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Equivalent-Input-Disturbance Based Dynamic
Tracking Control for Soft Robots Via Reduced

Order Finite Element Models
Shijie Li, Alexandre Kruszewski, Thierry-Marie Guerra, Anh-Tu Nguyen∗, Senior Member, IEEE

Abstract—This paper develops a systematic framework for
dynamic tracking control of soft robots. To this end, we propose a
new projector for the proper orthogonal decomposition algorithm
to significantly reduce the large-scale robot models, obtained from
finite element methods (FEM), while preserving their structure
and stability properties. Such a property preservation enables an
effective equivalent-input-disturbance based scheme for dynamic
tracking control of elastic soft robots with various geometries
and materials. The proposed control scheme is composed of
three key components, i.e., feedforward control, disturbance-
estimator control and feedback control. To account for the
trajectory reference, the feedforward action is designed from
the dynamic FEM reduced-order robot model. The disturbance-
estimator control action is obtained from an unknown input
observer, which also provides the estimates of the reduced-states
for feedback control design. The feedback gains of the observer-
based controller are computed from an optimization problem
under linear matrix inequality constraints. The closed-loop track-
ing properties are guaranteed using Lyapunov stability theory.
The effectiveness of the proposed dynamic control framework
has been demonstrated via both high-fidelity SOFA simulations
and experimental validations, performed on two soft robots with
different natures. In particular, comparative studies with state-
of-the-art control methods have been also carried out to highlight
the interests of the new soft robot control results. This paper is
complemented with a video: https://bit.ly/2VVwtLn.

Index Terms—Soft robots, dynamic controllers, model order
reduction, finite element model, uncertainty compensation, mo-
tion control.

I. INTRODUCTION

The emerging field of soft robotics has recently become
one of the fastest growing topics in the robotic community
[1]. Compared to rigid robots, soft robots have a more large-
scale flexibility, deformability and adaptability to accomplish
challenging tasks in interaction with humans and/or the envi-
ronment [2], [3], e.g., surgery, assistive medical devices, search
and rescue, etc. Generally inspired by natural organisms, the
motion of soft robots is realized by deformation [3], i.e., in
contrast to conventional rigid robots no joints are present in
the structure of soft robots. Typical behaviors of soft robots,
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e.g., bending, extension, result in infinite degrees-of-freedom
(DoF) motions. Hence, developing mathematical models that
reliably represent the behaviors of such infinite DoF robots still
remains challenging, especially for control design purposes [4].
Moreover, the nonlinear characteristics from material properties
and actuation-sensing techniques considerably limit the control
performance of soft robots [5]–[7].

Up to now, a large variety of approaches have been proposed
for the control issues of soft robots [6], e.g., optimization
based open-loop control, learning control, kinematic and dy-
namic model-based control, etc. Quadratic programming (QP)
optimizations have been performed to numerically obtain the
inverse kinematics, which can be used to compute the control
action [8]–[10]. Based on a dynamic multi-body model, an
iterative learning algorithm has been proposed in [11] as an
open-loop control strategy for a soft spatial fluidic elastomer
manipulator. These model-based control methods may lead to
a heavy computational burden, especially when accurate high-
dimensional models of soft robots are required for control
design. To avoid this practical drawback, learning-based model-
free algorithms have been developed to open-loop control the
dynamic motions of soft robots [6], [12]. Although open-loop
control strategies can be applied to various types of soft robots,
however such control strategies are only effective under quasi-
static assumptions, i.e., with slow motions. Moreover, open-loop
control suffers a lack of performance and robustness in presence
of modeling uncertainty or disturbances.

Feedback control has been proved as a solution to improve
the closed-loop behaviors of soft robots [13]. Closed-loop con-
trollers can be classified into two categories, i.e., kinematic
control and dynamic control. For kinematic control, a data-driven
model has been developed to design a disturbance observer
based controller for a soft crawling robot in [14]. Based on
visual servoing, an online learning kinematic algorithm has been
proposed in [15] for soft robots. Using a piecewise constant
curvature (PCC) model, the authors in [16] have developed
an adaptive kinematic controller for soft robot manipulators
in constrained environments. Hyatt et al. have proposed a
kinematic controller using soft-robot joint estimation, kinematic
calibration, and visual servoing to deal with the uncertainty in
forward kinematics [17]. From the knowledge of the Jacobian,
describing the relationship between the end-effector position
and the control inputs, proportional-integral-derivative (PID)
control has been designed for tracking tasks of soft robots [18],
[19]. Relying on the steady-state assumption, in many practical
situations kinematic control methods cannot provide sufficient

https://bit.ly/2VVwtLn
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performance [19], [20], e.g., precision, rapidity, robustness,
especially for high speed tracking tasks. This motivates the
development of dynamic controllers. Using a modified Lagrange
polynomial series-solution, the authors in [21] have derived
the Cosserat rod static and Lagrangian dynamic model of a
continuum manipulator, which enables to design a nonlinear
impedance and configuration feedback controller. An extended
PCC-based formulation, linking a soft robot to a classic rigid-
bodied serial manipulator, has been recently proposed in [22]
for dynamic tracking control of planar soft robots interaction
with environments. Note that PCC-based methods are generally
limited to beam-like robots with bending deformations, and seem
difficult to be adapted to a wide range of soft robots [23].
Model predictive control (MPC) has been proposed in [24], [25]
for the tracking control of soft robots. Note that the control
performance of MPC methods strongly depends on the modeling
accuracy of the considered robots [26]. A tracking controller,
combining a low-gain feedback component and a learning-based
feedforward action, has been proposed in [27] for articulated soft
robots. However, the performance of the learned control action
is only suited for a predefined desired trajectory and stiffness
parameter profile. Reinforcement learning control method [20]
and a model-based adaptive control method [28] have been also
developed for various soft robots.

Despite a considerable research effort, dynamic control design
still remains a challenging issue in soft robotics [6], [22].
Most of existing approaches are only suitable for some classes
of robots with specific geometries. Dynamic control based on
finite element models of soft robots has been recently shown
as a promising solution for this major drawback [13]. Finite
element methods (FEM) require a spatial discretization of the
structure into a mesh [29], which can thus handle a large class
of elastic soft robots with different geometries and materials
[30]. However, the finer is the mesh the better is the model
accuracy, as illustrated in Fig. 1. Then, a reliable robot model
can be only obtained with a very large number of variables.
The large-scale nature of soft robot models implies technical
challenges in designing dynamic controllers with conventional
control tools [31]. Moreover, the obtained controllers cannot
be directly applied to soft robots in practice. Hence, model
order reduction (MOR) is useful for FEM-based dynamic control
design [32], [33].

Fig. 1. Illustrations of FEM modeling for a Trunk robot. (a) Visual model. (b)
FEM model with a coarse mesh. (c) FEM model with a medium-size mesh.

Motivated by the above technical issues, this paper proposes
a systematic framework for dynamic reference tracking control
of soft robots. To this end, we modify the proper orthogonal

decomposition (POD) method used in [13], [33] to significantly
reduce the order of FEM soft robot models while preserving their
structure and stability properties. As will be shown, the structure
preservation enables a more effective dynamic control scheme,
especially in case of uncertainty and disturbances. The proposed
control scheme is formed with three main components, i.e.,
feedforward control, disturbance-estimator control and feedback
control. Using the dynamic FEM reduced-order model, the
feedforward action is designed to account for the reference
trajectory whereas the disturbance-estimator control is designed
to compensate the modeling uncertainty. The observer-based
feedback control is designed to guarantee a desired tracking per-
formance, specified by an optimized `∞−gain and a predefined
linear matrix inequality (LMI) region of the closed-loop robot
system. Specifically, our main contributions can be summarized
as follows.
• Compared to the related works [13], [33], we propose a

new projector for the POD reduction method. Then, the
reduced-order models of soft robots can be obtained while
preserving the structure and stability properties, which is
crucial to design an effective feedback-feedforward control
scheme in presence of modeling uncertainties.

• Exploiting the equivalent-input-disturbance (EID) concept
[34], [35] for a specific mechanical model structure of
soft robots, we develop an FEM model-based control
framework to achieve high-precision tracking tasks despite
of unknown uncertainties and disturbances. The closed-loop
performance is rigorously guaranteed by Lyapunov stability
theory, which is not the case of most of existing results on
soft robotics control.

• High-fidelity SOFA simulations and experimental valida-
tions have been performed on two soft robots with different
natures to demonstrate the effectiveness of the proposed
control framework.

Notation. R is the set of real numbers. For a matrix X , X>

denotes its transpose, X � 0 means that X is symmetric
positive definite, He(X) = X + X>, Sym(X) = X − X>,
and λmin(X), λmax(X) denotes respectively the minimal and
maximal eigenvalues of a symmetric matrix X . diag(X1, X2)
denotes a block-diagonal matrix composed of matrices X1 and
X2. I is the identity matrix of appropriate dimension. For a
vector x ∈ Rn, we denote its 2-norm as ‖x‖ =

√
x>x.

For a function f : R → Rn, its `∞−norm is defined as
‖f‖∞ = supt∈R ‖f(t)‖, and B∞ is the set of bounded
functions f . The symbol ’?’ stands for the terms deduced by
symmetry in symmetric block matrices. The argument of a
function is omitted when its meaning is clear.

II. MODELING OF SOFT ROBOTS

This section provides a procedure to obtain control-based
models for large-scale soft robotics systems.

A. From FEM Modeling to State-Space Representation

For the modeling of soft robots, FEM method is used to ap-
proximate the infinite-dimensional model by subdividing it into
a large amount of tiny elements [29]. The resulting discretized
model has the number of degrees of freedom proportional to the
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number of elements. The dynamics of a deformable soft robot
can be described as follows [4]:

M(q)q̈ = P(q)−F(q, q̇) +H(q)u, (1)

where q ∈ Rn is the displacement vector, q̇ ∈ Rn is the velocity
vector, u ∈ Rm is the control input, M(q) ∈ Rn×n is the
inertia matrix, F(q, q̇) represents the internal elastic forces of
soft robots, P(q) represents known external forces, H(q) is the
control input matrix. We consider the case that P(q) only con-
tains the gravity force, and the mass distribution does not change
over time. Hence, the positive definite matrices P(q) = P and
M(q) = M are constant. Without loss of generality, assume
that the tracking control of soft robots is performed around an
equilibrium point, defined as (q0, q̇0) = (0, 0) and u0 = 0.
Then, it follows from (1) that

P −F(0, 0) = 0. (2)

Moreover, around the equilibrium point the internal force
F(q, q̇) can be approximated as

F(q, q̇) ≈ F(0, 0) +K(q, q̇)q +D(q, q̇)q̇. (3)

The compliance matrix K(q, q̇) and the damping matrix D(q, q̇)
are respectively defined as

K(q, q̇) =
∂F(q, q̇)

∂q
, D(q, q̇) =

∂F(q, q̇)

∂q̇
.

Substituting (2) and (3) into (1), the linearized FEM model of
the soft robot can be obtained as

Mq̈ ≈ −K(0, 0)q −D(0, 0)q̇ +H(0)u. (4)

For conciseness, we denote K = K(0, 0), D = D(0, 0) and
H = H(0). Then, system (4) can be rewritten in the state-space
form

ẋ = Ax+Bu, y = Cx, (5)

where x =
[
q̇> q>

]> ∈ R2n. The matrices A ∈ R2n×2n and
B ∈ R2n×m are large-scale sparse, defined as

A =

[
−M−1D −M−1K

I 0

]
, B =

[
M−1H

0

]
. (6)

The system output y ∈ Rp represents the coordinates of the
robot end-effector.

Remark 1. The compliance matrix K and the damping matrix
D are symmetric positive definite. Due to the large-scale feature
of system (5), i.e., n > 3000, and the scattered connection be-
tween local neighbor elements in FEM modeling, these matrices
are also sparse.

B. Model Order Reduction for Soft Robots

Many MOR methods have been proposed for large-scale
systems, e.g., singular value decomposition (SVD), moment
matching [36]. As an SVD-based method, POD enables an effec-
tive model order reduction with a priori error bound. Moreover,
in contrast to most of existing MOR methods, POD algorithms
can be directly applied to large-scale nonlinear systems [37].
Hence, POD has been shown as a suitable MOR method for
soft robots [13]. Exploiting the data interdependencies within

snapshots, i.e., response of the system states with respect to
excitation signals, this data-based method significantly reduces
the system state dimension through an orthogonal projection
operator T ∗r ∈ R2n×2l, defined as[

xr
xr̄

]
=

[
T ∗r
T ∗r̄

]
x, (7)

where xr ∈ R2l is the reduced state vector with l� n, xr̄ is the
neglected state vector, and T ∗r̄ is the orthogonal complement of
matrix T ∗r . Since the POD method only requires SVD operations
to obtain the projector, this method is computationally efficient
for a priori given snapshots [37].

Despite its effectiveness in reducing the order of system
(5) for control design, the POD projection (7) generally does
not allow preserving the stability and the mechanical structure
properties of this large-scale system [38], which are crucial
for the proposed EID-based control scheme. To overcome this
drawback, we propose a modified POD projection taking into
account the specific matrix structures of system (5). To this end,
only the displacement vector is projected into the low-dimension
space. Then, the reduced velocity vector can be obtained with
the same projector matrix. As a result, we have

xr =

[
q̇r
qr

]
=

[
T 0
0 T

] [
q̇
q

]
= Trx. (8)

Applying the proposed projector (8) to system (5), the following
approximated reduced-order model can be obtained:

ẋr = Arxr +Bru+ TrAT
>
r̄ xr̄,

y = Crxr,
(9)

where Tr̄ is the orthogonal complement of matrix Tr, and

Ar = TrAT
>
r =

[
−TM−1DT> −TM−1KT>

I 0

]
,

Br = TrB =

[
TM−1H

0

]
, Cr = CT>r .

The accuracy of the POD reduced-order models depends on the
decay rate of the singular values of the snapshots [33]. Fig. 2(a)
depicts the evolution of the singular values corresponding to
the position snapshots of the Trunk robot discussed in Section
V. As shown in Fig. 2(b), a fast decay of singular values is
clearly observed for the first four values, which represent more
than 95% of the singular values of the 3324-state FEM robot
model. Then, the POD method with the proposed projector (8)
can significantly reduce the number of the state variables, i.e.,
from 3324 to 4 states, while keeping a good modeling quality
for dynamic control purposes.

Remark 2. With the proposed POD projector (8), the matrix
structures are preserved between system (6) and its reduced-
order counterpart (9), i.e., the parameters are only involved in
the upper-half of the state-space matrices. As shown in the
sequel, this enables an effective EID-based control framework to
compensate the modeling uncertainty for tracking performance
improvements. This MOR property preservation has not been
yet exploited for dynamic control of soft robots.
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Fig. 2. Singular values of the position snapshots of a Trunk robot. (a)
Evolution of the singular values. (b) Six first singular values.

1) Model Error Analysis: We consider uncertainty in the
knowledge of compliance, damping and control matrices as

K̂ = K + ∆K, D̂ = D + ∆D, Ĥ = H + ∆H,

where K̂, D̂, Ĥ are the estimations, K, D, H the real values,
and ∆K, ∆D, ∆H the uncertainties. Since the system structure
is preserved, these uncertain terms are taken into account in the
reduced-order model (9) as

ẋr = Ârxr + B̂ru+ TrÂT
>
r̄ xr̄, (10)

with

Âr = Ar + ∆Ar, B̂r = Br + ∆Br,

Â = A+ ∆A, ∆A =

[
−M−1∆D −M−1∆K>

0 0

]
,

∆Ar = Tr∆AT
>
r , ∆Br =

[
TM−1∆H

0

]
.

Note that due to the specific upper-half structures of matrices
Br, ∆Ar and ∆Br, the following matrix decompositions can
be performed:

∆Ar = BrB
†
r∆Ār, ∆Br = BrB

†
r∆B̄r, (11)

where B†r =
(
B>r Br

)−1
B>r is the pseudo-inverse of Br, and

∆Ār =
[
−TM−1∆DT> −TM−1∆KT>

]
,

∆B̄r = TM−1∆H.

Let us define a lumped disturbance as

dl = B†r∆Ārxr +B†r∆B̄ru. (12)

Moreover, to take into account the neglected state dynamics for
the control design, we can decompose

TrÂT
>
r̄ xr̄ = Brdq̈ +Br̄dq̇. (13)

where Br̄ is an orthogonal complement of Br. Note that the
disturbance dq̈ (respectively dq̇) corresponds to the neglected
dynamics related to the acceleration q̈ (respectively velocity q̇).
From (11), (12) and (13), the uncertain reduced-order model
(10) can be represented as

ẋr = Arxr +Br(u+ de) +Br̄dq̇,

y = Crxr,
(14)

with de = dq̈ + dl.

2) Transformation of Generalized Coordinates: Although the
proposed POD projector (8) allows preserving the structures of
the state-space matrices, the state variables of the reduced-order
model (9) no longer represent the displacement and the velocity
of soft robots in the Cartesian coordinates. These new state
variables can be considered as generalized coordinates. Hence, a
coordinate transformation between generalized coordinates and
Cartesian coordinates is required to design an effective model-
based feedforward control action. Indeed, for trajectory tracking
only the robot outputs are required to track their corresponding
reference signals, directly defined in the Cartesian coordinate
system, i.e., a reference model is generally not available in the
generalized coordinate system for control design as in [13].

Since the output of soft robots only includes the coordinates
of the end-effectors, it follows from (9) that

y = Crxr = Cgqr,

with Cr =
[
0 Cg

]
and Cg ∈ Rp×l. Then, if the MOR is per-

formed with p = l, then the proposed POD method can provide a
full-rank matrix Cg . Hence, for any arbitrary desired trajectory
r in Cartesian coordinates, the corresponding trajectory rg in
generalized coordinates can be defined as rg = C−1

g r. As shown
in (17), this relation allows for a full use of the dynamic FEM
reduced-order model (14) of soft robots to design an effective
feedforward control action.

III. TRACKING CONTROL PROBLEM FORMULATION

This section formulates the tracking control problem of soft
robots. To this end, we define the tracking error in generalized
coordinates as e = xr − rg . Then, the tracking error dynamics
can be defined from (14) as

ė = Are+Br(u+ de) +Arrg − ṙg +Br̄dq̇. (15)

To deal with the modeling uncertainty and improve the tracking
control performance of soft robots, we propose a feedback-
feedforward control scheme composed of three components as

u = uff + udc + ufb, (16)

where uff is the feedforward control, udc is the disturbance-
estimator based control, and ufb is the feedback control. The
proposed tracking control scheme is illustrated in Fig 3.

Fig. 3. EID observer-based tracking control structure for soft robots.

1) Feedforward Control: The feedforward control uff ac-
counts for the affect of the reference signal rg , considered as
a known disturbance, on the closed-loop system. Hence, this
control action is designed such that

Bruff = −(Arrg − ṙg). (17)
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The feedforward action can be designed from (17) as

uff = −B†r(Arrg − ṙg). (18)

2) Disturbance-Estimator Based Control: The lumped dis-
turbance de includes the nonlinearity and modeling uncertainty.
Note from (15) that de enters in the system dynamics via the
same channel as the input u, i.e., matching disturbance. Then, the
disturbance-estimator based control can be designed as follows:

udc = −d̂ef , (19)

where d̂ef is an estimate of the filtered signal def of the lumped
disturbance de. To estimate this disturbance, we assume that de
is of low-frequency, whose dynamics can be efficiently captured
using a piecewise second-order polynomial signal [39]. Note that
this assumption is suitable due to the low-frequency behaviors
of soft robots. Moreover, inspired by the EID approach [34], we
integrate a low-pass filter with a time constant Tf of the form

F(s) =
1

1 + Tfs
I, (20)

where s is the Laplace variable, to limit the angular-frequency
band of the disturbance estimate as shown in Fig. 3. Then, the
disturbance model is given as

ḋ = Jd, (21)

with

d =

defde
ḋe

 , J =

− 1
Tf
I 1

Tf
I 0

0 0 I
0 0 0

 .
From (14) and (21), we propose the following Luenberger-like
unknown input observer to estimate simultaneously the state xr
and the unknown disturbance de:

˙̂xr = Arx̂r +Br(u+ d̂e) + Lx(y − ŷ),

˙̂
d = Jd̂+ Ld(y − ŷ),

ŷ = Crx̂r,

(22)

where d̂ is the estimate of d, the observer gains Lx ∈ R2l×p

and Ld ∈ R3m×p are to be designed.

Remark 3. The filter F(s) in (20) is integrated into the unknown
input observer (22) to offer a degree of freedom to regulate
the angular-frequency band for disturbance rejection. Then, the
value of Tf can be selected as

Tf ∈
[

1

10ωr
,

1

5ωr

]
,

where ωr is the highest angular frequency selected for distur-
bance rejection purposes [34].

The estimation error dynamics can be defined from (14), (21)
and (22) as follows:

ε̇ = (Ao − LoCo)ε+Boddq̇, (23)

with

Ao =

[
Ar B̃r
0 J

]
, Bod =

[
Br̄
0

]
, ε =

[
xr − x̂r
d− d̂

]
,

Lo =
[
L>x L>d

]>
, B̃r =

[
Br 0

]
, Co =

[
Cr 0

]
.

3) Feedback Control: The feedback control aims at guaran-
teeing the closed-loop stability and improving the steady-state
tracking performance. To this end, we consider the following
proportional-integral control law:

ufb = Kp(x̂r − rg) +Kiei, (24)

where Kp ∈ Rm×2l and Ki ∈ Rm×p are the feedback gains to
be designed, and

ėi = Cr(xr − rg).

With uff , udc and ufb respectively defined in (18), (19) and
(24), substituting the control expression (16) into system (15),
the tracking error dynamics can be represented as

ξ̇ = (Ac +BcKc)ξ +Boε+Bcddq̇, (25)

where

ξ =
[
e> e>i

]>
, Ac =

[
Ar 0
Cr 0

]
, Bc =

[
Br
0

]
,

Kc =
[
Kp Ki

]
, Bo =

[
−BrKp 0

0 0

]
, Bcd =

[
Br̄
0

]
.

The extended closed-loop system can be defined from (23) and
(25) as

˙̃x =

[
Āc Bo
0 Āo

]
x̃+

[
Bcd
Bod

]
dq̇, (26)

where x̃ =
[
ξ> ε>

]>
, and

Āc = Ac +BcKc, Āo = Ao − LoCo.

Since we focus on the tracking control, the performance output
associated to system (26) is the position tracking error, i.e., z =
e = C̃rξ, with C̃r =

[
Cr 0

]
. Hence, one has

z = Fx̃, F =
[
C̃r 0

]
. (27)

To specify the performance of the closed-loop system, we exploit
the concept of D−stability [40] to design both the observer
(22) and the feedback controller (24). To this end, we consider
an LMI region D(r, θ, α) defined as a subset of the left-half
complex plane to guarantee minimum decay rate α, a minimum
damping ratio ζ = cos(θ) and a maximum undamped natural
frequency ωd = r sin(θ). The following lemma guarantees the
D−stability of a matrix A.

Lemma 1 ([40]). All the eigenvalues of A are located inside
the region D(r, θ, α) if and only if there exists a symmetric
positive definite matrix X such that

A>X + XA + 2αX ≺ 0,[
−rX AX
? −rX

]
≺ 0,[

sin(θ)
(
AX + XA>

)
cos(θ)

(
AX−XA>

)
? sin(θ)

(
AX + XA>

)] ≺ 0.

Hereafter, we propose an effective solution for the following
observer-based feedback control problem.

Problem 1. Consider two LMI regions Dc(rc, θc, αc) and
Do(ro, θo, αo). Determine the control gain Kc (respectively the
observer gain Lo) such that the poles of the dynamic matrix
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Āc (respectively Āo) remain inside the region Dc(rc, θc, αc)
(respectively Do(ro, θo, αo)). Moreover, the extended system
(26) satisfies the following closed-loop properties.
(P1) For dq̇(t) = 0, ∀t ≥ 0, system (26) is exponentially stable

with a decay rate α > 0. For any initial condition x̃(0)
and any bounded disturbance dq̇(t) ∈ B∞, there exists a
bound η(x̃(0), ‖dq̇‖∞) such that

x̃(t) ≤ η(x̃(0), ‖dq̇‖∞), t ≥ 0.

(P2) For ∀x̃(0) and ∀dq̇(t) ∈ B∞, we have

lim
t→∞

sup‖z‖ ≤ γ‖dq̇‖∞, γ > 0, (28)

where the `∞−gain is specified in Theorem 1.

Remark from (27) and (28) that a smaller value of the `∞−gain
γ leads to a better tracking control performance.

IV. EID-BASED OUTPUT FEEDBACK TRACKING CONTROL

This section provides conditions to design both the unknown
input observer (22) and the feedback control law (24) satisfying
the closed-loop specifications in Problem 1.

Theorem 1. Consider the closed-loop system (26) and two
LMI regions Dc(rc, θc, αc) and Do(ro, θo, αo). If there exist
symmetric positive definite matrices X ∈ R(2l+p)×(2l+p),
Q ∈ R(2l+3m)×(2l+3m), matrices M ∈ Rm×(2l+p), N ∈
R(2l+3m)×p, and positive scalars µ, ν such that the optimization
problem (29) is feasible.

minimize µ+ ν, (29)

subject to

He

[
Ao + αcQ QBod

0 −αcνI

]
≺ 0, (30)

He(Ac + αcX) ≺ 0, (31)[
−rcX Ac

? −rcX

]
≺ 0, (32)[

sθcHe(Ac) cθcSym(Ac)
? sθcHe(Ac)

]
≺ 0, (33)

He(Ao + αoQ) ≺ 0, (34)[
−roQ Ao

? −roQ

]
≺ 0, (35)[

sθoHe(Ao) cθoSym(Ao)
? sθoHe(Ao)

]
≺ 0, (36)X 0 XC̃>r

? Q 0
? ? µI

 � 0, (37)

with
Ac = AcX +BcM, Ao = QAo −NCo,
cθc = cos(θc), sθc = sin(θc),

cθo = cos(θo), sθo = sin(θo).

Then, the feedback observer-based controller (24) is such that the
closed-loop properties specified in Problem 1 are satisfied with
a guaranteed `∞−gain γ =

√
νµ. Furthermore, the control and

observer gains are respectively given by

Kc = MX−1, Lo = Q−1N. (38)

Proof. The proof is postponed to Appendix A.

Remark 4. The design procedure in Theorem 1 is recast as
a convex optimization problem under LMI constraints. Here,
the control gain Kc and observer gain Lo can be effectively
computed using YALMIP toolbox and SeDuMi solver [41].

Remark 5. The LMI region Dc(rc, θc, αc) is defined to rep-
resent the dominant low-frequency dynamics of soft robots.
Moreover, the damping ratio should be chosen as small as
possible to avoid oscillatory behaviors of the closed-loop robot
systems. However, without restrictive constraints, the LMI re-
gion Do(ro, θo, αo) should be specified to guarantee a fast
convergence of the estimation error dynamics (23).

V. ILLUSTRATIVE RESULTS AND EVALUATIONS

This section presents the control results obtained with both
FEM-based simulations and realtime experiments. To highlight
the systematic feature of the proposed tracking control method,
we consider two different silicone soft robots for validations:
Diamond robot and Trunk robot, whose physical prototypes are
described in [9].

A. FEM-Based Validations with Diamond Robot

The Diamond robot has four soft legs, which are actuated
by cables as depicted in Fig. 4. This cable-driven robot can be
considered as a soft version of parallel robots. The movement of
the Diamond robot is realized through a combination of bending
and squeezing of its four legs. Hence, most of the PCC-based
approaches [23] are no longer suitable for dynamic modeling
and control of such a soft robot. The weight of the Diamond
robot is 0.5 [kg] and its height is 110 [mm] in the initial
position. The material parameters of this soft robot are obtained
through experiments. Then, the FEM model of the Diamond
robot can be derived with 1570 nodes, leading to 9420 state
variables. This high-fidelity FEM model is implemented in the
SOFA open-source simulation platform [4] for validations. Note
that the modeling error between FEM-based model and the real
robot is less than 10% in a workspace of 40× 40× 20 [mm3]
around the rest position of the robot [8]. For control design,
a six-order dynamical model of the Diamond robot can be
obtained with the proposed POD model reduction method. The
control algorithms are implemented in MATLAB/SIMULINK
environment. This SIMULINK-SOFA co-simulation environ-
ment allows reducing significantly the costs related to not only
the design but also the realtime validation of complex soft
robots. More details on the plugin SoftRobots for the SOFA
Framework with related publications can be found at the address:
https://project.inria.fr/softrobot.

For the tracking control of the Diamond robot, we consider
spiral trajectories of the form

x(t) = 15 cos(ωt), y(t) = 15 sin(ωt), z(t) = 110+ t, (39)

with ω = 1 [rad/s] for a fast trajectory tracking, and ω = 0.33
[rad/s] for a slow trajectory tracking. This trajectory is defined
within the cylindrical workspace of the Diamond robot. To
evaluate the control robustness performance with respect to the
modeling errors, we consider two test scenarios, i.e., without and

https://project.inria.fr/softrobot/
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Fig. 4. FEM-based schematic of the Diamond robot. The red point represents
the end-effector and the gray lines represent the driving cables.

with uncertainty on Young’s modulus. This latter characterizes
the softness property of the silicone material, i.e., a softer
material leads to a stronger oscillatory response in the open
loop. Moreover, a comparison between the following FEM-based
control methods is performed to demonstrate the effectiveness
of the new control method:

• Method 1: Inverse kinematics based QP control [8], [10].
• Method 2: Jacobian-based PID control [18], [19].
• Method 3: Proposed EID-based control.

For Method 1, the QP-based controller is composed of an PI
controller and an QP solver. The PI controller aims at providing
a desired action of the robot end-effector whereas the QP solver
computes the actuation control through an inverse kinematic
optimization. The details on the QP-based control architecture
and the related tuning methods can be found in [10]. For Method
2, the PID controller is defined as

u(t) = J −1

(
Kpe(t) +Ki

∫
e(t)dt+Kdė(t)

)
,

where J is the Jacobian matrix of the soft robot, and Kp, Ki,
Kd are the PID control gains. Note that the Jacobian matrices
of soft robots can be directly obtained with SOFA platform for
control design. Note also that due to the low resonant frequency
characteristics of soft robots, the ranges of the PID control
gains are quite narrow to avoid aggressive closed-loop behaviors.
Moreover, in this work the control design is only performed with
reduced-order linear systems. Then, the PID controllers designed
in both Method 1 and Method 2 can be empirically fine-tuned,
e.g., using the well-known Ziegler–Nichols method.

1) Scenario 1 [Without Uncertainty on Young’s Modulus]:
For this test scenario, the Young’s modulus of the FEM simula-
tion model and the FEM control-based model of the Diamond
robot are both set to 150 [KPa], i.e., no mismatch between two
FEM models. The slow trajectory tracking is shown in Fig.
5. The feedforward action of the proposed controller and the
inverse kinematic control of Method 1 allow for a better tracking
performance during the steady-state phase compared to the PID
controller. Observe in Fig. 6 that the drawbacks of Methods 1
and 2 become much more clear with a fast trajectory tracking in
comparison to the EID-based method, i.e., the dynamic response
of the QP-based controller is degraded and the steady-state
tracking error induced by the PID controller increases.
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Fig. 5. Slow spiral trajectory tracking in Scenario 1.
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Fig. 6. Fast spiral trajectory tracking in Scenario 1.

2) Scenario 2 [With Uncertainty on Young’s Modulus]: The
Young’s modulus of the Diamond robot implemented in SOFA
platform remains 150 [KPa] as in Scenario 1. However, we
modify the Young’s modulus of the FEM control-based robot
model to 180 [KPa] to introduce a modeling uncertainty in the
control design. The control performance of the three considered
methods for a slow spiral trajectory tracking is depicted in Fig. 7.
Due to modeling errors and without taking into account the robot
dynamics, as expected the QP-based controller leads to a worse
behavior in transient responses compared to the tracking results
in Scenario 1. Note that a satisfactory control performance can
be maintained for both PID controller and EID-based controller
in case of a slow trajectory tracking. Fig. 8 presents the fast
trajectory tracking results. Since the modeling error directly
affects the Jacobian matrix and the inverse kinematics, the
tracking performance of the PID controller and QP controller
is degraded, whereas the closed-loop behavior is preserved with
the proposed controller due to its effective EID-based error
compensation mechanism.

For a quantitative performance analysis, we define the follow-
ing integral square tracking error (ISE) index:

ISE =

∫ ∆t

0

e(t)2dt, (40)
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Fig. 7. Slow spiral trajectory tracking in Scenario 2.
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Fig. 8. Fast spiral trajectory tracking in Scenario 2.

where ∆t is the tracking time. Fig. 9 summarizes the tracking
performance comparisons in terms of ISE index [mm2s] between
the three FEM-based control methods obtained with the 3D
trajectory (39) and ∆t = 20 [s]. Remark that when there is
no significant modeling uncertainty, the QP-based controller
can provide a better tracking performance compared to the
Jacobian-based controller. However, this latter seems to be more
robust with respect to uncertainties than the QP-based controller.
We can see also that the proposed EID-based control method
provides the best tracking performance in all the test scenarios.

To reveal the insights of the EID-based controller (16) for
tracking purposes, we point out the specific role of each involved
control component, i.e., feedback control ufb, feedforward con-
trol uff , and disturbance-compensation based control udc. To
this end, we reconsider Scenario 2 with a fast trajectory tracking
task, decomposed into three phases:
• Phase 1: From 0 [s] to 13 [s] with only feedback control,

i.e., controller (16) with uff = 0 and udc = 0.
• Phase 2: From 13 [s] to 23 [s] with feedback and feedfor-

ward control, i.e., controller (16) with udc = 0.
• Phase 3: From 23 [s] to 23 [s] with the complete EID-based

controller (16).
The tracking control result along the y−axis direction is shown
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Fig. 9. Summary of the ISE performance comparisons. (a) Slow tracking
without uncertainty. (b) Fast tracking without uncertainty. (c) Slow tracking
with uncertainty. (d) Fast tracking with uncertainty.

in Fig. 10. During Phase 1, the tracking is performed with
significant errors in amplitude and in phase. Integrating the
feedforward control action in Phase 2 can only improve the
phase error since the amplitude error is still observed due to
the modeling uncertainty. Using the EID-based control law (16)
in Phase 3, the amplitude error can be also significantly reduced
with the error-compensation term udc. Hence, the proposed
method allows to achieve an effective fast (and slow) tracking
control for soft robots despite the modeling errors.
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Fig. 10. Three-phase fast trajectory tracking along the y−axis in Scenario 2.

B. Experimental Validations

Hereafter, we present the tracking control results, experimen-
tally obtained with the Trunk robot shown in Fig. 11.

(a) (b)

Fig. 11. Trunk robot. (a) Robot platform, (b) Stepper motors.

1) Hardware Setup: The silicone Trunk robot is composed of
14 segments to make it highly deformable. This soft robot driven
by four stepper motors via cables mounted on the robot body to
guarantee the accessibility of each direction in the workspace.
The position of the end-effector, e.g., system output, is measured
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by a Polhemus Liberty magnetic motion tracking sensor. The
weight of the Trunk robot is 40 [g] and its length is 195 [mm]
in the initial position. The FEM model of this robot has 1944
nodes, leading to 3324 state variables. After performing the POD
model reduction, a reduced four-order dynamical Trunk robot
model can be obtained for control design. Since the workspace
of the Trunk robot is a surface, then it is sufficient to determine
the position of the end-effector with a 2D reference trajectory.
For tracking control purposes, we consider the spiral trajectory

x(t) = 0.2t cos(ωt), y(t) = 0.2t sin(ωt), (41)

with ω = 1 [rad/s], corresponding to a fast trajectory tracking.
Note that the linear speed of the spiral reference is continuously
increasing according to the radius, making the tracking task more
challenging.

2) Tracking Control Performance: For this trajectory track-
ing, we examine the experimental results obtained with two
dynamic control methods: Jacobian-based PID control and EID-
based control. Fig. 12 depicts the evolutions of the end-effector
position tracking in the xy−plane, performed by both considered
controllers. We can see clearly that compared to Jacobian-based
PID control, the proposed EID-based control method provides a
significant improvement in terms of tracking performance. The
tracking performance along x−axis and y−axis directions, and
the corresponding force control inputs obtained with the spiral
reference trajectory (41) are given in Fig. 13. Observe in Figs.
13(c) and (d) that due to the effects of the feedforward action, the
proposed EID-based controller provides a faster response with
respect to the Jacobian-based PID controller, which allows for
a better dynamic tracking performance as shown in Figs. 13(a)
and (b). We can also see in Figs. 13(c) and (d) that the control
inputs of both controllers start at the same values corresponding
to the robot equilibrium point. Moreover, there is only a small
amplitude difference concerning the x−axis force control inputs.
However, along the y−axis the proposed EID-based controller
provides a larger control action to better compensate the time-
varying disturbance due to the gravity effect, which improves
the control precision performance as indicated in Fig. 12. For
quantitative comparison purposes, the ISE indices, defined in
(40), are computed for both EID-based control and Jacobian-
based PID control over a time duration ∆t = 22 [s] as 153.3
[mm2s] and 778.9 [mm2s], respectively. For this experimental
test, we can note a tracking performance improvement of about
80% in terms of ISE index. The validation videos can be found
at the address: https://bit.ly/2VVwtLn.

VI. CONCLUDING REMARKS

A dynamic FEM model-based framework has been proposed
for the tracking control of soft robots. For the control design,
the large-scale FEM robot model is effectively reduced with
a POD model reduction method. Using an EID approach, we
propose an observer-based tracking control structure including
three components, i.e., feedback control, feedforward control,
error-compensation control. This control structure allows for an
effective tracking control performance despite the presence of
modeling uncertainty and unknown disturbances. To improve the
closed-loop responses, the concept of LMI regions is exploited
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Fig. 12. Experimental results of spiral trajectory tracking control. (a)
Jacobian-PID control. (b) Proposed EID-based control.
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Fig. 13. Comparison of spiral trajectory tracking control. (a) Tracking
performance along x−axis. (b) Tracking performance along y−axis. (c) Force
control input in x−axis direction. (d) Force control input in y−axis direction.

together with an `∞ control design via Lyapunov stability theory.
The effectiveness of the proposed control method has been first
demonstrated with high-fidelity SOFA simulations performed on
a Diamond soft robot. Then, experimental validations have been
also carried out with a Trunk robot. Under the considered exper-
imental conditions, the proposed control method shows a clear
tracking performance improvement compared to the existing
Jacobian-PID control method, i.e., about 80% of improvement
in terms of ISE index. Future works focus on extending the pro-
posed method using linear parameter varying (LPV) framework
and generalized proportional integral observer structures to deal
with nonlinearities and modeling uncertainties caused by large
deformations of soft robots. Extensions of the proposed results
for the tracking control of soft robots in interaction with an
unstructured environment are another promising direction.

APPENDIX A
PROOF OF THEOREM 1

By Lemma 1, we can show that LMI conditions (31), (32)
and (33) (respectively (34), (35) and (36)) guarantee that the
eigenvalues of the dynamic matrix Āc of the tracking error
system (25) (respectively Āo of the estimation error system

https://bit.ly/2VVwtLn
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(23)) are confined in the LMI region Dc(rc, θc, αc) (respectively
Do(ro, θo, αo)).

Pre- and postmultiplying inequality (31) with P = X−1 while
considering (38), it follows that

He
(
PĀc + αcP

)
≺ 0. (42)

Let us denote

Πc = He
(
PĀc + αcP

)
, Πo = He

[
Ao + αcQ QBod

0 −αcνI

]
.

Note that Πo ≺ 0 and Πc ≺ 0 due to conditions (30) and (42),
respectively. Since Πc only depends on the control gain Kc and
matrix P , and Πo only depends on the observer gain Lo and
matrix Q, there always exists a positive scalar τ > 0, sufficiently
small, such that [42]

Πo � τΦ>Π−1
c Φ, (43)

with Φ =
[
PBo PBcd

]
. By Schur complement lemma [43],

we can prove that condition (43) is equivalent to[
τΠc τΦ
? Πo

]
� 0. (44)

From the definitions of Πc, Πo, and Φ, condition (44) can be
rewritten as

He

τP (Āc + αcI) τPBo τPBcd
0 Q(Āo + αcI) QBod
0 0 −αcνI

 � 0. (45)

To study the stability of the extended closed-loop system (26),
we consider a Lyapunov function candidate as

V (x̃) = x̃>diag(τP,Q)x̃. (46)

Now, pre- and postmultiplying (45) with
[
x̃> d>q̇

]>
and its

transpose, the following condition can be obtained after some
algebraic manipulations:

V̇ (x̃) ≤ −2αc(V (x̃)− νd>q̇ dq̇), (47)

where V̇ (x̃) is the time derivative of the Lyapunov function
(46) along the trajectory of the closed-loop system (26). From
the relation of vector-norms, inequality (47) implies that

V̇ (x̃) ≤ −2αc
(
V (x̃)− ν‖dq̇‖2∞

)
. (48)

Applying the comparison lemma [44, Lemma 3.4] to (48), it
follows that

V (x̃(t)) ≤ e−2αctV (x̃(0)) + ν‖dq̇‖2∞. (49)

Note that

α1‖x̃‖2 ≤ V (x̃) ≤ α2‖x̃‖2, (50)

with α1 = λmin (diag(τP,Q)) and α2 = λmax (diag(τP,Q)).
It follows from (49) and (50) that

‖x̃‖ ≤
√
α2

α1
e−αct‖x̃(0)‖+

√
ν

α1
‖dq̇‖∞,

which guarantees Property (P1), i.e., the input-to-state stability
of system (26) with respect to any disturbance dq̇ ∈ B∞.

Let us consider the definition of the performance out-
put z in (27). Pre- and postmultiplying inequality (37) with
diag(P, I, I), it follows that[

diag(P,Q) F>

? µI

]
� 0. (51)

Applying Schur complement lemma and congruence transfor-
mation [43] to inequality (51), it follows that

µdiag(τP,Q)− F>F � 0, (52)

with τ > 0. Pre- and postmultiplying condition (52) with x̃>

and its transpose yields

‖z‖2 ≤ µV (x̃). (53)

From (49) and (53), we can deduce that

‖z(t)‖ ≤
√
µV (x̃(0))e−αct +

√
νµ‖dq̇‖∞. (54)

For any initial condition x̃(0) and any bounded signal dq̇ , it
follows from (54) that

lim
t→∞

sup ‖z(t)‖ ≤ γ‖dq̇‖∞,

which guarantees Property (P2). This concludes the proof.
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