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This paper addresses the zonotopic observer design for nonlinear systems affected by uncertainties, i.e., state disturbances and measurement noises using Takagi-Sugeno (TS) fuzzy technique. The system uncertainties are considered as unknown but bounded, which are handled via a set-membership framework. For state estimation purposes, we develop an algorithm to recursively compute the zonotope containing the mismatching nonlinear term caused by unmeasured nonlinearities. Then, two methods are proposed to design the zonotopic observer gains. The first method is based on the minimization of the F -radius of zonotopes, for which the membership-function-dependent observer gain must be completely computed online. For the second method, an H ∞ approach is used together with a nonquadratic Lyapunov function to determine the observer gain. Then, the zonotopic observer design is reformulated a convex optimization problem under linear matrix inequalities (LMIs), which can be effectively solved with numerical solvers. An autonomous vehicle application is provided to demonstrate and analyze the effectiveness of both proposed methods.

Introduction

Engineering systems have become increasingly complex in recent years with emerging technologies. Then, there is a surge of interest in the performance analysis of an automatic control system, as well as the examination of its safety and reliability [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF]. One of the major issues in control theory is the state estimation problem, which is related to the objective of enhancing system performance and plays a crucial role in the Fault Detection (FD) of dynamical systems [START_REF] Chen | Robust Model-Based Fault Diagnosis for Dynamic Systems[END_REF][START_REF] Gertler | Fault detection and isolation using parity relations[END_REF]. The state estimation problem is especially difficult when dealing with nonlinear systems consisting of hundreds of constitutive elements.

In general, state estimation approaches are divided into two categories: i) model-based and ii) data-based. The former class comprises methods that utilize the mathematical model of the plant to monitor the system behaviors [START_REF] Gertler | Fault detection and isolation using parity relations[END_REF], whereas the later class mainly includes those methods using statistical methods, neural networks, fuzzy logic, etc [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF]. The quality of the mathematical model is crucial for model-based methods. However, in the presence of model uncertainties, e.g., unknown disturbances and noises, there is a non-negligible mismatch between the real process behavior and its mathematical model. As a result, the influence of uncertainty and noise/disturbance is an essential factor to consider when monitoring system behavior using model-based state estimation techniques. Several approaches have been developed in the literature to explicitly include uncertainties in the mathematical model, which may be divided into two basic paradigms: i) stochastic approaches, in which the uncertainties are represented by random variables [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF][START_REF] Maybeck | Stochastic Models, Estimation, and Control[END_REF]; ii) deterministic approaches, in which the uncertainties are considered as unknown but bounded variables belonging to different types of sets, e.g., interval boxes, polytopes, ellipsoids, and zonotopes [START_REF] Schweppe | Recursive state estimation: Unknown but bounded errors and system inputs[END_REF][START_REF] Le | Zonotopes: From Guaranteed State-Estimation to Control[END_REF][9][10]. According to [11], polytopes provide tighter enclosures than interval boxes. However, the main drawback of using general polytopes is related to the complexity of vertices enumeration with respect to the space dimension. Using zonotopic representations, basic set operations can be reduced to simple matrix calculations. Despite the complexity of dealing with complex systems composed of interconnected subsystems, as well as the large number of different sensors and actuators used in these systems, employing a zonotopic set-based approach can significantly reduce the computational load for monitoring system performance. This fact has recently motivated the use of zonotopes for modeling the effect of uncertainties [12].

Most of real-world systems are with nonlinear behaviors to which the established linear system theory cannot be directly applied. Hence, various control and estimation approaches have been reported for nonlinear systems. Among these, the Takagi-Sugeno (TS) fuzzy paradigm is one of the most popular techniques to describe a large class of nonlinear systems [13][14][15]. First, they can be used to approximate any smooth nonlinear system with any given accuracy. In particular, using the sector nonlinearity approach, we can derive an exact TS fuzzy representation of a given nonlinear model within a compact set of the state variables. Second, thanks to its polytopic structure, TS fuzzy representation allows for some possible extensions of linear control techniques to nonlinear systems. Recent advancements have rekindled interests in monitoring the behavior of nonlinear systems using TS fuzzy-model-based observers. TS fuzzy observers are based on TS fuzzy modeling of nonlinear systems, which are usually composed of premise variables, i.e., system nonlinearities that can be measurable or unmeasurable [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Ichalal | How to cope with unmeasurable premise variables in takagi-sugeno observer design: Dynamic extension approach[END_REF][START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF]. In the case of designing an TS fuzzy observer for a nonlinear system with all premise variables being measurable, the main goal will be to reduce the design conservatism by using different Lyapunov candidate functions and/or introducing slack variables [START_REF] Guerra | An efficient Lyapunov function for discrete T-S models: observer design[END_REF]. In this case, the obtained results can be only applied to a limited class of TS fuzzy systems. Therefore, dealing with unmeasured premise variables in TS fuzzy observer design is essential in practice. Moreover, disturbances and/or modeling uncertainties are unavoidable in most of engineering applications. Unfortunately, the observer design for TS fuzzy systems subject to both uncertainties and unmeasured premise variables still remains open, which motivates the present work.

Furthermore, in model-based approaches, FD is based on checking/comparing the consistency of observed behavior from measured outputs utilizing sensors with anticipated behavior derived using the model [START_REF] Chen | Robust Model-Based Fault Diagnosis for Dynamic Systems[END_REF]. This consistency test generates the residual by computing the difference between the model's performance predicted values and the actual measured values received from the sensors [START_REF] Chen | Robust Model-Based Fault Diagnosis for Dynamic Systems[END_REF]. The existence of fault is then detected by comparing the residual to a threshold value that takes uncertainty into account, such as parameter uncertainties, measurement noise, state disruption, etc. [START_REF] Zhu | Interval-observer-based fault detection and isolation design for T-S fuzzy system based on zonotope analysis[END_REF]. In practice, the existence of the defect is shown if the residual is greater than the specified threshold. Otherwise, the system is presumed to be in healthy functioning [START_REF] Wang | Zonotopic set-membership state estimation for discrete-time descriptor LPV systems[END_REF]. Aside from the problem of generating detection thresholds via uncertainty propagation (either using stochastic or deterministic approaches), another critical issue when using observers is determining how to compute the observer gain to be as robust as possible against the inevitable impact of uncertainties. A substantial amount of research has been reported on the examination of various methods of computing the gain to be insensitive to uncertainty, such as H ∞ optimization and linear matrix inequality (LMI) based methodologies [START_REF] Zhong | An LMI approach to design robust fault detection filter for uncertain LTI systems[END_REF]. Recent studies, however, suggest that the filter design approach that simply addresses the rejection of the influence of uncertainties is useless, since the sensitivity to the fault must be included in FD filter design [START_REF] Pourasghar | A zonotopic Kalman filter optimizing fault detection rather than state estimation[END_REF][START_REF] Wang | H -/H∞ fault detection observer in finite frequency domain for linear parameter-varying descriptor systems[END_REF]. Then, research has tended to focus on multiobjective FD design, such as H -/H ∞ [START_REF] Wang | H -/H∞ fault detection observer in finite frequency domain for linear parameter-varying descriptor systems[END_REF]. Indeed, the lowest non null singular value of the transfer function matrix from fault to residual at ω = 0 or over a particular frequency range accounts for the worst case of fault sensitivity [START_REF] Liu | An LMI approach to minimum sensitivity analysis with application to fault detection[END_REF][START_REF] Henry | Norm-based point of view for fault diagnosis: Application to aerospace missions[END_REF]. Then, an increasing body of research has examined this multiobjective design as an optimization problem, e.g., H ∞ /H ∞ , H 2 /H 2 problems [START_REF] Jaimoukha | A matrix factorization solution to the H -/H∞ fault detection problem[END_REF][START_REF] Wang | An LMI approach to Hindex and mixed H -/H∞ fault detection observer design[END_REF].

The key goal of the observer design is to determine suitable observer gains such that satisfactory robustness property with respect to these effects can be achieved. Different methods have been proposed to minimize the uncertainty effects [START_REF] Pourasghar | A zonotopic Kalman filter optimizing fault detection rather than state estimation[END_REF]. In this regard, this paper presents two methods to design zonotopic observers for uncertain TS fuzzy systems with unmeasured premise variables. For observer design, the influence of the unknown but bounded uncertainty and the mismatching nonlinear term caused by unmeasurable nonlinearities are dealt with via a zonotopic approach, which reduces set operations to simple matrix calculations. Then, the first observer design method is based on the minimization of the F -radius of the TS fuzzy state bounding observer. For this method, the observer gain, derived from an optimality condition, is computed online. The second method is based on the use of H ∞ filtering technique. Hence, the computation of the observer gain is reformulated as an optimization problem under LMI constraints. The material in this paper was partially presented [START_REF] Pourasghar | Robust zonotopic observer design: Avoiding unmeasured premise variables for Takagi-Sugeno fuzzy systems[END_REF]. The new contributions are summarized as follows.

• The technical proofs of both observer design methods are given in detail. Moreover, a nonquadratic Lyapunov function is exploited to offer more flexibility for the H ∞ design method. Note that a common quadratic Lyapunov function was used in [START_REF] Pourasghar | Robust zonotopic observer design: Avoiding unmeasured premise variables for Takagi-Sugeno fuzzy systems[END_REF].

• We take into account the structure information of the unmeasured nonlinearities, considered as unknown disturbances in [START_REF] Pourasghar | Robust zonotopic observer design: Avoiding unmeasured premise variables for Takagi-Sugeno fuzzy systems[END_REF], in the observer design. To this end, a new algorithm to compute the zonotopic bounds of the mismatching nonlinear term stemmed from unmeasured nonlinearities is proposed.

• The proposed zonotopic observer designs are extended for fault detection of TS fuzzy systems. Moreover, a real-world application on nonlinear vehicle dynamics estimation and fault detection is included to illustrate the effectiveness and the usefulness of the new results.

The structure of the paper is as follows. Some preliminaries and problem formulation are given in Section 2. The zonotopic observer design and the computation of observer gain optimizing a set-based modeling for achieving the robustness against uncertainties are proposed in Section 3. In Section 4, the effectiveness of the proposed zonotopic observer designs is illustrated with an autonomous vehicle application. Finally, the conclusions are drawn in Section 5.

Notation. The set of nonnegative integers is denoted by Z + and I r = {1, 2, . . . , r} ⊂ Z + . For i ∈ I r , we denote ξ r (i) = [0, . . . , 0, ith 1 , 0, . . . , 0] ∈ R r a vector of the canonical basis of R r . For two vectors x, y ∈ R n , the convex hull of these vectors is denoted as co(x, y) = {λx + (1 -λ)y : λ ∈ [0, 1]}. For a matrix X, X denotes its transpose, X 0 means X is symmetric positive definite. diag(X 1 , X 2 ) denotes a blockdiagonal matrix composed of X 1 , X 2 . I denotes the identity matrix of appropriate dimension. In block matrices, the symbol stands for the terms deduced by symmetry. ⊕ denotes the Minkowski sum. . s denotes the s-norm, [x, x] is an interval with lower bound x and upper bound x. Arguments are omitted when their meaning is clear.

Preliminaries and Problem Formulation

Properties of Zonotopes

We recall some useful technical materials for zonotopic observer design.

Definition 1 (Zonotope). A zonotope c z , R z ⊂ R n with the center c z ∈ R n and the generator matrix R z ∈ R n×p is a polytopic set defined as a linear image of the unit hypercube

[-1, 1] n : c z , R z = {c z + R z s, s ∞ ≤ 1} .
We denote a centered zonotope as R z = 0, R z . Any permutation of the columns of R z leaves it invariant.

Definition 2 (Minkowski Sum). Considering two sets A and B, their Minkowski sum is a set defined as

A ⊕ B = {a + b : a ∈ A, b ∈ B} .
The Minkowski sum of two zonotopes Z 1 = c z1 , R z1 and Z 2 = c z2 , R z2 is defined as

Z 1 ⊕ Z 2 = c z1 + c z2 , R z1 R z2 . Definition 3 (Radii of Zonotopes). Let W ∈ R n×n is a positive definite matrix. The weighted Frobenius radius (F W -radius) of the zonotope c, R ⊂ R n is the weighted Frobenius norm of R, i.e., c, R F,W = R F,W . The F -radius of the zonotope c, R is the Frobenius norm of R, i.e., c, R F = R F . Note that R F,W = R F for W = I. Property 1 (Linear Image). The linear image of a zonotope Z = c, R by a compatible matrix L is L c, R = Lc, LR .
Property 2 (Zonotope Inclusion [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]). Consider a family of zonotopes represented by Z = c, R ⊂ R n , with a vector c ∈ R n and an interval matrix R ∈ R n×m , a zonotope inclusion indicated by (Z) is defined as

(Z) = c, mid(R), S ,
where S is a diagonal matrix that satisfies

S ii = m j=1 diam(R ij ) 2 ,
for ∀i ∈ I n , with mid(.) and diam(.) are the center and diameter of interval matrix, respectively.

Definition 4 (Interval Hull). Given a zonotope Z = c, R , the interval hull rs(R) is the smallest aligned box that contains Z such that the inclusion property holds where rs(R) is a diagonal matrix whose diagonal elements are rs(R

) ii = r j=1 R ij , for ∀i ∈ I n .
Property 3 (Reduction Operator). A reduction operator denoted ↓ q permits to reduce the number of generators of a zonotope c, R to a fixed number q while preserving the inclusion property c, R ⊂ c, ↓ q {R} . A simple yet efficient solution to compute ↓ q {R} is given in [START_REF] Combastel | Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence[END_REF]. It consists in sorting the columns of R on decreasing Euclidean norm and enclosing the influence of the smaller columns only into an easily computable interval hull, so that the resulting matrix ↓ q {R} has no more than q columns.

Problem Statement

We consider a class of nonlinear systems of the form

x k+1 = Ψ(x k , u k ) + E ω ω k , y k = Cx k + E υ υ k , (1) 
with x ∈ D x and u ∈ D u . For system (1), x ∈ R nx is the state, u ∈ R nu is the control input, y ∈ R ny is the system output, ω ∈ R nω is the disturbance input, and υ ∈ R nυ is the process noise. The nonlinear function Ψ(•) ∈ R nx×nu is differentiable with respect to the state x. Moreover, the constant matrices C, E ω and E υ are with appropriate dimensions. Inspired by the TS fuzzy modeling with nonlinear consequents [START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF][START_REF] Coutinho | A multiplepfarameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF], we reformulate system (1) in the form

x k+1 = A(ξ k )x k + τ (ξ k , u k ) + G(ξ k )φ(x k , u k ) + E ω ω k , y k = Cx k + E υ υ k , (2) 
For the nonlinear system (2), we assume that the premise variable ξ k ∈ R n ξ can be measured, i.e., ξ k = h(z k ) with h(•) : R nz → R n ξ and the vector z k contains the elements of the output vector y k , which are not corrupted by the noise υ k . The nonlinear function φ(x k , u k ) is differentiable with respect to the state x k . Note that the matrix-valued functions A(ξ k ) and G(ξ k ), and the vector-valued function τ (ξ k , u k ) are measurable, whereas the elements of φ(x k , u k ) cannot be measured from the output. Applying the sector nonlinearity approach [14, Chapter 2], the nonlinear system (2) can be exactly expressed by r fuzzy IF-THEN rules in the compact set D x with local nonlinear consequents [START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF]:

RULE R i : IF ξ 1k is M i 1 and . . . and ξ pk is M i p (3) THEN x k+1 = A i x k + τ (ξ k , u k ) + G i φ(x k , u k ) + E ω ω k y k = Cx k + E υ υ k
where (A i , G i ) are known constant matrices with appropriate dimensions, R i denotes the ith fuzzy inference rule. M i j , with i ∈ I r and j ∈ I p , is the fuzzy set. The fuzzy membership functions are given by

h i (ξ k ) = p j=1 µ i j (ξ jk ) r i=1 p j=1 µ i j (ξ jk ) , ∀i ∈ I r ,
where µ i j (ξ jk ) represents the membership grade of ξ jk in the respective fuzzy set M i j . Note that the MFs satisfy the following convex sum property:

r i=1 h i (ξ k ) = 1, 0 ≤ h i (ξ k ) ≤ 1, ∀i ∈ I r . (4) 
Let H be the set of the membership functions satisfying (4), i.e., h

= [h 1 (ξ k ), h 2 (ξ k ), . . . , h r (ξ k )] ∈ H. Note that h + = [h 1 (ξ k+1 ), h 2 (ξ k+1 ), . . . , h r (ξ k+1 )] ∈ H.
Using the centerof-gravity method for defuzzification, the TS fuzzy system (3) can be represented in the compact form

x k+1 = A(h)x k + τ (ξ k , u k ) + G(h)φ(x k , u k ) + E ω ω k y k = Cx k + E υ υ k (5) 
where

A(h) G(h) = r i=1 h i (ξ k ) A i G i .
Remark 1. Note that all the unmeasurable premise variables of system (1) are isolated in the nonlinear term φ(x k , u k ) in [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF].

The following assumptions are considered for system [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF].

Assumption 1. The nonlinear function φ(x k , u k ) satisfies the following condition:

θ ij ≤ ∂φ i ∂x j (x, u) ≤ θ ij , x ∈ D x , u ∈ D u , (6) 
where

θ ij = min µ∈Dx×Du ∂φ i ∂x j (µ) , θ ij = max µ∈Dx×Du ∂φ i ∂x j (µ) , for ∀(i, j) ∈ I n φ × I nx .
Assumption 2. The unknown but bounded uncertainties ω k and υ k belong to the convex and compact sets, defined by the following centered zonotopes:

ω k ∈ W . = R ω , υ k ∈ V . = R υ , for k ≥ 0, (7) 
where R ω ∈ R nω×nω and R υ ∈ R nυ×nυ are respectively generator matrices of the sets W and V.

Assumption 3. The initial state x 0 belongs to the zonotopic set X 0 = c 0 , R 0 , where c 0 ∈ R nx denotes the center and R 0 ∈ R nx×r R 0 is the non-empty generator matrix of the initial zonotope X 0 .

For the estimation of the uncertain nonlinear system (2), we consider the following Luenberger observer structure:

xk+1 = A(h)x k + π(ξ k , xk , u k ) + L(h)(y k -ŷk ), ŷk = C xk , (8) 
where

π(ξ k , xk , u k ) = τ (ξ k , u k ) + G(h)φ(x k , u k )
, xk and ŷk are respectively the state estimation and the output prediction.

The MF-dependent observer gain L(h) ∈ R nx×ny is to be designed. Let us define the state estimation error as

xk = x k -xk . (9) 
Then, the dynamics of the state estimation error can be obtained from ( 2) and ( 8) as follows:

xk+1 = Â(h)x k + G(h)∆ φ + E ω ω k -L(h)E υ υ k , (10) 
where

Â(h) = A(h)-L(h)C, ∆ φ = φ(x k , u k )-φ(x k , u k ). ( 11 
)
The following differential mean value theorem is useful to deal with the mismatching term ∆ φ , which has caused a major technical challenge for TS fuzzy observer design [START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF].

Lemma 1 ([33]). If function f (x) is differentiable on co(a, b),
where f (x) : R nx → R q and a, b ∈ R nx , then, there exists constant vectors s i ∈ co(a, b), s i = a and s i = b for ∀i ∈ I q , such that

f (a)-f (b) =   q i=1 n j=1 µ q (i)µ nx (j) ∂f i ∂x j (s i )   (a-b). (12)
Note that the differential mean value theorem has been also exploited in the literature for different TS observer designs [START_REF] Ichalal | How to cope with unmeasurable premise variables in takagi-sugeno observer design: Dynamic extension approach[END_REF][START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF][START_REF] Nguyen | Takagi-Sugeno fuzzy observer design for nonlinear descriptor systems with unmeasured premise variables and unknown inputs[END_REF].

Applying Lemma 1 to the nonlinear function φ(x, u), there exists a constant vector ši ∈ co(x, x), for ∀i ∈ I n φ , such that

∆ φ = Φ(θ) (x -x) , (13) 
with

Φ(θ) = n φ i=1 nx j=1 µ n φ (i)µ nx (j)θ ij , θ ij = ∂φ i ∂x j (š i , u),
for ∀(i, j) ∈ I n φ × I nx . For simplicity, we denote

θ = θ 11 , . . . , θ 1nx , . . . , θ n φ nx (14) 
Due to the boundedness condition (6), the parameter vector θ belongs to a bounded convex set S φ , whose the set of 2 n φ nx vertices is given by

V φ = {θ = θ 11 , . . . , θ 1nx , . . . , θ n φ nx : θ ij ∈ {θ ij , θ ij }}.
The state-bounding observer corresponding to the nonlinear system (2) can be obtained as a zonotope Xk = c x k , R x k using the Luenberger-type observer [START_REF] Le | Zonotopes: From Guaranteed State-Estimation to Control[END_REF] and Proposition 1 when bounded uncertainties and set-zonotopic representation are considered.

Proposition 1 (Zonotopic Observer Structure). Consider system (2) with Assumptions 1-3 and the Luenberger observer structure [START_REF] Le | Zonotopes: From Guaranteed State-Estimation to Control[END_REF]. The center c x k and shape matrix R x k of Xk can be computed recursively as

c x k+1 = Â(h)c x k + τ (ξ k , u k ) + G(h)φ(c x k , u k ) + L(h)y k , R x k+1 = Â(h) Rx k G(h)R θ k E ω R ω -L(h)E υ R υ , (15) 
where Rx k =↓ q Rx k . Moreover, the state inclusion property

x k ∈ c x k , R
x k in Property 2 holds for all k ≥ 0. Furthermore, the matrix R θ k indicates the effect of the mismatching nonlinear term ∆ φ , whose computational procedure is detailed later in Remark 2.

Proof. Assume x k ∈ c x k , R x k , ω k ∈ 0, R ω and υ k ∈ 0, R υ , for all k ≥ 0,
where the inclusion property is preserved by using the reduction operator, i.e., x k ∈ c x k , Rx k . Therefore, the state observer (8) can be formulated using the zonotopic representation as xk+1 ∈ c x k+1 , R x k+1 , with

c x k+1 , R x k+1 = Â(h)c x k , Â(h) Rx k ⊕ L(h)y k , 0 ⊕ τ (ξ k , u k ), 0 ⊕ G(h)φ(x x k , u k ), G(h)R θ k ⊕ 0, E ω R ω ⊕ 0, -L(h)E υ R υ . (16) 
Using the Minkowski sum and Property 1, c x k+1 and R x k+1 in ( 16) can be expressed as in (15), where the center c x k+1 can be interpreted as a classical punctual state estimate of the unknown state x k and the shape matrix R x k+1 characterizes the zonotopic enclosure of the classical observation error.

Note from the expression (16) that the two terms L(h)y k , 0 and τ (ξ k , u k ), 0 have no effect on the generator matrix R x k+1 and only alter the center matrix c x k+1 of the propagating zonotope c x k+1 , R x k+1 . Considering the state estimation error dynamics (10), the zonotopic set bounding the state estimation error can be also recursively obtained as

xk+1 ∈ R x k+1 , (17) 
with

R x k+1 = Â(h) Rx k G(h)R θ k E ω R ω -L(h)E υ R υ .
Remark 2. The matrix R θ k represents the effect of the mismatching nonlinear term ∆ φ on the estimation error. Note that R θ k is required to obtain the zonotopic sets c x k , R x k and R x k+1 . Using the boundedness condition ( 6) and the zonotope inclusion property, Algorithm 1 provides a procedure to recursively compute R θ k at each time step k. We denote [Φ(θ)] the interval matrix derived from Φ(θ) in (13), with θ ∈ S φ , [x k ] the interval vector derived from the upper and lower bounds of each element of the vector xk , and product([Φ(θ)] , [x k ]) their interval product. 

xk(i) = -rs(R x k ) i , xk(i) = +rs(R x k ) i 6: compute R θ k = product([Φ(θ)] , [x k ]) 7: compute (Z k ) = R θ k with Z k = R θ k using Property 2 8: extract R θ k from (Z k ) 9: end for
The estimation problem is now to design the MF-dependent observer gain L(h) for the state bounding observer (15).

Zonotopic Observer Design

This section presents two approaches to design the observer gain. The first approach is based on the minimization of the F -radius of a zonotope whereas an H ∞ -based approach is used for the second design.

Criterion-Based Observer Design

As can be seen from Proposition 1, the zonotopic statebounding observer (15) is parameterized by means of the MFdependent observer gain L(h) at each time instant k. According to [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF][START_REF] Combastel | Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence[END_REF], the size of the state-bounding zonotope Xk = c x k , R x k can be minimized via its F -radius. The following theorem provides a method to compute L(h) for this purpose.

Theorem 1. Consider the nonlinear TS fuzzy system (5) and its associated Luenberger-type observer [START_REF] Le | Zonotopes: From Guaranteed State-Estimation to Control[END_REF]. The size of the zonotope defined in (15) can be optimized by using the following observer gain:

L(h) = Ψ(h)Ω -1 k . ( 18 
)
with

Ψ(h) = A(h) Pk C , Pk = R x k R x k , Ω k = C Pk C + E υ R υ R υ E υ .
Proof. According to [START_REF] Combastel | Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence[END_REF], minimizing the F -radius and F Wradius of a zonotope is equivalent to minimizing the trace of its covariance. Therefore, minimizing the F -radius of the zonotope Xk+1 = c x k+1 , R x k+1 defined in ( 15) is equivalent to minimizing the trace of its covariation Pk+1 = R x k+1 R x k+1 , i.e.,

J = R x k+1 2 F = tr(R x k+1 R x k+1 ) = tr( Pk+1 ), (19) 
where J denotes the Frobenius radius and P is the covariance of the zonotope matrix R x . Similarly, minimizing the F W -radius of the zonotope Xk+1 is equivalent to minimizing the criterion, i.e.,

J W = R x k+1 2 F,W = tr( W Pk+1 ), (20) 
where J W denotes the weighted Frobenius radius and W P is the weighted function covariance of the zonotope matrix R x k . Note that W is any positive definite weighting matrix. It follows from (15) that

Pk+1 = (A(h) -L(h)C) Pk (A(h) -L(h)C) + Q G (h) + Q ω + L(h)Q υ L(h) , (21) 
where 21), the criterion J W in (20) can be rewritten as

Q G (h) = G(h)R θ k R θ k G(h) , Q ω = E ω R ω R ω E ω and Q υ = E υ R υ R υ E υ . From (
J W =tr( W (A(h) -L(h)C) Pk (A(h) -L(h)C) + W Q G (h) + W Q ω + W L(h)Q υ L(h) ). (22)
Then, the optimal value of the observer gain L(h) is determined such that ∂J W ∂L(h) = 0. Considering [START_REF] Zhong | An LMI approach to design robust fault detection filter for uncertain LTI systems[END_REF], this latter yields

∂ L(h) tr( W L(h)(C Pk C + Q υ )L(h) ) -2∂ L(h) tr( W A(h)P k C L(h) ) = 0. (23) 
Following the same arguments on matrix calculus as in [START_REF] Combastel | Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence[END_REF], the equality ( 23) can be rewritten as

Ω k L(h) W = CP k A(h) W . (24) 
By right multiplication with W -1 and transposition, it follows from (24) that

L(h)Ω k = A(h) Pk C , (25) 
which, in turn, leads to the observer gain expression in [START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF].

Remark that the observer gain expression ( 18) is completely independent to the choice of the weighting matrix W 0.

H ∞ -Based Observer Design

The key goal when constructing the state-bounding observer is to reduce the influence of unknown uncertainties/disturbances. To this end, we consider the H ∞ -based technique to design the observer gain L(h) for the zonotopic observer in Proposition 1. The following lemma is useful for H ∞ observer design.

Lemma 2 (Relaxation Lemma [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF]). For h, h + ∈ H, the MFdependent inequality

r i=1 r j=1 r q=1 h i (ξ k )h j (ξ k )h q (ξ k+1 )Π ijq 0, holds if Π ijq 0, i ∈ I r , 2 r -1 Π iiq + Π ijq + Π jiq 0, i, j, q ∈ I r . (26) 
Note that other relaxation results with different degrees of complexity and/or conservatism can be found in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF].

For H ∞ observer design, the estimation error system (10) is rewritten as follows:

xk+1 = Â(h)x k + Ê(h)d k , (27) 
with

d k = ∆ φ ω k υ k and Ê(h) = G(h) E ω -L(h)E υ . (28) 
The following theorem presents sufficient conditions to design an TS fuzzy observer gain such that system (27) achieves a predefined H ∞ -gain level.

Theorem 2. Consider the state estimation error dynamics [START_REF] Jaimoukha | A matrix factorization solution to the H -/H∞ fault detection problem[END_REF] with the output performance vector z k = xk . If there exist positive definite matrices P i ∈ R nx×nx , symmetric matrices N i ∈ R nx×nx , matrices M i ∈ R nx×ny , for i ∈ I r , and a positive scalar γ, such that

Γ iiq 0, i, q ∈ I r , (29a) 2 r -1 Γ iiq + Γ ijq + Γ jiq 0, i, j, q ∈ I r , i = j, ( 29b 
)
where

Γ ijq =       P i -I 0 γI 0 0 γI 0 0 0 γI Γ 51 ij Γ 52 ij Γ 53 ij Γ 54 ij N i + N i -P q       , and Γ 51 ij = N i A j -M i C, Γ 52 ij = N i G j , Γ 53 ij = N i E ω , Γ 54 ij = -M i E υ .
Then, system (10) is stable with an H ∞ -gain from d k to z k is smaller than √ γ. Moreover, the MF-dependent observer gain can be computed as

L(h) = N (h) -1 M (h), (30) 
with

N (h) M (h) = r i=1 h i (ξ k ) N i M i .
Proof. Applying the relaxation result in Lemma 2, it follows that condition (29) implies the following inequality:

      P (h) -I 0 γI 0 0 γI 0 0 0 γI Γ 51 (h) Γ 52 (h) Γ 53 (h) Γ 54 (h) Γ 55 (h, h + )       0, ( 31 
) with Γ 51 (h) = N (h)A(h) -M (h)C, Γ 52 (h) = N (h)G(h), Γ 53 (h) = N (h)E ω , Γ 54 (h) = -M (h)E υ , Γ 55 (h, h + ) = N (h) + N (h) -P (h + ), P (h + ) = r q=1 h q (ξ k+1 )P q .
Using the definitions of Â(h) in (11) and Ê(h) in ( 28), inequality (31) can be rewritten in the following more compact form:

  P (h) -I 0 γI N (h) Â(h) N (h) Ê(h) Γ 55 (h, h + )   0. (32) 
Then, pre-and post-multiplying (32) by the following matrix

I 0 -Â(h) 0 I -Ê(h)
and its transpose, we obtain

Λ(h) -P (h) + I Ê(h) P (h + ) Â(h) Ê(h) P (h + ) Ê(h) -γI ≺ 0, ( 33 
)
with Λ(h) = Â(h) P (h + ) Â(h). Pre-and post-multiplying (33) with x k d k and its transpose, we obtain the following condition after some algebraic manipulations:

∆V k + z k z k -γd k d k < 0, (34) 
where

∆V k = V (x k+1 ) -V (x k )
is the variation of the fuzzy Lyapunov function candidate V (x k ) = x k P (h)x k along the solution of the estimation error system (10). Summing both sides of inequality (34) from 0 to the T f -th instant while assuming zero-initial condition, i.e., x 0 = 0, we have

V (x T f ) + T f k=0 (z k z k -γd k d k ) < 0. ( 35 
) Since V (x T f ) ≥ 0, it follows from (35) that z k 2 2 < γ d k 2 2 .
Then, the H ∞ -gain of system (10) is less than √ γ. This concludes the proof.

Remark 3. Note that a minimization of the H ∞ -gain performance level √ γ allows minimizing the effect of uncertain term d k on the state estimated error xk . Hence, to achieve the optimal MF-dependent observer gain L(h), we can solve the following LMI-based optimization problem:

min (γ,Pi,Mi,Ni), i∈Ir γ, (36) 
subject to inequalities [START_REF] Pourasghar | Robust zonotopic observer design: Avoiding unmeasured premise variables for Takagi-Sugeno fuzzy systems[END_REF].

Remark 4. The H ∞ design conditions in Theorem 2 or the optimization problem in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] are expressed in terms of LMI constraints, which can be efficiently solved with numerical solvers.

All the optimization problems in this paper are solved using the YALMIP toolbox [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization in Matlab[END_REF]. Moreover, all simulations are performed in a PC with CPU of Intel(R) Core(TM) i7-10610U 2.30GHz and 16.0GB memory.

Remark 5. In Sections 3.1 and 3.2, we propose methods to design appropriate observer gains to improve the estimation performance under the effects of uncertainties by reducing the size of the state bounding zonotopes. To this end, the F -radiusbased technique is used to compute a criterion-based observer gain in Theorem 1 while the H ∞ -based technique is exploited to develop the design conditions in Theorem 2. The key difference between Theorems 1 and 2 is as follows. The time-varying criterion-based observer gain ( 18) is directly computed with an online procedure, which may result in a heavy computational burden because the dimensions of R x k in (15) can be quite large. However, with Theorem 2 the decision matrices involved in the observer gain (30) can be computed offline, which can be more appropriate for many real-world settings.

Application to Fault Detection

For fault detection purposes, we compute the residual signal r k = y k -ŷk as follows:

r k = C xk + E υ υ k . (37) 
The logic of fault detection test is based on checking the consistency of the measurements with a fault-free model. Then, considering Proposition 1, the output prediction vector ŷk in (8) satisfies

ŷk ∈ c y k , R y k = Cc x k , C Rx k ⊕ 0, E υ R υ . (38) 
Hence, the center and the shape matrix of the obtained zonotope Ŷk = c y k , R y k are respectively given by

c y k =Cc x k , (39a) 
R y k = C Rx k E υ R υ . (39b) 
Moreover, since the zonotopic set representation is considered, the bounds of the residual signal r k in (37) can be also characterized by a zonotope. As a result, the zonotopic set R k = c r k , R r k of the residual signal r k of the nonlinear model ( 2) can be obtained using the observer (8) and Proposition 1 as

c r k = y k -Cc x k , R r k = -C Rx k -E υ R υ . (40) 
Then, the fault detection test can be done by checking if 0 / ∈ c r k , R r k at each time instant k.

Remark 6. The computational burden can be reduced by checking whether 0 is inside or not an aligned box

c r k , b(R r k ) enclos- ing the zonotope c r k , R r k , i.e., 0 / ∈ c r k , b(R r k ) , k ∈ N, (41) 
with b(R r k ) = diag(|R r | 1)
, where |.| is the element-by-element absolute value operator, 1 is a column vector of ones and diag(.) returns a diagonal matrix from a vector of diagonal elements [START_REF] Raka | Fault detection based on robust adaptive thresholds: A dynamic interval approach[END_REF]. If condition (41) holds, the existence of the fault is detected. Otherwise, the system is considered healthy. Algorithm 2 summarizes the fault detection test procedure using the proposed zonotopic TS observer.

Algorithm 2 Fault detection test using zonotopic observers 1: input: y k and τ (ξ k , u k ) 2: initialization: X 0 = c 0 , R 0 and [Φ(θ)] with θ ∈ S φ 3: for k = 1 : end do

4: compute R θ k 5: compute Xk = c x k , R x k , 6: compute Ŷk = c y k , R y k 7: compute R k = c r k , R r k 8: if 0 / ∈ c r k , b(R r k ) then 9:
f ault ← true k ←-k + 1 14: end for

Illustrative Results with an Autonomous Vehicle

Hereafter, the effectiveness of the proposed methods for zonotopic observer design is demonstrated an autonomous vehicle application. This example is selected to evaluate the estimation performance obtained with the criterion-based method and the H ∞ based approach. The results are also compared to the TS fuzzy observer obtained from the previous work [START_REF] Pourasghar | Robust zonotopic observer design: Avoiding unmeasured premise variables for Takagi-Sugeno fuzzy systems[END_REF]. Note that the H ∞ based approach proposed in this paper is referred to as non-quadratic design whereas the zonotopic observer design in [START_REF] Pourasghar | Robust zonotopic observer design: Avoiding unmeasured premise variables for Takagi-Sugeno fuzzy systems[END_REF] is referred to as quadratic design.

We consider the problem of state estimation and fault detection for an autonomous ground vehicle, whose schematic is depicted in Figure 1. The vehicle nonlinear dynamics in the horizontal plane can be described as follows [START_REF] Nguyen | Takagi-sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF]:

vx = T eng -C x v 2 x I e + v y r + F w , vy = F yf + F yr -C y v 2 y M -v x r, ṙ = l f F yf -l r F yr I z , (42) 
where v x is the vehicle longitudinal speed, v y is the lateral speed, r is the vehicle yaw rate, T eng is the torque input for the vehicle longitudinal dynamics, F yf is the cornering forces at the front tires, F yr is the cornering forces at the rear tires, and F w represents the impact of the longitudinal disturbance force.

The vehicle parameters are given in Table 1. Under normal driving conditions with small angle assumption [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF][START_REF] Nguyen | Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments[END_REF], the lateral tire forces F yf and F yr are proportional to the slip angles of each axle. Then, these forces can be approximated as

F yf = 2C f δ - v y -l f r v x , F yr = 2C r l r r -v y v x ( 43 
)
where δ is the front wheel steering angle. Considering (42) and (43), the nonlinear vehicle dynamics can be described as

ẋ = A(ξ)x + E v u + f v (ξ) + G v φ(x) + E ω ω, y = Cx, (44) 
where x = v x v y r is the vehicle state vector, u = T eng δ is the control input, ω = F w is the disturbance, and φ(x) = v 2 y is the unmeasured nonlinearity. The state-space matrices in system (44) are given by

A(ξ) =    0 r 0 0 - 2(C f +Cr) M vx 0 0 2(lrCr-C f l f ) Izvx 0    , ξ = 1 vx r , f v (ξ) =     - Cxv 2 x Ie 2(Crlr-C f l f )r M vx -v x r - 2(C f l 2 f +Crl 2 r )r Izvx     , G v =   0 - Cy M 0   , E v =    1 Ie 0 0 2C f M 0 2l f C f Iz    , E ω =   1 0 0   .
Taking into account the physical limitations during normal driving conditions [START_REF] Nguyen | Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments[END_REF], the compact set of the vehicle state is defined as For system (44), the vehicle speed v x and the yaw rate r can be directly measured, which is not the case of the lateral speed v y . Hence, the output equation is defined as

D x = v x ∈ [v x , v x ], v y ∈ [v y , v y ], r ∈ [r, r] . (45 
y = Cx, C = 1 0 0 0 0 1 . ( 46 
)
The uncertainty ω is assumed unknown but bounded, which belongs to a compact set defined by the following zonotope:

ω ∈ W = c ω , R ω , (47) 
where c ω denotes the center of the set W with its generator matrix R ω ∈ R nω×nω . Using the Euler's discretization method with the sampling time T s = 0.01 [s], the discrete-time counterpart of the vehicle model ( 44) is given by

x k+1 = A(ξ k )x k + E d u k + f (ξ k ) + Gφ(x k ) + E ω ω k , y k = Cx k , (48) 
with

A(ξ k ) = T s A v (ξ k ) + I, E d = T s E v , f (ξ k ) = T s f v (ξ k ), G = T s G v . Note that A(ξ) = A(V x , r) with V x = 1 vx ∈ V x , V x .
Using the sector nonlinearity approach [14] with the premise vector ξ k ∈ R 2 , the following four-rule TS fuzzy model of the system (48) can be derived:

x k+1 = 4 i=1 h i (ξ k )A i x k + E d u k + f (ξ k ) + Gφ(x k ) + E ω ω k , y k = Cx k , (49) 
where the local matrices A i , for i ∈ I 4 , are given by

A 1 = A(V x , r), A 2 = A(V x , r), A 3 = A(V x , r), A 4 = A(V x , r).
The corresponding membership functions h i (ξ), for i ∈ I 4 , are defined as

h 1 (ξ) = Ω v1 Ω r1 , h 2 (ξ) = Ω v1 Ω r2 , h 3 (ξ) = Ω v2 Ω r1 , h 4 (ξ) = Ω v2 Ω r2 , (50) 
with

Ω v1 = V x -V x V x -V x , Ω r1 = r -r r -r , Ω v2 = V x -V x V x -V x , Ω r2 = r -r r -r .
For illustrations, we consider a driving scenario with the profiles of the engine torque and the steering angle as presented in Figure 2. The state estimation results can be obtained with both the criterion-based approach in Section 3.1 or the H ∞ approach in Section 3.2. Figure 3 depicts the achieved state estimation result from the system's healthy operating simulation. Note that for the studied model of the autonomous ground vehicle, the minimum feasible solution of γ is found as γ = 0.630 in the case of the proposed method in Section 3.2. The projection of the computed state-bounding zonotopes into the state space is presented in Figure 4 to make the study of the obtained results easier. As can be seen in Figure 4, when the system is operates in healthy modes, all three different methods can offer a satisfactory estimation performance where the actual values of the states are located inside of the computed upper and lower bounds. Observe also that the non-quadratic design method provide a tighter estimation bounds compared to those of the two other ones. The zonotope R θ k bounding ∆ θ , computed by Algorithm 1, is illustrated in Figure 5. For the aim of fault detection analysis, the occurrence of an additive step (abrupt) actuator fault is simulated at time instant k = 15 and it remains in the system until k = 30. The obtained result for the generated residual zonotope and its projection to the residual space are shown in Figures 6 and7, respectively. As can be seen by looking at the first 15 time instants of the Figure 6, where the system is only affected by the uncertain terms, the observer can properly follow the system using three observer gains and considered threshold (here zero) is inside of the generated zonotopes. But, after fault occurrence at k = 15, the zonotopes are affected by the fault and this effect moves the residual zonotopes, and consequently, existence of fault can be detected since zero is not included within the boundaries. The same point can be seen in Figure 7.

Conclusions

This paper has proposed new observer designs for a class of uncertain nonlinear systems represented in TS fuzzy models. As a novelty, the observer gains can be online optimized using the F -radius based technique or offline computed by solving an LMI-based optimization problem derived from H ∞ filtering technique. In both proposed methods, the influence of all possible uncertain terms and unmeasured premise variables are considered using zonotopic set representation. We also provide a method to take into account the impact of unmeasurable premise variables in the structure of state-bounding observers. The case study section has been used to compare the observer with different gains applied to a autonomous ground vehicle, i.e., when it is solely estimated considering the robustness against uncertainties. Based on the obtained results, the proposed design methods can provide robust observers for a large class of uncertain nonlinear systems. Furthermore, in the presence of faults, the performance of the proposed zonotopic observers is satisfactory. The offline H ∞ design of observer gains can inspire the real-time implementation of the proposed method into an autonomous ground vehicle available at our laboratory as a future research project. Another promising future work focuses on designing robust TS fuzzy observers while guaranteeing a specified fault sensitivity performance for fault detection purposes, e.g., using multiobjective H -/H ∞ specifications with a priori information on the finite-frequency of the faults. 
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 1 Figure 1: Schematic of a two degrees-of-freedom vehicle model.

  ) where v x = 5 [m/s], v x = 30 [m/s], v y = -1.5 [m/s], v y = 1.5 [m/s], r = -0.55 [rad/s] and r = 0.55 [rad/s].
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 2 Figure 2: Profiles of the vehicle control inputs.

  (a) Quadratic method. (b) Non-quadratic method.(c) Criterion-based method.

Figure 3 :Figure 4 :

 34 Figure 3: State-bounding zonotopes obtained with three observer design methods.
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 56 Figure 5: Upper and lower bounds of the zonotope bounding ∆ φ .

Table 1 :

 1 Vehicle parameters.

	Parameter Description	Value
	M	Vehicle mass	1476 [kg]
	l f	Distance from gravity center to front axle	1.13 [m]
	l r	Distance from gravity center to rear axle	1.49 [m]
	I e	Effective longitudinal inertia	442.8 [kgm 2 ]
	I z	Vehicle yaw moment of inertia	1810 [kgm 2 ]
	C f	Front cornering stiffness	57000 [N/rad]
	C r	Rear cornering stiffness	59000 [N/rad]
	C		

x Longitudinal aerodynamic drag coefficient 0.35 [-] C y Lateral aerodynamic drag coefficient 0.45 [-]
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