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Zonotopic Observer Designs for Uncertain Takagi-Sugeno Fuzzy Systems
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Abstract

This paper addresses the zonotopic observer design for nonlinear systems affected by uncertainties, i.e., state disturbances and
measurement noises using Takagi-Sugeno (TS) fuzzy technique. The system uncertainties are considered as unknown but bounded,
which are handled via a set-membership framework. For state estimation purposes, we develop an algorithm to recursively compute
the zonotope containing the mismatching nonlinear term caused by unmeasured nonlinearities. Then, two methods are proposed
to design the zonotopic observer gains. The first method is based on the minimization of the F−radius of zonotopes, for which
the membership-function-dependent observer gain must be completely computed online. For the second method, an H∞ approach
is used together with a nonquadratic Lyapunov function to determine the observer gain. Then, the zonotopic observer design is
reformulated a convex optimization problem under linear matrix inequalities (LMIs), which can be effectively solved with numerical
solvers. An autonomous vehicle application is provided to demonstrate and analyze the effectiveness of both proposed methods.

Keywords: Takagi-Sugeno fuzzy systems, fuzzy observers, unmeasured premise variables, state estimation, uncertainty, linear
matrix inequality (LMI).

1. Introduction

Engineering systems have become increasingly complex in
recent years with emerging technologies. Then, there is a surge
of interest in the performance analysis of an automatic control
system, as well as the examination of its safety and reliability
[1]. One of the major issues in control theory is the state esti-
mation problem, which is related to the objective of enhancing
system performance and plays a crucial role in the Fault De-
tection (FD) of dynamical systems [2, 3]. The state estimation
problem is especially difficult when dealing with nonlinear sys-
tems consisting of hundreds of constitutive elements.

In general, state estimation approaches are divided into two
categories: i) model-based and ii) data-based. The former class
comprises methods that utilize the mathematical model of the
plant to monitor the system behaviors [3], whereas the later
class mainly includes those methods using statistical methods,
neural networks, fuzzy logic, etc [4]. The quality of the math-
ematical model is crucial for model-based methods. However,
in the presence of model uncertainties, e.g., unknown distur-
bances and noises, there is a non-negligible mismatch between
the real process behavior and its mathematical model. As a re-
sult, the influence of uncertainty and noise/disturbance is an es-
sential factor to consider when monitoring system behavior us-
ing model-based state estimation techniques. Several approaches
have been developed in the literature to explicitly include uncer-
tainties in the mathematical model, which may be divided into
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two basic paradigms: i) stochastic approaches, in which the un-
certainties are represented by random variables [5, 6]; ii) deter-
ministic approaches, in which the uncertainties are considered
as unknown but bounded variables belonging to different types
of sets, e.g., interval boxes, polytopes, ellipsoids, and zonotopes
[7–10]. According to [11], polytopes provide tighter enclosures
than interval boxes. However, the main drawback of using gen-
eral polytopes is related to the complexity of vertices enumera-
tion with respect to the space dimension. Using zonotopic rep-
resentations, basic set operations can be reduced to simple ma-
trix calculations. Despite the complexity of dealing with com-
plex systems composed of interconnected subsystems, as well
as the large number of different sensors and actuators used in
these systems, employing a zonotopic set-based approach can
significantly reduce the computational load for monitoring sys-
tem performance. This fact has recently motivated the use of
zonotopes for modeling the effect of uncertainties [12].

Most of real-world systems are with nonlinear behaviors to
which the established linear system theory cannot be directly
applied. Hence, various control and estimation approaches have
been reported for nonlinear systems. Among these, the Takagi-
Sugeno (TS) fuzzy paradigm is one of the most popular tech-
niques to describe a large class of nonlinear systems [13–15].
First, they can be used to approximate any smooth nonlinear
system with any given accuracy. In particular, using the sector
nonlinearity approach, we can derive an exact TS fuzzy repre-
sentation of a given nonlinear model within a compact set of
the state variables. Second, thanks to its polytopic structure,
TS fuzzy representation allows for some possible extensions
of linear control techniques to nonlinear systems. Recent ad-
vancements have rekindled interests in monitoring the behavior
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of nonlinear systems using TS fuzzy-model-based observers.
TS fuzzy observers are based on TS fuzzy modeling of nonlin-
ear systems, which are usually composed of premise variables,
i.e., system nonlinearities that can be measurable or unmeasur-
able [16–18]. In the case of designing an TS fuzzy observer
for a nonlinear system with all premise variables being measur-
able, the main goal will be to reduce the design conservatism
by using different Lyapunov candidate functions and/or intro-
ducing slack variables [19]. In this case, the obtained results
can be only applied to a limited class of TS fuzzy systems.
Therefore, dealing with unmeasured premise variables in TS
fuzzy observer design is essential in practice. Moreover, distur-
bances and/or modeling uncertainties are unavoidable in most
of engineering applications. Unfortunately, the observer design
for TS fuzzy systems subject to both uncertainties and unmea-
sured premise variables still remains open, which motivates the
present work.

Furthermore, in model-based approaches, FD is based on
checking/comparing the consistency of observed behavior from
measured outputs utilizing sensors with anticipated behavior
derived using the model [2]. This consistency test generates
the residual by computing the difference between the model’s
performance predicted values and the actual measured values
received from the sensors [2]. The existence of fault is then de-
tected by comparing the residual to a threshold value that takes
uncertainty into account, such as parameter uncertainties, mea-
surement noise, state disruption, etc. [20]. In practice, the ex-
istence of the defect is shown if the residual is greater than the
specified threshold. Otherwise, the system is presumed to be
in healthy functioning [21]. Aside from the problem of gen-
erating detection thresholds via uncertainty propagation (either
using stochastic or deterministic approaches), another critical
issue when using observers is determining how to compute the
observer gain to be as robust as possible against the inevitable
impact of uncertainties. A substantial amount of research has
been reported on the examination of various methods of com-
puting the gain to be insensitive to uncertainty, such as H∞
optimization and linear matrix inequality (LMI) based method-
ologies [22]. Recent studies, however, suggest that the filter
design approach that simply addresses the rejection of the in-
fluence of uncertainties is useless, since the sensitivity to the
fault must be included in FD filter design [23, 24]. Then, re-
search has tended to focus on multiobjective FD design, such
as H−/H∞ [24]. Indeed, the lowest non null singular value
of the transfer function matrix from fault to residual at ω = 0
or over a particular frequency range accounts for the worst case
of fault sensitivity [25, 26]. Then, an increasing body of re-
search has examined this multiobjective design as an optimiza-
tion problem, e.g., H∞/H∞, H2/H2 problems [27, 28].

The key goal of the observer design is to determine suit-
able observer gains such that satisfactory robustness property
with respect to these effects can be achieved. Different meth-
ods have been proposed to minimize the uncertainty effects
[23]. In this regard, this paper presents two methods to design
zonotopic observers for uncertain TS fuzzy systems with un-
measured premise variables. For observer design, the influence
of the unknown but bounded uncertainty and the mismatching

nonlinear term caused by unmeasurable nonlinearities are dealt
with via a zonotopic approach, which reduces set operations
to simple matrix calculations. Then, the first observer design
method is based on the minimization of the F−radius of the TS
fuzzy state bounding observer. For this method, the observer
gain, derived from an optimality condition, is computed online.
The second method is based on the use of H∞ filtering tech-
nique. Hence, the computation of the observer gain is reformu-
lated as an optimization problem under LMI constraints. The
material in this paper was partially presented [29]. The new
contributions are summarized as follows.

• The technical proofs of both observer design methods
are given in detail. Moreover, a nonquadratic Lyapunov
function is exploited to offer more flexibility for the H∞
design method. Note that a common quadratic Lyapunov
function was used in [29].

• We take into account the structure information of the un-
measured nonlinearities, considered as unknown distur-
bances in [29], in the observer design. To this end, a
new algorithm to compute the zonotopic bounds of the
mismatching nonlinear term stemmed from unmeasured
nonlinearities is proposed.

• The proposed zonotopic observer designs are extended
for fault detection of TS fuzzy systems. Moreover, a
real-world application on nonlinear vehicle dynamics es-
timation and fault detection is included to illustrate the
effectiveness and the usefulness of the new results.

The structure of the paper is as follows. Some preliminaries
and problem formulation are given in Section 2. The zonotopic
observer design and the computation of observer gain optimiz-
ing a set-based modeling for achieving the robustness against
uncertainties are proposed in Section 3. In Section 4, the ef-
fectiveness of the proposed zonotopic observer designs is il-
lustrated with an autonomous vehicle application. Finally, the
conclusions are drawn in Section 5.

Notation. The set of nonnegative integers is denoted by Z+

and Ir = {1, 2, . . . , r} ⊂ Z+. For i ∈ Ir, we denote ξr(i) =

[0, . . . , 0,

ith︷︸︸︷
1 , 0, . . . , 0]> ∈ Rr a vector of the canonical basis

of Rr. For two vectors x, y ∈ Rn, the convex hull of these
vectors is denoted as co(x, y) = {λx+ (1− λ)y : λ ∈ [0, 1]}.
For a matrix X , X> denotes its transpose, X � 0 means X
is symmetric positive definite. diag(X1, X2) denotes a block-
diagonal matrix composed of X1, X2. I denotes the identity
matrix of appropriate dimension. In block matrices, the symbol
? stands for the terms deduced by symmetry. ⊕ denotes the
Minkowski sum. ‖.‖s denotes the s-norm, [x, x] is an interval
with lower bound x and upper bound x. Arguments are omitted
when their meaning is clear.

2. Preliminaries and Problem Formulation

2.1. Properties of Zonotopes
We recall some useful technical materials for zonotopic ob-

server design.
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Definition 1 (Zonotope). A zonotope 〈cz, Rz〉 ⊂ Rn with the
center cz ∈ Rn and the generator matrix Rz ∈ Rn×p is a
polytopic set defined as a linear image of the unit hypercube
[−1, 1]n:

〈cz, Rz〉 = {cz +Rzs, ‖s‖∞ ≤ 1} .

We denote a centered zonotope as 〈Rz〉 = 〈0, Rz〉. Any per-
mutation of the columns of Rz leaves it invariant.

Definition 2 (Minkowski Sum). Considering two setsA and B,
their Minkowski sum is a set defined as

A⊕ B = {a+ b : a ∈ A, b ∈ B} .

The Minkowski sum of two zonotopes Z1 = 〈cz1 , Rz1〉 and
Z2 = 〈cz2 , Rz2〉 is defined as

Z1 ⊕Z2 =
〈
cz1 + cz2 ,

[
Rz1 Rz2

]〉
.

Definition 3 (Radii of Zonotopes). LetW ∈ Rn×n is a positive
definite matrix. The weighted Frobenius radius (FW−radius)
of the zonotope 〈c,R〉 ⊂ Rn is the weighted Frobenius norm
of R, i.e., ‖ 〈c,R〉 ‖F,W = ‖R‖F,W . The F−radius of the
zonotope 〈c,R〉 is the Frobenius norm of R, i.e., ‖ 〈c,R〉 ‖F =
‖R‖F . Note that ‖R‖F,W = ‖R‖F for W = I .

Property 1 (Linear Image). The linear image of a zonotope
Z = 〈c,R〉 by a compatible matrix L is L�〈c,R〉 = 〈Lc, LR〉.

Property 2 (Zonotope Inclusion [30]). Consider a family of
zonotopes represented by Z = 〈c,R〉 ⊂ Rn, with a vector
c ∈ Rn and an interval matrixR ∈ Rn×m, a zonotope inclusion
indicated by � (Z) is defined as

� (Z) =
〈
c,
[
mid(R), S

]〉
,

where S is a diagonal matrix that satisfies

Sii =

m∑
j=1

diam(Rij)

2
,

for ∀i ∈ In, with mid(.) and diam(.) are the center and diam-
eter of interval matrix, respectively.

Definition 4 (Interval Hull). Given a zonotope Z = 〈c,R〉, the
interval hull rs(R) is the smallest aligned box that contains Z
such that the inclusion property holds where rs(R) is a diagonal
matrix whose diagonal elements are rs(R)ii =

∑r
j=1 ‖Rij‖,

for ∀i ∈ In.

Property 3 (Reduction Operator). A reduction operator de-
noted ↓q permits to reduce the number of generators of a zono-
tope 〈c,R〉 to a fixed number q while preserving the inclusion
property 〈c,R〉 ⊂ 〈c, ↓q {R}〉. A simple yet efficient solution
to compute ↓q {R} is given in [31]. It consists in sorting the
columns of R on decreasing Euclidean norm and enclosing the
influence of the smaller columns only into an easily computable
interval hull, so that the resulting matrix ↓q {R} has no more
than q columns.

2.2. Problem Statement
We consider a class of nonlinear systems of the form

xk+1 = Ψ(xk, uk) + Eωωk,

yk = Cxk + Eυυk,
(1)

with x ∈ Dx and u ∈ Du. For system (1), x ∈ Rnx is the state,
u ∈ Rnu is the control input, y ∈ Rny is the system output,
ω ∈ Rnω is the disturbance input, and υ ∈ Rnυ is the process
noise. The nonlinear function Ψ(·) ∈ Rnx×nu is differentiable
with respect to the state x. Moreover, the constant matrices
C, Eω and Eυ are with appropriate dimensions. Inspired by
the TS fuzzy modeling with nonlinear consequents [18, 32], we
reformulate system (1) in the form

xk+1 = A(ξk)xk + τ(ξk, uk) +G(ξk)φ(xk, uk) + Eωωk,

yk = Cxk + Eυυk, (2)

For the nonlinear system (2), we assume that the premise vari-
able ξk ∈ Rnξ can be measured, i.e., ξk = h(zk) with h(·) :
Rnz → Rnξ and the vector zk contains the elements of the out-
put vector yk, which are not corrupted by the noise υk. The
nonlinear function φ(xk, uk) is differentiable with respect to
the state xk. Note that the matrix-valued functions A(ξk) and
G(ξk), and the vector-valued function τ(ξk, uk) are measur-
able, whereas the elements of φ(xk, uk) cannot be measured
from the output. Applying the sector nonlinearity approach [14,
Chapter 2], the nonlinear system (2) can be exactly expressed
by r fuzzy IF-THEN rules in the compact setDx with local non-
linear consequents [18]:

RULE Ri : IF ξ1k isMi
1 and . . . and ξpk isMi

p (3)

THEN

{
xk+1 = Aixk + τ(ξk, uk) +Giφ(xk, uk) + Eωωk

yk = Cxk + Eυυk

where (Ai, Gi) are known constant matrices with appropriate
dimensions, Ri denotes the ith fuzzy inference rule. Mi

j , with
i ∈ Ir and j ∈ Ip, is the fuzzy set. The fuzzy membership
functions are given by

hi(ξk) =

∏p
j=1 µ

i
j(ξjk)∑r

i=1

∏p
j=1 µ

i
j(ξjk)

, ∀i ∈ Ir,

where µij(ξjk) represents the membership grade of ξjk in the
respective fuzzy setMi

j . Note that the MFs satisfy the follow-
ing convex sum property:

r∑
i=1

hi(ξk) = 1, 0 ≤ hi(ξk) ≤ 1, ∀i ∈ Ir. (4)

Let H be the set of the membership functions satisfying (4),
i.e., h = [h1(ξk), h2(ξk), . . . , hr(ξk)]> ∈ H. Note that h+ =
[h1(ξk+1), h2(ξk+1), . . . , hr(ξk+1)]> ∈ H. Using the center-
of-gravity method for defuzzification, the TS fuzzy system (3)
can be represented in the compact form

xk+1 = A(h)xk + τ(ξk, uk) +G(h)φ(xk, uk) + Eωωk

yk = Cxk + Eυυk (5)

3



where [
A(h) G(h)

]
=

r∑
i=1

hi(ξk)
[
Ai Gi

]
.

Remark 1. Note that all the unmeasurable premise variables of
system (1) are isolated in the nonlinear term φ(xk, uk) in (5).

The following assumptions are considered for system (5).

Assumption 1. The nonlinear function φ(xk, uk) satisfies the
following condition:

θij ≤
∂φi
∂xj

(x, u) ≤ θij , x ∈ Dx, u ∈ Du, (6)

where

θij = min
µ∈Dx×Du

(
∂φi
∂xj

(µ)

)
, θij = max

µ∈Dx×Du

(
∂φi
∂xj

(µ)

)
,

for ∀(i, j) ∈ Inφ × Inx .

Assumption 2. The unknown but bounded uncertainties ωk
and υk belong to the convex and compact sets, defined by the
following centered zonotopes:

ωk ∈ W
.
= 〈Rω〉 , υk ∈ V

.
= 〈Rυ〉 , for k ≥ 0, (7)

where Rω ∈ Rnω×nω and Rυ ∈ Rnυ×nυ are respectively gen-
erator matrices of the setsW and V .

Assumption 3. The initial state x0 belongs to the zonotopic
set X0 = 〈c0, R0〉, where c0 ∈ Rnx denotes the center and
R0 ∈ Rnx×rR0 is the non-empty generator matrix of the initial
zonotope X0.

For the estimation of the uncertain nonlinear system (2), we
consider the following Luenberger observer structure:

x̂k+1 = A(h)x̂k + π(ξk, x̂k, uk) + L(h)(yk − ŷk),

ŷk = Cx̂k, (8)

where π(ξk, x̂k, uk) = τ(ξk, uk) + G(h)φ(x̂k, uk), x̂k and ŷk
are respectively the state estimation and the output prediction.
The MF-dependent observer gain L(h) ∈ Rnx×ny is to be de-
signed. Let us define the state estimation error as

x̃k = xk − x̂k. (9)

Then, the dynamics of the state estimation error can be obtained
from (2) and (8) as follows:

x̃k+1 = Â(h)x̃k +G(h)∆φ + Eωωk − L(h)Eυυk, (10)

where

Â(h) = A(h)−L(h)C, ∆φ = φ(xk, uk)−φ(x̂k, uk). (11)

The following differential mean value theorem is useful to deal
with the mismatching term ∆φ, which has caused a major tech-
nical challenge for TS fuzzy observer design [18].

Lemma 1 ([33]). If function f(x) is differentiable on co(a, b),
where f(x) : Rnx → Rq and a, b ∈ Rnx , then, there exists
constant vectors si ∈ co(a, b), si 6= a and si 6= b for ∀i ∈ Iq ,
such that

f(a)−f(b) =

 q∑
i=1

n∑
j=1

µq(i)µ
>
nx(j)

∂fi
∂xj

(si)

 (a−b). (12)

Note that the differential mean value theorem has been also
exploited in the literature for different TS observer designs [17,
18, 34].

Applying Lemma 1 to the nonlinear function φ(x, u), there
exists a constant vector ši ∈ co(x, x̂), for ∀i ∈ Inφ , such that

∆φ = Φ(θ) (x− x̂) , (13)

with

Φ(θ) =

nφ∑
i=1

nx∑
j=1

µnφ(i)µ>nx(j)θij , θij =
∂φi
∂xj

(ši, u),

for ∀(i, j) ∈ Inφ × Inx . For simplicity, we denote

θ =
[
θ11, . . . , θ1nx , . . . , θnφnx

]
(14)

Due to the boundedness condition (6), the parameter vector θ
belongs to a bounded convex set Sφ, whose the set of 2nφnx

vertices is given by

Vφ = {θ =
[
θ11, . . . , θ1nx , . . . , θnφnx

]
: θij ∈ {θij , θij}}.

The state-bounding observer corresponding to the nonlinear sys-
tem (2) can be obtained as a zonotope X̂k = 〈cxk, Rxk〉 using the
Luenberger-type observer (8) and Proposition 1 when bounded
uncertainties and set-zonotopic representation are considered.

Proposition 1 (Zonotopic Observer Structure). Consider sys-
tem (2) with Assumptions 1–3 and the Luenberger observer
structure (8). The center cxk and shape matrix Rxk of X̂k can
be computed recursively as

cxk+1 = Â(h)cxk + τ(ξk, uk) +G(h)φ(cxk, uk) + L(h)yk,

Rxk+1 =
[
Â(h)R̄xk G(h)Rθk EωRω −L(h)EυRυ

]
,

(15)

where R̄xk =↓q
{
R̄xk
}

. Moreover, the state inclusion property
xk ∈ 〈cxk, Rxk〉 in Property 2 holds for all k ≥ 0. Furthermore,
the matrix Rθk indicates the effect of the mismatching nonlinear
term ∆φ, whose computational procedure is detailed later in
Remark 2.

Proof. Assume xk ∈ 〈cxk, Rxk〉, ωk ∈ 〈0, Rω〉 and υk ∈ 〈0, Rυ〉,
for all k ≥ 0, where the inclusion property is preserved by us-
ing the reduction operator, i.e., xk ∈

〈
cxk, R̄

x
k

〉
. Therefore, the

state observer (8) can be formulated using the zonotopic repre-
sentation as x̂k+1 ∈

〈
cxk+1, R

x
k+1

〉
, with〈

cxk+1, R
x
k+1

〉
=
〈
Â(h)cxk, Â(h)R̄xk

〉
⊕ 〈L(h)yk, 0〉

⊕ 〈τ(ξk, uk), 0〉 ⊕
〈
G(h)φ(xxk, uk), G(h)Rθk

〉
⊕ 〈0, EωRω〉 ⊕ 〈0,−L(h)EυRυ〉 . (16)

4



Using the Minkowski sum and Property 1, cxk+1 and Rxk+1 in
(16) can be expressed as in (15), where the center cxk+1 can be
interpreted as a classical punctual state estimate of the unknown
state xk and the shape matrix Rxk+1 characterizes the zonotopic
enclosure of the classical observation error.

Note from the expression (16) that the two terms 〈L(h)yk, 0〉
and 〈τ(ξk, uk), 0〉 have no effect on the generator matrix Rxk+1

and only alter the center matrix cxk+1 of the propagating zono-
tope

〈
cxk+1, R

x
k+1

〉
. Considering the state estimation error dy-

namics (10), the zonotopic set bounding the state estimation
error can be also recursively obtained as

x̃k+1 ∈
〈
Rx̃k+1

〉
, (17)

with Rx̃k+1 =
[
Â(h)R̄x̃k G(h)Rθk EωRω −L(h)EυRυ

]
.

Remark 2. The matrix Rθk represents the effect of the mis-
matching nonlinear term ∆φ on the estimation error. Note that
Rθk is required to obtain the zonotopic sets 〈cxk, Rxk〉 and

〈
Rx̃k+1

〉
.

Using the boundedness condition (6) and the zonotope inclu-
sion property, Algorithm 1 provides a procedure to recursively
compute Rθk at each time step k. We denote [Φ(θ)] the interval
matrix derived from Φ(θ) in (13), with θ ∈ Sφ, [x̃k] the in-
terval vector derived from the upper and lower bounds of each
element of the vector x̃k, and product([Φ(θ)] , [x̃k]) their in-
terval product.

Algorithm 1 Procedure to compute Rθk
1: initialization X0 = 〈c0, R0〉 and [Φ(θ)] with θ ∈ Sφ

2: for k = 1 : end do
3: compute Rx̃k
4: compute x̃k(i) ∈

[
x̃k(i), x̃k(i)

]
, for i ∈ Inx by

5: compute x̃k(i) and x̃k(i), with x̃k(i) ∈
[
x̃k(i), x̃k(i)

]
, for

i ∈ Inx , by

x̃k(i) = −rs(Rx̃k)i, x̃k(i) = +rs(Rx̃k)i

6: compute
[
Rθk
]

= product([Φ(θ)] , [x̃k])

7: compute � (Zk) =
〈
Rθk
〉

with Zk =
〈[
Rθk
]〉

using
Property 2

8: extract Rθk from � (Zk)
9: end for

The estimation problem is now to design the MF-dependent
observer gain L(h) for the state bounding observer (15).

3. Zonotopic Observer Design

This section presents two approaches to design the observer
gain. The first approach is based on the minimization of the
F−radius of a zonotope whereas an H∞−based approach is
used for the second design.

3.1. Criterion-Based Observer Design
As can be seen from Proposition 1, the zonotopic state-

bounding observer (15) is parameterized by means of the MF-
dependent observer gain L(h) at each time instant k. Accord-
ing to [30, 31], the size of the state-bounding zonotope X̂k =
〈cxk, Rxk〉 can be minimized via its F−radius. The following
theorem provides a method to compute L(h) for this purpose.

Theorem 1. Consider the nonlinear TS fuzzy system (5) and its
associated Luenberger-type observer (8). The size of the zono-
tope defined in (15) can be optimized by using the following
observer gain:

L(h) = Ψ(h)Ω−1k . (18)

with
Ψ(h) = A(h)P̃kC

>, P̃k = RxkR
x>
k ,

Ωk = CP̃kC
> + EυRυR

>
υ E
>
υ .

Proof. According to [31], minimizing the F -radius and FW -
radius of a zonotope is equivalent to minimizing the trace of its
covariance. Therefore, minimizing the F−radius of the zono-
tope X̂k+1 =

〈
cxk+1, R

x
k+1

〉
defined in (15) is equivalent to

minimizing the trace of its covariation P̃k+1 = Rxk+1R
x>
k+1,

i.e.,

J = ‖Rxk+1‖2F = tr(Rxk+1R
x>
k+1) = tr(P̃k+1), (19)

where J denotes the Frobenius radius and P̃ is the covari-
ance of the zonotope matrix Rx. Similarly, minimizing the
FW−radius of the zonotope X̂k+1 is equivalent to minimizing
the criterion, i.e.,

JW = ‖Rxk+1‖2F,W = tr(W̃ P̃k+1), (20)

where JW denotes the weighted Frobenius radius and W̃ P̃
is the weighted function covariance of the zonotope matrix Rxk .
Note that W̃ is any positive definite weighting matrix. It follows
from (15) that

P̃k+1 = (A(h)− L(h)C)P̃k(A(h)− L(h)C)>

+QG(h) +Qω + L(h)QυL(h)>, (21)

whereQG(h) = G(h)RθkR
θ>
k G(h)>,Qω = EωRωR

>
ωE
>
ω and

Qυ = EυRυR
>
υ E
>
υ . From (21), the criterion JW in (20) can

be rewritten as

JW =tr(W̃ (A(h)− L(h)C)P̃k(A(h)− L(h)C)>

+ W̃QG(h) + W̃Qω + W̃L(h)QυL(h)>). (22)

Then, the optimal value of the observer gain L(h) is determined

such that
∂JW

∂L(h)
= 0. Considering (22), this latter yields

∂L(h)tr(W̃L(h)(CP̃kC
> +Qυ)L(h)>)

− 2∂L(h)tr(W̃A(h)PkC
>L(h)>) = 0. (23)

Following the same arguments on matrix calculus as in [31], the
equality (23) can be rewritten as

Ω>k L(h)>W̃ = CP>k A(h)>W̃ . (24)
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By right multiplication with W̃−1 and transposition, it follows
from (24) that

L(h)Ωk = A(h)P̃kC
>, (25)

which, in turn, leads to the observer gain expression in (18).

Remark that the observer gain expression (18) is completely
independent to the choice of the weighting matrix W̃ � 0.

3.2. H∞−Based Observer Design
The key goal when constructing the state-bounding observer

is to reduce the influence of unknown uncertainties/disturbances.
To this end, we consider the H∞−based technique to design
the observer gain L(h) for the zonotopic observer in Proposi-
tion 1. The following lemma is useful for H∞ observer design.

Lemma 2 (Relaxation Lemma [35]). For h, h+ ∈ H, the MF-
dependent inequality

r∑
i=1

r∑
j=1

r∑
q=1

hi(ξk)hj(ξk)hq(ξk+1)Πijq � 0,

holds if

Πijq � 0, i ∈ Ir,
2

r − 1
Πiiq + Πijq + Πjiq � 0, i, j, q ∈ Ir.

(26)

Note that other relaxation results with different degrees of com-
plexity and/or conservatism can be found in [36].

For H∞ observer design, the estimation error system (10)
is rewritten as follows:

x̃k+1 = Â(h)x̃k + Ê(h)dk, (27)

with dk =
[
∆>φ ω>k υ>k

]>
and

Ê(h) =
[
G(h) Eω −L(h)Eυ

]
. (28)

The following theorem presents sufficient conditions to design
an TS fuzzy observer gain such that system (27) achieves a pre-
defined H∞−gain level.

Theorem 2. Consider the state estimation error dynamics (27)
with the output performance vector zk = x̃k. If there exist
positive definite matrices Pi ∈ Rnx×nx , symmetric matrices
Ni ∈ Rnx×nx , matrices Mi ∈ Rnx×ny , for i ∈ Ir, and a
positive scalar γ, such that

Γiiq � 0, i, q ∈ Ir, (29a)
2

r − 1
Γiiq + Γijq + Γjiq � 0, i, j, q ∈ Ir, i 6= j, (29b)

where

Γijq =


Pi − I ? ? ? ?

0 γI ? ? ?
0 0 γI ? ?
0 0 0 γI ?

Γ51
ij Γ52

ij Γ53
ij Γ54

ij Ni +N>i − Pq

 ,

and
Γ51
ij = NiAj −MiC, Γ52

ij = NiGj ,

Γ53
ij = NiEω, Γ54

ij = −MiEυ.

Then, system (10) is stable with an H∞−gain from dk to zk is
smaller than

√
γ. Moreover, the MF-dependent observer gain

can be computed as

L(h) = N(h)−1M(h), (30)

with
[
N(h) M(h)

]
=
∑r
i=1 hi(ξk)

[
Ni Mi

]
.

Proof. Applying the relaxation result in Lemma 2, it follows
that condition (29) implies the following inequality:
P (h)− I ? ? ? ?

0 γI ? ? ?
0 0 γI ? ?
0 0 0 γI ?

Γ51(h) Γ52(h) Γ53(h) Γ54(h) Γ55(h, h+)

 � 0,

(31)
with

Γ51(h) = N(h)A(h)−M(h)C,

Γ52(h) = N(h)G(h),

Γ53(h) = N(h)Eω,

Γ54(h) = −M(h)Eυ,

Γ55(h, h+) = N(h) +N(h)> − P (h+),

P (h+) =

r∑
q=1

hq(ξk+1)Pq.

Using the definitions of Â(h) in (11) and Ê(h) in (28), inequal-
ity (31) can be rewritten in the following more compact form: P (h)− I ? ?

0 γI ?

N(h)Â(h) N(h)Ê(h) Γ55(h, h+)

 � 0. (32)

Then, pre- and post-multiplying (32) by the following matrix[
I 0 −Â(h)>

0 I −Ê(h)>

]
and its transpose, we obtain[

Λ(h)− P (h) + I ?

Ê(h)>P (h+)Â(h) Ê(h)>P (h+)Ê(h)− γI

]
≺ 0, (33)

with Λ(h) = Â(h)>P (h+)Â(h). Pre- and post-multiplying
(33) with

[
x̃>k d>k

]
and its transpose, we obtain the following

condition after some algebraic manipulations:

∆Vk + z>k zk − γd>k dk < 0, (34)

where ∆Vk = V (x̃k+1) − V (x̃k) is the variation of the fuzzy
Lyapunov function candidate V (x̃k) = x̃>k P (h)x̃k along the
solution of the estimation error system (10). Summing both

6



sides of inequality (34) from 0 to the Tf−th instant while as-
suming zero-initial condition, i.e., x0 = 0, we have

V (x̃Tf ) +

Tf∑
k=0

(z>k zk − γd>k dk) < 0. (35)

Since V (x̃Tf ) ≥ 0, it follows from (35) that ‖zk‖22 < γ‖dk‖22.
Then, the H∞−gain of system (10) is less than

√
γ. This con-

cludes the proof.

Remark 3. Note that a minimization of the H∞−gain per-
formance level

√
γ allows minimizing the effect of uncertain

term dk on the state estimated error x̃k. Hence, to achieve the
optimal MF-dependent observer gain L(h), we can solve the
following LMI-based optimization problem:

min
(γ,Pi,Mi,Ni), i∈Ir

γ, (36)

subject to inequalities (29).

Remark 4. The H∞ design conditions in Theorem 2 or the op-
timization problem in (36) are expressed in terms of LMI con-
straints, which can be efficiently solved with numerical solvers.
All the optimization problems in this paper are solved using
the YALMIP toolbox [37]. Moreover, all simulations are per-
formed in a PC with CPU of Intel(R) Core(TM) i7-10610U
2.30GHz and 16.0GB memory.

Remark 5. In Sections 3.1 and 3.2, we propose methods to de-
sign appropriate observer gains to improve the estimation per-
formance under the effects of uncertainties by reducing the size
of the state bounding zonotopes. To this end, the F−radius-
based technique is used to compute a criterion-based observer
gain in Theorem 1 while the H∞−based technique is exploited
to develop the design conditions in Theorem 2. The key differ-
ence between Theorems 1 and 2 is as follows. The time-varying
criterion-based observer gain (18) is directly computed with an
online procedure, which may result in a heavy computational
burden because the dimensions ofRxk in (15) can be quite large.
However, with Theorem 2 the decision matrices involved in the
observer gain (30) can be computed offline, which can be more
appropriate for many real-world settings.

3.3. Application to Fault Detection
For fault detection purposes, we compute the residual signal

rk = yk − ŷk as follows:

rk = Cx̃k + Eυυk. (37)

The logic of fault detection test is based on checking the con-
sistency of the measurements with a fault-free model. Then,
considering Proposition 1, the output prediction vector ŷk in
(8) satisfies

ŷk ∈ 〈cyk, R
y
k〉 =

〈
Ccxk, CR̄

x
k

〉
⊕ 〈0, EυRυ〉 . (38)

Hence, the center and the shape matrix of the obtained zonotope
Ŷk = 〈cyk, R

y
k〉 are respectively given by

cyk =Ccxk, (39a)

Ryk =
[
CR̄xk EυRυ

]
. (39b)

Moreover, since the zonotopic set representation is considered,
the bounds of the residual signal rk in (37) can be also char-
acterized by a zonotope. As a result, the zonotopic set Rk =
〈crk, Rrk〉 of the residual signal rk of the nonlinear model (2) can
be obtained using the observer (8) and Proposition 1 as

crk = yk − Ccxk,
Rrk =

[
−CR̄xk −EυRυ

]
.

(40)

Then, the fault detection test can be done by checking if 0 /∈
〈crk, Rrk〉 at each time instant k.

Remark 6. The computational burden can be reduced by check-
ing whether 0 is inside or not an aligned box 〈crk, b(Rrk)〉 enclos-
ing the zonotope 〈crk, Rrk〉, i.e.,

0 /∈ 〈crk, b(Rrk)〉 , k ∈ N, (41)

with b(Rrk) = diag(|Rr| 1), where |.| is the element-by-element
absolute value operator, 1 is a column vector of ones and diag(.)
returns a diagonal matrix from a vector of diagonal elements
[38]. If condition (41) holds, the existence of the fault is de-
tected. Otherwise, the system is considered healthy. Algo-
rithm 2 summarizes the fault detection test procedure using the
proposed zonotopic TS observer.

Algorithm 2 Fault detection test using zonotopic observers

1: input: yk and τ(ξk, uk)
2: initialization: X0 = 〈c0, R0〉 and [Φ(θ)] with θ ∈ Sφ

3: for k = 1 : end do
4: compute Rθk
5: compute X̂k = 〈cxk, Rxk〉,
6: compute Ŷk = 〈cyk, R

y
k〉

7: computeRk = 〈crk, Rrk〉
8: if 0 /∈ 〈crk, b(Rrk)〉 then
9: fault← true

10: else
11: fault← false
12: end if
13: k ←− k + 1
14: end for

4. Illustrative Results with an Autonomous Vehicle

Hereafter, the effectiveness of the proposed methods for
zonotopic observer design is demonstrated an autonomous ve-
hicle application. This example is selected to evaluate the esti-
mation performance obtained with the criterion-based method
and the H∞ based approach. The results are also compared to
the TS fuzzy observer obtained from the previous work [29].
Note that the H∞ based approach proposed in this paper is
referred to as non-quadratic design whereas the zonotopic ob-
server design in [29] is referred to as quadratic design.

We consider the problem of state estimation and fault de-
tection for an autonomous ground vehicle, whose schematic is
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depicted in Figure 1. The vehicle nonlinear dynamics in the
horizontal plane can be described as follows [39]:

v̇x =
Teng − Cxv2x

Ie
+ vyr + Fw,

v̇y =
Fyf + Fyr − Cyv2y

M
− vxr,

ṙ =
lfFyf − lrFyr

Iz
,

(42)

where vx is the vehicle longitudinal speed, vy is the lateral
speed, r is the vehicle yaw rate, Teng is the torque input for
the vehicle longitudinal dynamics, Fyf is the cornering forces
at the front tires, Fyr is the cornering forces at the rear tires, and
Fw represents the impact of the longitudinal disturbance force.
The vehicle parameters are given in Table 1.

Table 1: Vehicle parameters.

Parameter Description Value
M Vehicle mass 1476 [kg]
lf Distance from gravity center to front axle 1.13 [m]
lr Distance from gravity center to rear axle 1.49 [m]
Ie Effective longitudinal inertia 442.8 [kgm2]
Iz Vehicle yaw moment of inertia 1810 [kgm2]
Cf Front cornering stiffness 57000 [N/rad]
Cr Rear cornering stiffness 59000 [N/rad]
Cx Longitudinal aerodynamic drag coefficient 0.35 [–]
Cy Lateral aerodynamic drag coefficient 0.45 [–]

Figure 1: Schematic of a two degrees-of-freedom vehicle model.

Under normal driving conditions with small angle assump-
tion [40, 41], the lateral tire forces Fyf and Fyr are propor-
tional to the slip angles of each axle. Then, these forces can be
approximated as

Fyf = 2Cf

(
δ − vy − lfr

vx

)
, Fyr = 2Cr

(
lrr − vy
vx

)
(43)

where δ is the front wheel steering angle. Considering (42) and
(43), the nonlinear vehicle dynamics can be described as

ẋ = A(ξ)x+ Evu+ fv(ξ) +Gvφ(x) + Eωω,

y = Cx,
(44)

where x =
[
vx vy r

]>
is the vehicle state vector, u =[

Teng δ
]>

is the control input, ω = Fw is the disturbance,

and φ(x) = v2y is the unmeasured nonlinearity. The state-space
matrices in system (44) are given by

A(ξ) =

0 r 0

0 − 2(Cf+Cr)
Mvx

0

0
2(lrCr−Cf lf )

Izvx
0

 , ξ =

[
1
vx
r

]
,

fv(ξ) =


−Cxv

2
x

Ie
2(Crlr−Cf lf )r

Mvx
− vxr

− 2(Cf l2f+Crl
2
r)r

Izvx

 , Gv =

 0

−CyM
0

 ,

Ev =


1
Ie

0

0
2Cf
M

0
2lfCf
Iz

 , Eω =

1
0
0

 .
Taking into account the physical limitations during normal driv-
ing conditions [41], the compact set of the vehicle state is de-
fined as

Dx =
{
vx ∈ [vx, vx], vy ∈ [vy, vy], r ∈ [r, r]

}
. (45)

where vx = 5 [m/s], vx = 30 [m/s], vy = −1.5 [m/s], vy = 1.5
[m/s], r = −0.55 [rad/s] and r = 0.55 [rad/s]. For system
(44), the vehicle speed vx and the yaw rate r can be directly
measured, which is not the case of the lateral speed vy . Hence,
the output equation is defined as

y = Cx, C =

[
1 0 0
0 0 1

]
. (46)

The uncertainty ω is assumed unknown but bounded, which be-
longs to a compact set defined by the following zonotope:

ω ∈ W = 〈cω, Rω〉 , (47)

where cω denotes the center of the setW with its generator ma-
trix Rω ∈ Rnω×nω . Using the Euler’s discretization method
with the sampling time Ts = 0.01 [s], the discrete-time coun-
terpart of the vehicle model (44) is given by

xk+1 = A(ξk)xk + Eduk + f(ξk) +Gφ(xk) + Eωωk,

yk = Cxk,
(48)

with
A(ξk) = TsAv(ξk) + I, Ed = TsEv,

f(ξk) = Tsfv(ξk), G = TsGv.

Note that A(ξ) = A(Vx, r) with Vx = 1
vx
∈
[
V x, V x

]
. Using

the sector nonlinearity approach [14] with the premise vector
ξk ∈ R2, the following four-rule TS fuzzy model of the system
(48) can be derived:

xk+1 =

4∑
i=1

hi(ξk)Aixk + Eduk + f(ξk) +Gφ(xk) + Eωωk,

yk = Cxk, (49)

where the local matrices Ai, for i ∈ I4, are given by

A1 = A(V x, r), A2 = A(V x, r),

A3 = A(V x, r), A4 = A(V x, r).
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The corresponding membership functions hi(ξ), for i ∈ I4, are
defined as

h1(ξ) = Ωv1Ωr1 , h2(ξ) = Ωv1Ωr2 ,

h3(ξ) = Ωv2Ωr1 , h4(ξ) = Ωv2Ωr2 ,
(50)

with

Ωv1 =
V x − Vx
V x − V x

, Ωr1 =
r − r
r − r

,

Ωv2 =
Vx − V x
V x − V x

, Ωr2 =
r − r
r − r

.

For illustrations, we consider a driving scenario with the pro-
files of the engine torque and the steering angle as presented in
Figure 2. The state estimation results can be obtained with both
the criterion-based approach in Section 3.1 or the H∞ approach
in Section 3.2. Figure 3 depicts the achieved state estimation re-
sult from the system’s healthy operating simulation. Note that
for the studied model of the autonomous ground vehicle, the
minimum feasible solution of γ is found as γ = 0.630 in the
case of the proposed method in Section 3.2. The projection of
the computed state-bounding zonotopes into the state space is
presented in Figure 4 to make the study of the obtained results
easier. As can be seen in Figure 4, when the system is oper-
ates in healthy modes, all three different methods can offer a
satisfactory estimation performance where the actual values of
the states are located inside of the computed upper and lower
bounds. Observe also that the non-quadratic design method
provide a tighter estimation bounds compared to those of the
two other ones. The zonotope

〈
Rθk
〉

bounding ∆θ, computed
by Algorithm 1, is illustrated in Figure 5.
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Figure 2: Profiles of the vehicle control inputs.

For the aim of fault detection analysis, the occurrence of an
additive step (abrupt) actuator fault is simulated at time instant
k = 15 and it remains in the system until k = 30. The obtained
result for the generated residual zonotope and its projection to
the residual space are shown in Figures 6 and 7, respectively.
As can be seen by looking at the first 15 time instants of the
Figure 6, where the system is only affected by the uncertain
terms, the observer can properly follow the system using three
observer gains and considered threshold (here zero) is inside of
the generated zonotopes. But, after fault occurrence at k = 15,
the zonotopes are affected by the fault and this effect moves the

residual zonotopes, and consequently, existence of fault can be
detected since zero is not included within the boundaries. The
same point can be seen in Figure 7.

5. Conclusions

This paper has proposed new observer designs for a class
of uncertain nonlinear systems represented in TS fuzzy mod-
els. As a novelty, the observer gains can be online optimized
using the F−radius based technique or offline computed by
solving an LMI-based optimization problem derived from H∞
filtering technique. In both proposed methods, the influence
of all possible uncertain terms and unmeasured premise vari-
ables are considered using zonotopic set representation. We
also provide a method to take into account the impact of un-
measurable premise variables in the structure of state-bounding
observers. The case study section has been used to compare the
observer with different gains applied to a autonomous ground
vehicle, i.e., when it is solely estimated considering the robust-
ness against uncertainties. Based on the obtained results, the
proposed design methods can provide robust observers for a
large class of uncertain nonlinear systems. Furthermore, in the
presence of faults, the performance of the proposed zonotopic
observers is satisfactory. The offline H∞ design of observer
gains can inspire the real-time implementation of the proposed
method into an autonomous ground vehicle available at our lab-
oratory as a future research project. Another promising future
work focuses on designing robust TS fuzzy observers while
guaranteeing a specified fault sensitivity performance for fault
detection purposes, e.g., using multiobjective H−/H∞ spec-
ifications with a priori information on the finite-frequency of
the faults.
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