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This paper addresses the problem of state and unknown in-
puts (UIs) estimation for nonlinear systems with arbitrary
relative degree with respect to the UIs. For this purpose, a
novel nonlinear unknown input observer (UIO) is proposed,
which is able to decouple the UIs by using the derivatives
of the output signal. The error dynamics is attained by an
exact handling and a factorization of its gradient to obtain a
local polytopic representation suitable for input-affine non-
linear systems. For that representation, a novel design con-
dition based on convex optimization and linear matrix in-
equalities is proposed to exponentially stabilize the estima-
tion error and to guarantee the validity of the proposed
nonlinearUIO.Numerical simulations indicate the effective-
ness of the proposed approach for different classes of non-
linear systems, for which the UIs could be totally decoupled
from the state estimation.
K E YWORD S

Unknown input observers, Nonlinear system, Parameter-varying
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1 | INTRODUCTION

The state estimation of nonlinear systems is a basic concern in control theory, which becomes more challenging in
the presence of uncertainties. The uncertainties are unavoidable since they are related, for example, to disturbances,
inaccurate models, faults and cyber-attacks. This context motivates the design of observers that are able to estimate
simultaneously the system states and uncertainties. In this sense, the reconstruction of disturbances plays an impor-
tant role to support, for example, secure estimation [1], fault diagnosis [2], and fault-tolerant control [3] strategies.
However, while the disturbance estimation problem is well addressed for linear systems under usual conditions, such
as unitary relative degree, the literature is still incipient for nonlinear systems with arbitrary relative degree.

The main approaches to estimate the states of nonlinear systems in the presence of disturbances are disturbance
observers (DOBs) and unknown input observers (UIOs). DOBs are filters using input-output models to estimate the
external disturbances and model discrepancies. They usually require the measurement of the states but they can also
provide simultaneous state and disturbance estimation bymeans of the so-called extended state observer. Conversely,
UIOs are able to decouple the state estimation from the disturbances. Therefore, UIOs estimate the states even in
the presence of unknown inputs (UIs), without explicitly estimating them, although the unknown input estimation is
also possible. The UIO design is usually based on: (i) decoupling of UIs, and (ii) stabilization of error dynamics. The UI
decoupling is typically enabled by matching conditions, i.e., the effect of the UIs in the measured outputs allows for a
direct cancellation of their effects on the estimation error dynamics. Moreover, the stabilization of the error dynamics
decoupled from UIs is possible if it is observable. However, even observable dynamics may present challenges which
hampers the error convergence, as in the non-minimum-phase dynamics.

Given those aspects, a number of important results for designing UIOs have been recently presented. To name
a few, the UIO design with arbitrary error dynamics eigenvalues assignment in the presence of invariant zeros is
addressed for discrete-time [4] and continuous-time [5] linear time-invariant (LTI) systems, which allows the improve-
ment of the UIO convergence performance. In [6, 7], the UIO equipped with reset laws is proposed to improve the
performance and robustness. Regarding the decoupling of UIs, the conservative assumption on the unitary relative
degree of outputs with respect to the UIs is usually sufficient to ensure the decoupling, as shown in [8, 9, 10]. How-
ever, the matching condition may not be satisfied in some practical systems, which precludes the decoupling. When
the UIs cannot be totally decoupled from the error dynamics, the set-theoretic [11, 12] and interval [13, 14] UIOs are
alternatives to handle coupled UIs [15]. Another alternative for the case where the UIs are not completely decoupled
is the L2-norm attenuation [16, 17]. For discrete-time LTI systems, the matching conditions are avoided at the ex-
pense of delayed estimations in [18]. For linear parameter-varying (LPV) systems, in [19] the UIOs are generalized for
systems with arbitrary relative degree, since the high-order derivatives of the outputs are available.

Although there are relevant advances on the UIO design for nonlinear systems, the achievements regarding re-
laxation of the UI decoupling and error stabilization conditions are still incipient, and most of them are applicable for
nonlinear systems with specific structures. For example, in [20, 17, 21, 22], UIO design approaches are proposed
for systems with Lipschitz nonlinearities. The UIO design for a more general class of nonlinear systems is achieved
using quasi-LPV representations with local error convergence guarantees [9, 23]. The aforementioned Lipschitzian
and quasi-LPV approaches provide sufficient design conditions based on semidefinite programming with LMIs or sum-
of-squares constraints, which make easier to obtain solutions and simplify the observability analysis. However, they
are not able to deal with nonlinear systems that do not meet the first-order matching condition. Moreover, the design
of those observers must consider the domain of validity of local models, as discussed in the control design context
by [24, 25, 26, 27]. An alternative to overcome the first-order matching condition for nonlinear systems is the use of
sliding-mode UIOs with high-order differentiators, as proposed in [28, 29]. In [30], a descriptor Takagi-Sugeno (T-S)
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fuzzy representations for discrete-time nonlinear systems with arbitrary relative degree is used to estimate the states
and the UIs with a guaranteed L∞ performance.

Considering the lack of constructive design conditions for nonlinear systems with generic structure and arbitrary
relative degree, this paper proposes a nonlinear Luenberger-like UIO structure to address this problem. As suggested
in [19], for LPV systems, the proposed nonlinear UIO uses the derivatives of the output, which can be obtained by
a sliding-mode differentiator, to avoid the mismatch condition and allow the UI decoupling even for systems with an
arbitrary relative degree greater than one. The nonlinear error dynamics is obtained by employing an exact handling of
the gradient which factorizes the error vector, as proposed in [31] for nonlinear observers. It allows the use of a quasi-
LPV representation where the measured and non-measured nonlinear terms are embedded in scheduling parameters.
That factorization eases the decoupling between the measurable and non-measurable signals and enables to obtain
LMI-based constructive conditions to design the proposed nonlinear UIO for any input-affine nonlinear analytical
system. Compared to previous works, the proposed approach ensures local exponential convergence of the state and
UI estimates even for the non-unitary relative degree case. Therefore, the main contributions are listed as follows:

• a novel nonlinear Luenberger-like UIO to simultaneously estimate states and UIs of nonlinear systems with arbi-
trary relative degree;

• a factorization-based procedure to describe the error dynamics by using local polytopic quasi-LPV models;
• constructive LMI-based conditions for nonlinear UIO design that ensure the exponential convergence of the state

and UIs estimates and the inclusion of the system and UIO trajectories within a predefined region of validity of
the proposed local quasi-LPV model.

Compared to previous works, the proposed approach ensures local exponential convergence of the state and UI
estimates even for the non-unitary relative degree case. To the best of our knowledge, there are no reports on LMI-
based constructive conditions for designing nonlinear UIOs for nonlinear systems with an arbitrary relative degree
even to ensure local exponential convergence.

This paper is organized as follows. Section 2 describes the state and UI system description and presents the key
definitions and assumptions to support the proposed approach as well as the problem formulation. Section 3 presents
the proposed nonlinear UIO, the procedure to obtain the quasi-LPV error dynamics as well as the sufficient conditions
to design an UIO that ensures the exponential stability of the error dynamics and the validity of the quasi-LPV model.
Section 4 provides simulation examples to show the effectiveness of the proposed approach for different nonlinear
systems. Finally, Section 5 draws the conclusions and future works.

Notation
The following notations are adopted in this work. Î denotes the set of natural numbers (or positive integers) and Î≤p

denotes the set of integers less than or equal to p ∈ Î. Ò is the field of real numbers and Ò≥0 (Ò>0) denotes the set
of non-negative (positive) real numbers. Given a matrix A, A⊤, A−1 and A† respectively represent the transpose, the
inverse and the pseudo-inverse of A, and He[A] = A+A⊤. Lf hj (x ) denotes the Lie derivative of the scalar function hj
with respect to the vector field f (x ) and Lk

f
hj (x ) = Lf Lkf −1hj (x ) . The symbol y (k ) (t ) denotes the k -th time-derivative

of the function y at time t . For N matrices Xi of appropriate orders, it is defined (X1, . . . ,XN ) = [X⊤
1 , . . . ,X

⊤
N ]⊤ and

col(X1, . . . ,XN ) = [X1, . . . ,XN ]. The Euclidean norm of a real vector x is denoted by ∥x ∥. A multi-index is denoted
as i = (i1, . . . , ip ) ∈ Âp , where Âp = {i : i j ∈ Â, j ∈ Î≤p }. It is defined Âp+ = {i : i j ≤ i j+1, i j ∈ Â, j ∈ Î≤p−1 } as the set
of “upper-triangle” indexes and P (i) is the set of permutations of the entries of i. The functions λmin (X ) (λmax (X ))
denotes the minimum (maximum) eigenvalue of matrix X . Finally, the Minkowski sum and the Pontryagin difference
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of two sets X and Y are defined respectively by X ⊕ Y ≜ {x + y |x ∈ X , y ∈ Y } and X ⊖ Y ≜ {x |x ⊕ Y ⊆ X }.

2 | SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider the following class of input-affine nonlinear systems subject to disturbances:
¤x = f (x ) + g (x )d

y = h (x ),
(1)

where x ∈ D ⊂ Òn is the state, D is a convex polytope containing the origin with nf hyperplanes:
D = {x ∈ Òn : a⊤j x ≤ b j , j ∈ Î≤nf , aj ∈ Òn , b j ∈ Ò}, (2)

d ∈ Òm is the vector of bounded disturbances, and y ∈ Òp is the output. The vector fields f : D → Òn , g : D → Òn×m ,
with g (x ) = col(g1 (x ), . . . , gm (x )) and h : D → Òp , h (x ) = (h1 (x ), . . . , hp (x )) are assumed to be sufficiently smooth
on D . The following assumptions are considered for UIO design.
Assumption 1 The nonlinear system (1) has uniform UI relative degree ρ = {ρ1, . . . , ρp } on D . It means that

Lgj L
k−1
f hi (x ) = 0, k ∈ Î≤ρi −1, i ∈ Î≤p , j ∈ Î≤m ,

and

Γ (x ) =


Lg1L

ρ1−1
f

h1 (x ) · · · Lgm L
ρ1−1
f

h1 (x )
.
.
.

. . .
.
.
.

Lg1L
ρp−1
f

hp (x ) · · · Lgm L
ρp−1
f

hp (x )


, (3)

is full column rank for all x ∈ D .

Remark 1 The nonlinear UIO design approaches in the literature are often based on the assumption of unitary UI
relative degree (UIRD), that is, ρi = 1, [i ∈ Î≤p , and Lgj hi (x ) , 0, [i ∈ Î≤p , j ∈ Î≤m . It ensures that sufficient
information on the UI vector d is available directly from the output channel y . Unfortunately, it is not direct to employ
those conditions to deal with nonlinear systems with arbitrary UIRD as considered in this work. Thus, Assumption 1
ensures that sufficient information on d is available from the high-order derivative terms. The definition of UIRD can
be found in [32].
Assumption 2 The ρi -th time-derivative of the output signal yi (t ) , denoted as y

(ρi )
i

(t ) , is available for all i ∈ Î≤p .

Remark 2 In this paper, the signals y (ρi )
i

required in Assumption 2 are computed with Levant’s differentiators [33],
which are able to provide exact and finite-time estimates. It is worth noting that it is common to use sliding-mode
differentiators for control and estimation problems. As a matter of fact, the use of high-order differentiators in UIOs
was already proposed, for instance, to linear time-invariant systems [29, 34], linear parameter-varying systems [19]
and nonlinear systems (using sliding-mode UIO) [28]. Probably, one of the earliest papers that proposed the use of
Levant’s differentiator for unknown input estimation is [34]. In [19], the proposed nonlinear UIO for LPV systems
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uses the derivatives of the output, which can be obtained by a sliding-mode differentiator, to avoid the mismatch
condition and to allow the UI decoupling even for systems with an arbitrary relative degree greater than one. In [35],
the Levant’s differentiator is used to estimate the derivatives of the membership functions for fuzzy control design.

Assumption 3 There exist convex sets containing the originW ⊂ Òm andR ⊂ D , whose support function isφR : Òn → Ò,
such that x (t ) ∈ R and d (t ) ∈ W , [t ≥ t0.

Remark 3 The support function φR (z ) of the convex set R is defined as φR (z ) = supx∈R z⊤x [36]. For example, if
an ellipsoidal set R = {x ∈ Òn : x⊤Λx ≤ µ2 } is considered, its support function is given by φR (z ) = µ

√
z⊤Λ−1z ; if a

convex polytope R = {x ∈ Òn : F x ≤ 1} is considered, its support function is given by φR (z ) = min{1⊤w : F ⊤w =

z ,w ∈ Ò
ϕ
≥0 }, where ϕ is the number of hyperplanes of the polytope R.

Under Assumptions 1, 2 and 3, the following augmented observation vector is considered[
y

Y

]
=

[
h (x )

Ψ(x ) + Γ (x )d

]
, (4)

where Y =
(
y
(ρ1 )
1 , . . . , y

(ρp )
p

) and Ψ(x ) = (Lρ1
f
h1 (x ), . . . , L

ρp
f
hp (x )) . Then, the system dynamics (1) can be written as

follows:
¤x = f (x ) + Q (x )Γ (x )d

y = h (x )

Y = Ψ(x ) + Γ (x )d

(5)

where Γ (x ) is given in (3) and, for rank(Γ (x )) = rank(g (x )) (i.e., p ≥ m) and [x ∈ D (cf. Assumption 1), Q (x ) is
defined by

Q (x ) = g (x )Γ† (x ) . (6)

Based on Assumptions 1–3, the following unknown input and state estimation problem for the nonlinear sys-
tem (1) is proposed.

Problem statement
Consider a nonlinear system (1) satisfying Assumptions 1–3. Design a UIO such that the estimates of state and UI,
respectively x̂ (t ) and d̂ (t ) , converge exponentially to x (t ) and d (t ) , respectively, for t ≥ t0.

3 | MAIN RESULTS

This section presents a novel nonlinear UIO structure to estimate both the state and UIs of nonlinear systems with
an arbitrary UIRD as well as a constructive condition to design the proposed UIO.
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3.1 | Nonlinear unknown input observer

Since the dynamics of the nonlinear system (1) satisfying Assumptions 1 and 2 can be written as in (5), the following
Luenberger-like observer is proposed:

¤̂x = f (x̂ ) + Q (x̂ ) (Y − Ψ(x̂ )) + L (x̂ , y ) (y − h (x̂ ))

d̂ = Γ† (x̂ ) (Y − Ψ(x̂ )) ,
(7)

where L (x̂ , y ) is a gain to be designed that only depends on the measurement vector y , and it does not depend on
the observation vector Y.

The big picture of the estimation problem handled in this paper is depicted in Figure 1, where it illustrates the
proposed scheme to estimate the UIs and states by using the nonlinear UIO (7), such that the observation vector Y
used in the UIO is provided by a Levant’s differentiator.

F IGURE 1 Block diagram of the proposed strategy for estimating the UIs and states by using the nonlinear
UIO (7).

Remark 4 Notice that the estimation dynamics in (7) depends on the matrix valued function Q (x̂ ) , which can be
determined only if x̂ ∈ D , as one can see from (6) and Assumption 1. Thus, it is required to constrain the trajectories
of x̂ on D to ensure the rank condition and the correct operation of the nonlinear UIO.

Let the state estimation error be defined as e = x − x̂ , such that its dynamics is given as follows:
¤e = f (x ) − f (x̂ ) − L (x̂ , y ) (h (x ) − h (x̂ )) − Q (x̂ ) (Ψ(x ) − Ψ(x̂ )) + (Q (x ) − Q (x̂ ))Γ (x )d . (8)

Note that if the UIO is appropriately designed such that x̂ (t ) → x (t ) as t → +∞, then it follows from (8) that e → 0.
Let α = (x̂ , y ) and β = (x , d ) be the vectors of available and non-available signals, respectively.
Remark 5 Regardless of the fact that both vectors of available and non-available signals are within polytopic sets,
they are also separated into distinguished vectors α and β because the proposed nonlinear UIO (7) is able to use only
the α signals, although both must be considered in its design.

Following the exact factorization arguments in [31], the estimation error dynamics can be written as follows:
¤e = [A (α , β ) − L (α)C (α , β ) ] e, (9)



Coutinho et al. 7

where A (α , β ) = A1 (α , β ) + A2 (α , β ) + A3 (α , β ) , with
A1 (α , β )e = f (x )−f (x̂ ),

A2 (α , β )e = −Q (x̂ ) (Ψ(x )−Ψ(x̂ )),

A3 (α , β )e = (Q (x ) − Q (x̂ ))Γ (x )d ,

C (α , β )e = h (x ) − h (x̂ ) .

Remark 6 In [31], it is shown that the observation error of nonlinear observers can be written by exactly handling
of its gradient using systematic factorization procedures. In this paper, we propose using the same factorization
procedures for rewriting the error dynamics (8) as (9). As shown in [31, Lemma 1], for any multivariate polynomial
function p (x ) , the difference p (x ) − p (x̂ ) can be factorized as q (x , x̂ ) (x − x̂ ) . The same conclusion is extended for
any analytic function p (x ) , by using the truncated Taylor’s series. In this paper, the terms A1 (α , β ) , A2 (α , β ) , A3 (α , β ) ,
and C (α , β ) are obtained by following the same results.
The following example illustrates the procedure to obtain a factorized form (9) for the error dynamics of a nonlinear
system described as (1).
Example 1
Consider the following nonlinear system adapted from [19]:[

¤x1
¤x2

]
=

[
(1 + x21 )x2
−x31 − 2x2

]
+

[
0

1 + x21

]
d

y = x1 .

(10)

This system has an uniform UIRD of ρ = 2 on Ò2. To define the nonlinear UIO, the following maps are computed:
Ψ(x ) = L2f h (x ) = (1 + x21 ) (−x

3
1 + 2x1x

2
2 − 2x2),

Γ (x ) = LgLf h (x ) = (1 + x21 )
2 .

Note that the matrix Γ (x ) is nonsingular for all x ∈ Ò2 and rank(Γ (x )) = rank(g (x )) = 1, [x ∈ Ò2. The matrix Q (x )
is thus obtained by solving (6), which admits the solution

Q (x ) =


0
1

1 + x21

 .
As suggested in [31], the following factorizations are obtained considering that the state x1 is measured

f (x ) − f (x̂ ) =
[
(1 + x21 ) (x2 − x̂2)

−2(x2 − x̂2)

]
,

Q (x ) − Q (x̂ ) = 0,

Q (x̂ ) (Ψ(x ) − Ψ(x̂ )) =
[

0

2x1 (x22 − x̂22 ) − 2(x2 − x̂2)

]
.
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Thus, the error dynamics is given by

¤e =

[
(1 + x21 )e2

−2x1 (x2 + x̂2)e2

]
,

which can be rewritten as in (9) with

A (α , β ) = A (x , x̂ ) =
[
0 1 + x21
0 −2x1 (x2 + x̂2)

]
. (11)

3.2 | Local polytopic modeling

To obtain a convex structure for the exact rewriting of the state estimation error dynamics (9), the nonlinear terms
in the state-dependent matrices, which depend on available signals α , are collected in the vector-valued function
z (α) = (z1 (α), . . . , zq (α)) , and the nonlinear terms depending on the non-available signals, β , are collected in ζ (β ) =
(ζ1 (β ), . . . , ζσ (β )) . Assuming that x ∈ R, x̂ ∈ D , and d ∈ W , it is possible to determine bounds z j (α) ∈ [z 0

j
, z 1
j
],

j ∈ Î≤q , and ζk (β ) ∈ [ζ0
k
, ζ1
k
], k ∈ Î≤σ . As a result, each nonlinear term can be equivalently written as

z j (α) = w j0 (α)z
0
j +w

j
1 (α)z

1
j ,

ζk (β ) = ωk0 (β )ζ
0
k + ω

k
1 (β )ζ

1
k ,

where
w
j
0 (α) =

z1
j
−zj (α )

z1
j
−z0
j

, w
j
1 (α) = 1 −w j0 (α),

ωk0 (β ) =
ζ1
k
−ζk (β )
ζ1
k
−ζ0
k

, ωk1 (β ) = 1 − ωk0 (β ) .

Thus, z (α) and ζ (β ) belong to convex polytopes in Òq and Òσ with 2q and 2σ vertices, respectively. As a result,
the state-dependent matrices in (9) can be given as convex combinations of their vertices, providing the following
quasi-LPV model for the error dynamics:

¤e =
∑
i∈Âq

∑
j∈Âq

∑
k∈Âσ

wi (α)wj (α)vk (β ) (
Aik−LjCik

)
e, (12)

where the functions

wi (α) =
q∏
j=1

w
j
ij
(α), vk (β ) =

σ∏
j=1

ω
j
k j
(β ),

satisfy the following properties:
0 ≤ wi (α) ≤ 1, 0 ≤ vk (β ) ≤ 1,∑
i∈Âq

wi (α) = 1,
∑
k∈Âσ

vk (β ) = 1.
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Example 2

Consider the following modified version of system (10) from Example 1:[
¤x1
¤x2

]
=

[
(1 + x21 )x2
−x31 − 2x2

]
+

[
0

1 + x21

]
d

y = atan (x1) .

(13)

This system also has an uniform UIRD of ρ = 2 on Ò2, and the following maps are computed:

Lf h (x ) =
∂h (x )
∂x

f (x ) =
[

1
1+x2

1

0
] [

(1 + x21 )x2
−x31 − 2x2

]
= x2 .

Ψ(x ) = L2f h (x ) =
∂Lf h (x )
∂x

f (x ) =
[
0 1

] [
(1 + x21 )x2
−x31 − 2x2

]
= −x31 − 2x2

Γ (x ) = LgLf h (x ) =
[
0 1

] [
0

1 + x21

]
= 1 + x21 .

The following matrix Q (x ) is obtained from (6):

Q (x ) =
[
0

1

]
.

In this case, neither x1 nor x2 are measured, therefore the following factorizations are performed:

f (x ) − f (x̂ ) =
[
(1 + x21 ) (x2 − x̂2) − (x1 + x̂1) x̂2 (x1 − x̂1)

−(x31 − x̂31 ) − 2(x2 − x̂2)

]
,

Q (x ) − Q (x̂ ) = 0,

Q (x̂ ) (Ψ(x ) − Ψ(x̂ )) =
[

0

−(x31 − x̂31 ) − 2(x2 − x̂2)

]
.

Thus, the matrix A (α , β ) = A1 (α , β ) + A2 (α , β ) + A3 (α , β ) is given by

A (α , β ) =
[
−(x1 + x̂1) x̂2 1 + x21

0 0

]
.

Considering the Taylor’s series expansion of atan (x1) for |x1 | ≤ 1, the difference of the output maps is:
h (x ) − h (x̂ ) = atan (x1) − atan (x̂1)

=
∞∑
i=0

(−1) i
2i + 1

x2i+11 −
∞∑
i=0

(−1) i
2i + 1

x̂2i+11 =
∞∑
i=0

(−1) i
2i + 1

(
x2i+11 − x̂2i+11

)
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Using the factorization x2i+11 − x̂2i+11 = (x1 − x̂1)
∑2n
k=0 x

k
1 x̂

2n−k
1 , one has

h (x ) − h (x̂ ) =
( ∞∑
i=0

(−1) i
2i + 1

2n∑
k=0

x k1 x̂
2n−k
1

)
(x1 − x̂1),

such that the following parameter-dependent output matrix is obtained:
C (α , β ) =

[∑∞
i=0

(−1) i
2i+1

∑2n
k=0 x

k
1 x̂

2n−k
1 0

]
.

Assuming that D = {x ∈ Ò2 : |xi | ≤ 1} and R = {x ∈ Ò2 : |xi | ≤ 0.5}, we obtain the following bounds:
z 01 = z 02 = −1, z 11 = z 12 = 1, ζ01 = −0.5, ζ02 = 0,

ζ11 = 0.5, ζ12 = 0.25, ζ03 = 0.2216, ζ13 = 0.9763.

Therefore, the matrices A (α , β ) , L (α) , and C (β ) are
A (α , β ) =

∑
i∈Âq

∑
k∈Âσ

wi (α)vk (β )Aik, L (α) = ∑
j∈Âq

wj (α)Lj, C (α , β ) =
∑
i∈Âq

∑
k∈Âσ

wi (α)vk (β )Cik,

Aik =


−

(
ζ
k1
1 + z i11

)
z
i2
2 1 + ζk22

0 0

 , Cik =
[
ζ
k3
3 0

]
.

3.3 | UIO design condition

The following result allows to design the gain of the nonlinear UIO in (7) ensuring that the equilibrium e = 0 of system
(8) is exponentially stable.

Lemma 1 If there exist a symmetric positive definite matrix P ∈ Òn×n , and matrices L̃j ∈ Òn×p , j ∈ Âq , such that the
following inequalities hold

∑
(i,j)∈P (m,n)

Υijk < 0, [m, n ∈ Âq+, k ∈ Âσ , (14)

with Υijk = He[PAik−L̃jCik + ηP ]. Then, the origin of system (9) is exponentially stable with a decay rate η ∈ Ò>0 and the
observer gain is given by

L (x̂ , y ) = L (α) =
∑
j∈Âq

wj (α)Lj, Lj = P
−1L̃j, j ∈ Âq . (15)

Proof Assume that condition (14) is verified. Similar as in [37, 31, 26], it is possible to conclude that the parameter-
dependent matrix

Υ(α , β ) =
∑
i∈Âq

∑
j∈Âq

∑
k∈Âσ

wi (α)wj (α)vk (β )Υijk (16)
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can be rewritten as

Υ(α , β ) =
∑

m∈Âp+

∑
n∈Âp+

∑
k∈Âσ

wm (α)wn (α)vk (β ) ©­«
∑

(i,j)∈P (m,n)
Υijk

ª®¬ .
Then, it is clear that condition (14) is sufficient to ensure thatΥ(α , β ) < 0. Since P is a positive definite matrix, defining
Lj = P

−1L̃j, it follows that
He[P (A (α)−L (α)C (α , β )) ] + 2ηP < 0, (17)

where L (α) is defined in (8). Based on the error dynamics (9), and given that P > 0, define the following Lyapunov
candidate function

V (e) = e⊤P e . (18)
Pre- and post-multiplying inequality (17) with e⊤ and e , it implies that

¤V (e) < −2ηV (e) . (19)
By the comparison lemma, it follows from (19) thatV (e) ≤ V (e0)e−2η (t−t0 ) , thus

∥e ∥ ≤

√
λmax (P )
λmin (P ) ∥e0 ∥e

−η (t−t0 ) ,

with e (t0) = e0. Thus,V (e) , defined in (18), is a Lyapunov function that certifies the exponential stability of the zero
equilibrium of system (9) and, consequently, of system (8). ■

Although Lemma 1 provides conditions to guarantee the exponential stability of the origin of system (9), it is a
valid representation for the error dynamics (8) only if the state x and its estimation x̂ remains confined inD . Otherwise,
the UIO (7) is not valid for the nonlinear system (1). The following theorem provides conditions to ensure that all the
trajectories of x̂ (t ) are confined in D .

Theorem 1 Let the nonlinear system (1) be subject to Assumptions 1, 2, and 3. If the conditions of Lemma 1 and[
1 s⊤

j

s j P

]
≥ 0, [ j ∈ Î≤nf , (20)

with

s j =
1

b j − φR (aj )
aj , [j ∈ Î≤nf , (21)

are satisfied, then the origin of the error dynamics (8) is exponentially stable with a decay rate η ∈ Ò>0, and the trajectories
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of x̂ (t ) are confined in D for all t ≥ t0 and e (t0) ∈ E , where

E = {e ∈ Òn : e⊤P e ≤ 1}, (22)
which ensures the nonlinear UIO dynamics in (7) is valid with the observer gain given by (15).

Proof First, consider the Pontryagin difference between the sets D and R given by [38, Th. 2.3]
D ⊖ R = {x ∈ Òn : a⊤j x ≤ b j − φR (aj ), j ∈ Î≤nf , aj ∈ Òn , b j ∈ Ò}, (23)

which, for s j defined as in (21), is equivalent to
D ⊖ R = {x ∈ Òn : s⊤j x ≤ 1, j ∈ Î≤nf , s j ∈ Òn }. (24)

If condition (20) is satisfied, then [
−1
e

]⊤[
1 s⊤

j

s j P

][
−1
e

]
≥ 0, j ∈ Î≤nf , (25)

which implies that
1 − 2s⊤j e + e

⊤P e ≥ 0, j ∈ Î≤nf .

Thus, if condition (20) holds, it guarantees the inclusion E ⊂ D ⊖ R, for D ⊖ R given by (24). Moreover, as proved in
Lemma 1, the ellipsoid E is positively invariant and ensures the exponential convergence of the error dynamics with
a decay rate of η since it is a level set of the Lyapunov function V (e) = e⊤P e and (14) guarantees ¤V (e) < −2ηV (e) .
Therefore, for all e (t0) ∈ E , the trajectories of the error will stay confined in E .

Finally, since x̂ = x + e , with e ∈ E and x ∈ R ⊂ D for t ≥ t0, then x̂ ∈ R ⊕ E ⊂ D , which ensures the validity, for
all t ≥ t0, of the nonlinear UIO given in (7) with observer gain in (15). This concludes the proof. ■

Remark 7 Lemma 1 and Theorem 1 provide sufficient conditions to design the proposed nonlinear UIO. If the LMI
constraints are not feasible, it is not possible to conclude anything about the system properties. However, notice that
it has already been discussed in [39] that similar LMI-based design conditions for observers cannot be feasible if the
usual rank-based detectability conditions are not met. It means that the detectability is an underlying condition for
the existence of the nonlinear UIO which satisfies the inequalities in Lemma 1 and Theorem 1.

3.4 | Enlargement of the region of admissible initial error

Theorem 1 guarantees that the nonlinear UIO (7) is valid for the nonlinear system (1) and its error is exponentially
stable if the initial error e (0) belongs to the admissible initial error set E ⊂ D ⊖ R. For this reason, it is worthy
enlarging the set E which ensures the UIO validity and convergence. The following convex optimization problem with
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LMI constraints enlarges the ellipsoid E within the convex polytope D ⊖ R.
min

P , L̃j,[j∈Âq
trace(P ) (26)

s.t. P > 0, (14), (20).
It is clear that minimizing the trace of P enlarges the set E , while the constraints P > 0 and (14) ensure that the E is
a positively invariant set, finally, the constraint (20) ensures the inclusion E ⊂ D ⊖ R. The numerical results of this
paper are obtained by solving1 the optimization problem (26) for obtaining the UIO gains Lj = P −1L̃j, j ∈ Âq and an
enlarged set of admissible initial error E .

Notice that enlarging the set of admissible initial error E is important to guarantee a reasonable estimation solu-
tion. For this purpose, the set difference D ⊖ R should be significant, i.e., the domain of validity must be sufficiently
larger than the set R itself (recall that R contains the system trajectories). But it can be difficult for some applica-
tions where the set D ⊖ R cannot enlarge enough. In this context, some solutions, as the one proposed by [40], can
be adopted to redesign the observer to ensure that x̂ ∈ D . That kind of alternative will be investigated in further
researches.

4 | NUMERICAL EXAMPLES

In this section, numerical simulations are performed to illustrate the effectiveness of the proposedUIO designmethod-
ology to estimate the UIs and the states of different classes of nonlinear systems.

4.1 | Example 1 (continued)

In this example, the UIO is designed for the nonlinear system (10). By assuming that D = {x ∈ Ò2 : |xi | ≤ 2} and
R = {x ∈ Ò2 : |xi | ≤ 1}, then D ⊖ R = {x ∈ Ò2 : |xi | ≤ 1}. Based on (11), a polytopic representation for the error
estimation dynamics in (12) can be obtained by selecting the available and non-available nonlinear functions as

z1 (α) = x21 ∈ [0, 1], z2 (α) = x1 ∈ [−1, 1],

z3 (α) = x̂2 ∈ [−2, 2], ζ1 = x2 ∈ [−1, 1] .

Then, the estimation error dynamics can be rewritten as in (9) with the following matrix-valued functions:

A (α , β ) =
[
0 1 + z1 (α)
0 −2z2 (α) (ζ1 (β ) + z3 (α))

]
, C (α , β ) =

[
1 0

]
,

1The optimization problem is solved by using the YALMIP parser and the MOSEK solver in the MATLAB environment.
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which can be written as (12) following the procedure in Section 3.2. For η = 1, the optimization problem (26) in
Section 3.4 leads to the following solution:

L000 = L011 =

[
18.0293

236.5305

]
, L001 = L010 =

[
9.2654

107.3512

]
,

L100 = L111 =

[
32.0396

433.9209

]
, L101 = L110 =

[
24.0144

320.6193

]
,

P =

[
196.0051 −13.9303
−13.9303 1.9900

]
.

Consider the initial conditions x (0) = [0.0961 0.8850]⊤ and x̂ (0) = 0, such that the initial estimation error is e (0) =
x (0) ∈ E . Figure 2(a) shows the simulation results obtained with the nonlinear system (10), the proposed UIO and
the unknown input given by

d =


sin(

πt + π
6

)
, t ≤ 15 s,

0.3, t > 15 s. (27)

The time-series of the states, UI and their estimates are shown in Figure 2(a), and they indicate the ability of the
proposed UIO to simultaneously estimate the states and the UI . As shown in Figure 2(b), the error estimates of the
states and the UI converge to zero after few seconds and the error remains negligible even after the discontinuous
change in the UI at t = 15 s.

F IGURE 2 Time-series of the numerical simulations for the system (10) with the proposed UIO: (a) system states
x1 and x2, the unknown input d , and their estimates x̂1, x̂2 and d̂ ; and (b) the estimation errors of the states e1 and
e2, and of the unknown input d − d̂ .

Remark 8 In real world applications it is usual to deal with noisy measurements, which pose an additional challenge
to the decoupling and estimation of states and disturbances. To illustrate the sensitivity of the proposed approach
with respect to measurement noises, the system (10) in Example 1 is considered here under the same conditions of
those considered in Figure 2, but adding a measurement noise at the measurement channel (y ).
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Figure 3 depicts the results of the simulation. One can notice that the states estimations x̂ have converged to the
correct values of x with bounded estimation errors. The disturbance estimation exhibits some significant bounded
error, which becomes negligible after t = 15 s. Those errors are not unlikely, since the strategy proposed in this
paper is not designed to deal with measurement noises and disturbances at the output channel. However, it can be
further adapted to handle this problem by using, for example, the robust filtering differentiators presented in [41] for
estimating Y under noisy conditions. Moreover, since those output disturbances are bounded, uniformly ultimate
boundedness (UUB) conditions can be derived to circumvent their effect on the UIO estimations.

F IGURE 3 Time-series of the numerical simulations for the system (10) with the proposed UIO under sensor
noise : (a) output y , state x2, the unknown input d , and their estimates x̂1, x̂2 and d̂ ; and (b) the estimation errors of
the states e1 and e2, and of the unknown input d − d̂ .

4.2 | Nonlinear systems in normal form

Consider the following class of nonlinear systems:
¤x = Aρx + Bρ (ψ (x ) + γ (x )d )

y = Cρx
(28)

where ψ : Òn → Ò is a continuous function, γ : Òn → Ò is a continuous and nonsingular function, and

Aρ =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

.

.

.
.
.
.
.
.
.
. . .

.

.

.
.
.
.

0 0 0 . . . 0 1

0 0 0 . . . 0 0


, Bρ =



0

0

.

.

.

0

1


, Cρ =

[
1 0 · · · 0 0

]
. (29)

Note that this system has an uniform UIRD of ρ = n on Òn , which leads to Ψ(x ) = Ln
f
h (x ) = ψ (x ) , Γ (x ) =

LgL
n−1
f
h (x ) = γ (x ) , where Γ (x ) is nonsingular for all x ∈ Òn and rank(Γ (x )) = rank(g (x )) = 1, [x ∈ Òn . The
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matrix Q (x ) is obtained from (6) as Q (x ) =
[
0 1

]⊤. Thus, the error dynamics is given by

¤e = (Aρ − LCρ )e, (30)
where the pair (Aρ ,Cρ ) is observable. Thus, a constant observer gain L (α) = L is necessary and sufficient to ensure
that the origin of the error dynamics is globally exponentially stable. It means that the error dynamics (30) is valid
for D = Òn , and the UIO (7) is globally valid as well, since its gain does not depend on the states or its estimates.
Therefore, it is not necessary to compute the set of admissible initial error in this case because it is E = Òn , and the
gain L of the UIO is computed by simply evaluating the feasibility of the LMIs described in (14) for some symmetric
positive-definite matrix P .

To exemplify the case of nonlinear systems in normal form, consider the Van der Pol oscillator system described
as follows and subject to an unknown input d[

¤x1
¤x2

]
=

[
x2

−x1 + µ (1 − x21 )x2

]
+

[
0

1

]
d

y = x1,

(31)

where µ = 2. Note that this system can be written in the form (28) with ψ (x ) = −x1 + µ (1 − x21 )x2 and γ (x ) = 1. In
this example, as a constant observer gain is necessary to ensure the global exponential stability of the error dynamics
equilibrium, only the LMI condition in (14) is solved with η = 2, which leads to

L =

[
9.3684

30.888

]
, P =

[
1.7032 −0.3949
−0.3949 0.1238

]
. (32)

F IGURE 4 Time-series of the numerical simulations for the system (31) with the proposed UIO: (a) the system
states x1 and x2, the unknown input d , and their estimates x̂1, x̂2 and d̂ ; (b) the estimation errors of the states e1 and
e2, and of the unknown input d − d̂ .

For the UI given by d = 5 sin(πt ) + 5 sin(
3πt + π

2

) and the initial conditions x (0) = [2 2]⊤, x̂ (0) = [0 0]⊤, the
simulation results with the system’s states, the UI, and their respective estimations are depicted in Figure 4(a) and the
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related estimation errors are depicted in Figure 4(b). We can observe the occurrence of peaking in the UI estimate due
to the use of Levant’s differentiators to provide the second-order derivative of the output. However, the estimation
errors converges exponentially to zero as shown in Figure 4(b).

The state trajectory and its estimate provided by the nonlinear UIO in the state-space are shown in Figure 5.
Notice that, after few seconds, the state estimate trajectory starting at the origin converges to the correct state
trajectory of the Van der Pol system subject to the unknown input.

F IGURE 5 Trajectories of state of the Van der Pol system (31) subject to the unknown input d and the respective
state estimate provided by the UIO (7).

4.3 | The case of non-invertible Γ(x )

Consider the following nonlinear system:

¤x1
¤x2
¤x3
¤x4


=


x2

−x2θ (x1) − x4
x4

−x3


+


0 0

θ (x1) 0

1 0

0 1


[
d1

d2

]

y1 = x1, y2 = x3,

(33)

where D = {x ∈ Ò4 : |xi | ≤ 4π, i ∈ Î≤4 }, R = {x ∈ Ò4 : |xi | ≤ 2π, i ∈ Î≤4 }, and θ (x1) = 3 + 2 sin (x1) . It is clear that
the system has UIRD ρ = {ρ1, ρ2 } = {2, 1}. According to Assumption 1, the matrix Γ (x ) is given by

Γ (x ) =
[
θ (x1) 0

1 0

]
. (34)
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Although (33) is algebraically observable, Γ (x ) does not admit pseudo-inverse. Such a phenomenon is already reported
in [19], which indicates that the output y2 can be replaced by a virtual output ỹ2 that is a function of the system output
and its derivatives in order to ensure that the system has uniform UIRD ρ = {ρ1, ρ2 } = {2, 1} on D and a new matrix
Γ̃ (x ) which admits pseudo-inverse can be obtained. For instance, the virtual output ỹ2 can be defined as

ỹ2 = ¥y1 + θ (x1) ( ¤y1 − ¤y2), (35)
which leads to Y = ( ¥y1, ¤̃y2) . Therefore, substituting y2 by ỹ2, the new matrices Ψ̃(x ) and Γ̃ (x ) can be computed as

Ψ̃(x ) =
[

−x2θ (x1) − x4
(1 + θ (x1))x3 − 2 cos (x1)x2x4

]
,

Γ̃ (x ) =
[
θ (x1) 0

0 −(1 + θ (x1))

]
.

In this case, the matrix Γ̃ (x ) is non-singular for all x ∈ D . Then, according to (6), the following matrixQ (x ) is obtained:

Q (x ) =


0 0

1 0
1

θ (x1 )
0

0 − 1
1+θ (x1 )


.

Thus, the error dynamics in (9) is written with the following matrix-valued functions:

A (α , β ) =


0 1 0 0

0 0 0 0

0 1 0 1 + 1
θ (x1 )

0
2 cos (x1 ) x̂4
1+θ (x1 )

0
2 cos (x1 )x2
1+θ (x1 )


, (36)

C (α , β ) =
[
1 0 0 0

0 0 1 0

]
. (37)

Selecting the nonlinear functions as
z1 (α) =

1

θ (x1)
∈ [0.2, 1], z2 (α) =

1

1 + θ (x1)
∈ [0.1667, 0.5],

z3 (α) = cos(x1) ∈ [−1, 1], z4 (α) = x̂4 ∈ [−4π, 4π ],

ζ1 (β ) = x2 ∈ [−2π, 2π ],

the quasi-LPV representation (12) can be then constructed. For the decaying rate η = 1, the optimization problem in
Theorem 1 is feasible and the observer gains Lj, j ∈ Âq , and the matrix P are obtained.

The simulation is performed considering the initial conditions x (0) =
[
0.5 0.88 −0.25 1

]⊤ and x̂ (0) = 0,
which ensures that e (0) = x (0) ∈ R ⊂ De . The state trajectories and their estimations are depicted in Figure 6(a)
while the considered UIs that drives the state trajectories and the obtained estimations are depicted in Figure 7(a). It
can be verified that the UIOwith the virtual output ỹ2 can effectively provide the estimations of the states and the UIs,
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F IGURE 6 Time-series of numerical simulations for the system (33) with the proposed nonlinear UIO: (a) the
states of the system and their estimates; and (b) the estimation errors.

F IGURE 7 Time-series of numerical simulations for the system (33): (a) the UIs applied to system (33) and their
estimates; and (b) the UIs estimation errors.

as confirmed with the convergence of the state estimation errors shown in Figure 6(b) and the UI estimation errors
in Figure 7(b). It can be observed the existence of small peaks when the discontinuities of the UIs occur, however in
few seconds the estimation errors converge exponentially to zero again.

5 | CONCLUSIONS

This paper presented a novel condition to design a nonlinear UIO for nonlinear systems with an arbitrary UIRD. Based
on an effective factorization procedure for representing the nonlinear error dynamics by means of a polytopic quasi-
LPV model, the UIO design condition has been proposed to guarantee the exponential convergence of the estimates
of the states and UIs. Numerical examples have demonstrated the effectiveness of the new approach with different
classes of nonlinear systems. Future works focus on fault detection and fault-tolerant control of nonlinear systems
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using the proposed UIO, and on adopting strategies to ensure x̂ ∈ D without constraining the error dynamics [40].

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.
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