted to singular systems,
• TS fuzzy-model-based result in [11, Theorem 3.3] with
u(t) = 0, i.e, Njk = 0, for j, k ∈ I4.

Fig. 2 shows the feasibility regions obtained with the
four above control results. Observe that using the reduced-
complexity affine representation for TS fuzzy systems, the
result in [41] leads to a conservative admissibility analysis
compared to the proposed modeling method in this paper.
Theorem 1 provides a larger feasibility region compared to
that obtained with Corollary 1. This means that using the slack
variables, specifically offered by the proposed modeling, can
contribute to reduce the conservatism induced by overbound-
ing, see Remarks 2 and 3. For this simple singular system
(52), the proposed approach and the recent result in [11] lead
to the same feasibility region.
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Fig. 2: Feasibility regions obtained with [41, Theorem 2] (�);
Corollary 1 (×,�); Theorem 1 and [11, Theorem 3.3] (◦,×,�).



Example 2. This example aims at studying the design conser-
vatism of the proposed approach with respect to recent related
TS fuzzy control results. For this purpose, we consider the
singular system (3), whose matrices are taken from [11] as

E(z) =

 1 0 0
z1 1 0
0 0 0

 , B(z) =

 0
0.16z3 + a
0.12z3 + b

 ,
A(z) = A0z3 +

 −z2 − 5 1 z2
z2 bz2 − b 1

(a+ 2)z2 − 2 0 1

 ,
A0 =

0.05 −0.05 0.15
0.04 −0.04 0.12
0.06 −0.06 0.18

 ,
(56)

where a ∈ [−13,−8] and b ∈ [−27,−20] are system
parameters. The three premise variables are given by

z1 =
e−2x1

1 + e−2x1
, z2 =

1 + sin2(x2)

2
, z3 = sin(0.1x1).

For this example, we have xd =
[
x1 x2

]>
, xa = x3 and

Dxd
≡ R2. Note that 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1 and −1 ≤

z3 ≤ 1, ∀xd ∈ R2. Applying the proposed modeling approach,
the considered nonlinear system can be exactly represented in
the polytopic form (12) with 2 × 3 = 6 vertices, whose six
nonlinear functions wi(z), ∀i ∈ I6, can be derived using (9)
and (11) as

w1(z) =
1

3 + 3e−x1
, w2(z) =

e−x1

3 + 3e−x1
,

w3(z) =
1− sin2(x2)

6
, w4(z) =

1 + sin2(x2)

6
,

w5(z) =
1− sin(0.1x1)

6
, w6(z) =

1 + sin(0.1x1)

6
.

The details on the corresponding system matrices of the six
vertices are omitted here for brevity. We examine the design
conservatism between the following control results: i) LMI
conditions in Corollary 1; ii) LMI conditions in Theorem 1;
iii) TS fuzzy-model-based results in [11, Theorem 3.3] and [9,
Theorem 3]; iv) TS fuzzy-model-based result in [25, Theorem
2]; v) affine TS fuzzy-model-based result in [41, Theorem
2]. Fig. 3 depicts the feasibility regions obtained with these
control results. Remark that Corollary 1 cannot provide any
feasible control solution for the considered parameter space,
which confirms the negative overbounding effect of the pro-
posed modeling approach on the control design conservatism.
However, taking into account the slack variables specifically
introduced by this modeling, Theorem 1 outperforms other
recent TS fuzzy control results. The characteristics numbers
Nrow and Nvar, representing the numerical burden of LMI-
based optimization problems, for the considered control results
are given in Table II. Remark that as a price for conservatism
reduction, the numerical complexity of design conditions in
Theorem 1 is slightly higher than that of other control results.

For illustrations, we consider system (56) with a = −11.37
and b = −20 to evaluate the control performance. Note that
only Theorem 1; [11, Theorem 3.3] and [9, Theorem 3] can
provide a feasible solution for this system. Table III shows the
comparison of the decay rate performance obtained with these

-13 -12.5 -12 -11.5 -11 -10.5 -10 -9.5 -9 -8.5 -8
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-26
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Fig. 3: Feasibility regions obtained with [41, Theorem 2] (�);
[11, Theorem 3.3] and [9, Theorem 3] (◦,×,�); [25, Theorem
2] (�,×,�); and Theorem 1 (+,�,◦,×,�).

control results. Observe that the proposed control approach
provides a larger value of the maximal decay rate αmax.
Fig. 4 illustrates the closed-loop behaviors obtained with
the corresponding controllers. As expected, we can see that
compared to the recent related results, the proposed control
approach yields a faster closed-loop time response under the
same initial condition, see Remark 8.

Fig. 4: Closed-loop responses of system (56) with a = −11.37
and b = −20 obtained under the same initial condition from
Theorem 1 with αmax = 2.25 ( ); [11, Theorem 3.3] and
[9, Theorem 3] with αmax = 0.2 ( ).

Example 3. To demonstrate the interests of the proposed
control approach for complex engineering systems with a
large number of nonlinearities, we consider a three-degree-
of-freedom (3DoF) serial robot depicted in Fig. 5, whose
dynamics can be described as [41]

M(θ)θ̈(t) + N(θ, θ̇)θ̇(t) + G(θ) = u(t), (57)

where θ(t) ∈ R3 is the vector of generalized coordinates in



TABLE II: Numerical Complexity of Different Control Results.

Control Design Theorem 1 Corollary 1 [41, Theorem 2] [25, Theorem 2] [11, Theorem 3.3]
Number of vertices 6 6 4 8 8

Nrow 362 362 146 224 408
Nvar 1185 855 119 334 306

TABLE III: Comparison of Decay Rate for Example 2.

Control Design Theorem 1 [11, Theorem 3.3] [9, Theorem 3]
αmax 2.25 0.20 0.20

joint space, u(t) ∈ R3 is the vector of generalized control
forces, M(θ) ∈ R3×3 is the inertia matrix, N(θ, θ̇) ∈ R3×3

is the Coriolis/centripetal matrix plus the viscous friction
coefficients of the joints, and G(θ) ∈ Rn represents the gravity
matrix. Since the vector-valued function G(θ) is smooth and
G(0) = 0, we can then parameterize G(θ) = H(θ)θ. System
(57) can be rewritten in the nonlinear descriptor form (3) with
θ(t) =

[
θ1(t) θ2(t) θ3(t)

]>
and

x(t) =

[
θ(t)

θ̇(t)

]
∈ R6, B(z) =

[
0
I

]
,

E(z) =

[
I 0
0 M(z)

]
, A(z) =

[
0 I

−H(z) −N(z)

]
.

(58)

The matrices M(z), N(z) and H(z) in (58) are given by

N(z) =

n11 n12 n13
n21 n22 n23
n31 n32 n33

 ,
M(z) =

m11 m12 m13

? 2c6z2 + c8 c6z2 + c9
? ? c9

 ,
H(z) =

c1z10 + c2z11 + c3z12 c2z11 + c3z12 c3z12
? c2z11 + c3z12 c3z12
? ? c3z12

 ,
with

m11 = 2(c4z1 + c6z2 + c5z3 + c7),

m12 = c4z1 + 2c6z2 + c5z3 + c8,

m13 = c6z2 + c5z3 + c9,

n11 = c5(z6 − z9) + c6(z7 − z8) + fv,

n12 = −c4z4 + c6(z7 − z8)− c5z9,
n13 = −c6z8 − c5z9,
n21 = c4z5 + c5z6 + c6(z7 − z8),

n22 = c6(z7 − z8) + 2fv, n23 = −c6z8,
n31 = c5z6 + c6z7, n32 = c6z7, n33 = 2fv.

The expressions of the premise variables zi, for i ∈ I12, are
given in Table IV. Note that {z1, z2, z3} are the nonlinear
terms involved in the inertia matrix M(θ); {z4, z5, . . . , z9} are
the nonlinear terms involved in the Coriolis matrix N(θ, θ̇);
and {z10, z11, z12} are the nonlinear terms involved in the
gravity-related matrix H(θ). For the robot model (57), we
consider the joint mechanical limits and the maximum motor
velocities as |θi| ≤ θmax [rad], and |θ̇i| ≤ 50 [rad/s], for

i ∈ I3. The parameter θmax ∈ [0, π] is used in the following to
study the control design conservatism. As a result, the validity
domain Dx of the robot model (57) can be directly defined as

Dx =
{
x ∈ R6 : H(l)x ≤ 1, l ∈ I12

}
, (59)

where the matrix H , characterizing the physical limitations of
the robot states, is given by

H =



1
θmax

0 0 0 0 0

− 1
θmax

0 0 0 0 0

0 1
θmax

0 0 0 0

0 − 1
θmax

0 0 0 0

0 0 1
θmax

0 0 0

0 0 − 1
θmax

0 0 0

0 0 0 1
50 0 0

0 0 0 − 1
50 0 0

0 0 0 0 1
50 0

0 0 0 0 − 1
50 0

0 0 0 0 0 1
50

0 0 0 0 0 − 1
50



.

Given the above bounds of θi and θ̇i, for i ∈ I3, we can
straightforwardly derive the bounds of the twelve premise
variables from their mathematical expressions shown in Table
IV, i.e., zpmin ≤ zp ≤ zpmax, for p ∈ I12, which are used to
construct the TS fuzzy model (7) and the polytopic model (12)
of the 3DoF robot model (57). We consider the case without
the viscous friction coefficient, i.e., fv = 0, and the values of
the constant parameters ci, for i ∈ I9, are given in Table V.

Fig. 5: Schematic of the 3DoF robot in the vertical plane.

With r = 12 premise variables zi, for i ∈ I12, the TS
fuzzy modeling (7), using the classical sector nonlinearity
approach [12], requires 212 = 4096 vertices to exactly rep-
resent system (57)–(58), which is computationally excessive
for control design. Moreover, the corresponding TS fuzzy
controller is impractical for real-time control purposes. How-
ever, the proposed modeling (12) leads to only 2 × 12 = 24
vertices, allowing for a practically feasible control solution.



TABLE IV: Premise Variables of the 3DoF Robot.

Premise variables Expression
z1 cos(θ2)
z2 cos(θ3)
z3 cos(θ2 + θ3)

z4 (2θ̇1 + θ̇2) sin(θ2)

z5 θ̇1 sin(θ2)

z6 θ̇1 sin(θ2 + θ3)

z7 (θ̇1 + θ̇2) sin(θ3)

z8 (θ̇1 + θ̇2 + θ̇3) sin(θ3)

z9 (θ̇1 + θ̇2 + θ̇3) sin(θ2 + θ3)
z10 sinc(θ1)
z11 sinc(θ1 + θ2)
z12 sinc(θ1 + θ2 + θ3)

TABLE V: Mechanical Parameters of the 3DoF Robot.

Symbol Expression Value
c1 g(L1m2 + L1m3 +m1r1) 121.64
c2 g(L2m3 +m2r2) 67.69
c3 gm3r3 23.54
c4 L1(L2m3 +m2r2) 6.9
c5 L1m3r3 2.4
c6 L2m3r3 2.16
c7 (m2 +m3)L2

1 + L2
2m3 +

∑3
i=1 Ii 19.75

c8 L2
2m3 + I2 + I3 7.85

c9 I3 1.9

For comparison purposes, we examine the following quadratic
control results: i) LMI conditions in Theorems 1 and 2 with
α = 0, Lj = L, Rj = R, Wij = W and Zij = Z,
∀i, j ∈ I24; ii) TS fuzzy descriptor results in [12, Chapter
10] and [25, adapted Theorem 2]; iii) affine TS fuzzy-model-
based result in [41, Theorem 2]. Note that the existing fuzzy
Lyapunov-based control approaches cannot be applied to this
example due to the numerical limitations of LMI solvers. To
evaluate the design conservatism, we check the existence of a
stabilizing controller for system (57)–(58) with respect to the
physical variations of two parameters: the mass of the third
arm m3 ∈ [1, 15] [kg], and the upper bound θmax ∈ [0, π]
[rad] of the robot positions. Fig. 6 shows the feasibility regions
obtained with the five considered control results. Remark that
without including the acceleration information θ̈(t) (which is
generally unavailable in practice) in the controller structure,
the control result in [41, Theorem 2] cannot provide any
feasible solution. The existing TS fuzzy control results in [12],
[25] and Theorem 1 lead to the same feasibility region with a
very restrictive joint range, i.e., θmax ≤ π

5 [rad]. We can ob-
serve that without using the descriptor-redundancy approach,
Theorem 2 allows finding feasible control solutions for the
whole robot workspace. This clearly confirms the interests of
the new control approach for complex nonlinear systems in
reducing the numerical complexity and design conservatism.
The complexity characteristics numbers Nrow and Nvar of
the considered control approaches are given in Table VI.
Remark that despite the introduction of slack variables, the
computational complexity of the proposed control results are
much lower compared to the existing TS fuzzy control results.
The reduced-complexity affine model-based approach in [41,
Theorem 2] leads to numerically simple design conditions at
the price of over-conservativeness.

0.5 1 1.5 2 2.5 3
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8
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Fig. 6: Feasibility regions obtained with TS fuzzy approaches
[12, Chapter 10] (◦); [25, adapted Theorem 2] (◦); Theorem
1 (◦); and Theorem 2 (◦,×).

For illustrations, we consider system (57) with m3 = 1
[kg] and θmax = π

10 [rad]. Fig. 7 depicts the closed-loop
response of the corresponding robot system (57) obtained
from the nonlinear controller (21), designed with Theorem
1 and α = 3. Note that the initial condition x(0) =

0.7
[
θmax −θmax −θmax 50 −50 −50

]>
is selected

such that x(0) ∈ EV . We observe that the robot states converge
to the origin while respecting their physical limitations defined
by the validity domain Dx in (59). Hence, the computed
bounds of the premise variables given in Table IV are al-
ways valid for the proposed polytopic representation during
the simulation as discussed in Remark 4. However, without
taking into account condition (24) in the control design to
ensure the invariance property, see Remark 9, the closed-loop
trajectories can go outside the validity domain Dx under the
same simulation conditions as shown in Fig 8. Note that in
this case, the bounds of the premise variables are not respected
anymore for the proposed polytopic representation as well as
the TS fuzzy modeling.

To evaluate numerically the control performance, Table
VII compares the decay rates obtained with different related
control results for the robot system (57) with m3 = 1 [kg]
and θmax = π

10 [rad]. We note that the proposed conditions in
Theorems 1 and 2 yield much larger values of αmax compared
to the control approach in [25]. In particular, the largest value
of αmax obtained with Theorem 2 confirms the great potential
of this control result, in terms of design conservatism and
control performance, for non-singular nonlinear systems.

V. CONCLUDING REMARKS

A new LMI-based control approach has been proposed
for a class of descriptor nonlinear systems. Compared to
the classical TS fuzzy-model-based control approaches, the
numerical complexity of the new approach grows proportion-
ally, rather than exponentially, with respect to the number
of premise variables. This is particularly interesting when
dealing with complex descriptor systems with a large number
of nonlinearities. Moreover, the system vertices obtained from



TABLE VI: Numerical Complexity of Different Control Results.

Control Design Theorem 1 Theorem 2 [41, Theorem 2] [12, Chapter 10] [25, Theorem 2]
Number of vertices 24 24 13 4096 4096

Nrow 582 294 162 49158 61446
Nvar 813 525 255 73821 73821

Fig. 7: Closed-loop response of the robot system (57) with
m3 = 1 [kg] and θmax = π

10 [rad] obtained with controller
(21) designed from Theorem 1, α = 3 and x(0) ∈ EV .

TABLE VII: Comparison of Decay Rate for Example 3.

Control Design Theorem 1 Theorem 2 [25, adapted Theorem 2]
αmax 10.6× 104 25× 104 750

the proposed polytopic representation are not unique even
with the same predefined set of premise variables. This non-
uniqueness representation feature allows introducing specific
slack variables into the control design to reduce the con-
servatism of the proposed approach. Strict LMI conditions
are derived via Lyapunov stability theory for control design
and admissibility analysis. A special attention is paid to the
control design of non-singular nonlinear systems, for which
the descriptor-redundancy approach is not required to further
reduce the design complexity and conservatism. The interests
of the new control results are clearly demonstrated with both
numerical and physically motivated examples. From numerical
experiments, it is observed that for nonlinear systems with
a low number of premise variables the proposed approach
leads to admissibility analysis and control design results with
a similar level of conservatism and numerical complexity as
related existing TS fuzzy model-based approaches. However,
when the number of premise variables becomes sufficiently

Fig. 8: Closed-loop response of the robot system (57) with
m3 = 1 [kg] and θmax = π

10 [rad] obtained with controller
(21) designed from Theorem 1 without condition (24), α = 3
under the same initial condition as in Fig. 7.

large, as illustrated in Example 3, the strong interest of
the new method related to numerical complexity and design
conservatism reduction over TS fuzzy model-based approaches
is put in evidence. Future works focus on extending the
proposed approach to output feedback tracking control of sin-
gular nonlinear systems. Considering the proposed polytopic
modeling method to deal with the fault detection issue of
singular nonlinear systems with unmeasured premise variables
and delayed/quantized output signals [50] is another promising
research direction.
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