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Abstract-This paper develops a systematic framework for dynamic tracking control of soft robots. To this end, we propose a new projector for the proper orthogonal decomposition algorithm to significantly reduce the large-scale robot models, obtained from finite element methods (FEM), while preserving their structure and stability properties. Such a property preservation enables an effective equivalent-input-disturbance based scheme for dynamic tracking control of elastic soft robots with various geometries and materials. The proposed control scheme is composed of three key components, i.e., feedforward control, disturbanceestimator control and feedback control. To account for the trajectory reference, the feedforward action is designed from the dynamic FEM reduced-order robot model. The disturbanceestimator control action is obtained from an unknown input observer, which also provides the estimates of the reduced-states for feedback control design. The feedback gains of the observerbased controller are computed from an optimization problem under linear matrix inequality constraints. The closed-loop tracking properties are guaranteed using Lyapunov stability theory. The effectiveness of the proposed dynamic control framework has been demonstrated via both high-fidelity SOFA simulations and experimental validations, performed on two soft robots with different natures. In particular, comparative studies with stateof-the-art control methods have been also carried out to highlight the interests of the new soft robot control results. This paper is complemented with a video: https://bit.ly/2VVwtLn. Index Terms-Soft robots, dynamic controllers, model order reduction, finite element model, uncertainty compensation, motion control.

I. INTRODUCTION

The emerging field of soft robotics has recently become one of the fastest growing topics in the robotic community [START_REF] Bao | Soft robotics: Academic insights and perspectives through bibliometric analysis[END_REF]. Compared to rigid robots, soft robots have a more largescale flexibility, deformability and adaptability to accomplish challenging tasks in interaction with humans and/or the environment [START_REF] Rus | Design, fabrication and control of soft robots[END_REF], [START_REF] Majidi | Soft robotics: A perspective, current trends and prospects for the future[END_REF], e.g., surgery, assistive medical devices, search and rescue, etc. Generally inspired by natural organisms, the motion of soft robots is realized by deformation [START_REF] Majidi | Soft robotics: A perspective, current trends and prospects for the future[END_REF], i.e., in contrast to conventional rigid robots no joints are present in the structure of soft robots. Typical behaviors of soft robots, e.g., bending, extension, result in infinite degrees-of-freedom (DoF) motions. Hence, developing mathematical models that reliably represent the behaviors of such infinite DoF robots still remains challenging, especially for control design purposes [START_REF] Coevoet | Software toolkit for modeling, simulation, and control of soft robots[END_REF]. Moreover, the nonlinear characteristics from material properties and actuation-sensing techniques considerably limit the control performance of soft robots [START_REF] Gerboni | Feedback control of soft robot actuators via commercial flex bend sensors[END_REF]- [START_REF] Liang | Control of dielectric elastomer soft actuators using antagonistic pairs[END_REF].

Up to now, a large variety of approaches have been proposed for the control issues of soft robots [START_REF] Thuruthel | Control strategies for soft robotic manipulators: A survey[END_REF], e.g., optimization based open-loop control, learning control, kinematic and dynamic model-based control, etc. Quadratic programming (QP) optimizations have been performed to numerically obtain the inverse kinematics, which can be used to compute the control action [START_REF] Duriez | Control of elastic soft robots based on real-time finite element method[END_REF]- [START_REF] Bieze | Design, implementation, and control of a deformable manipulator robot based on a compliant spine[END_REF]. Based on a dynamic multi-body model, an iterative learning algorithm has been proposed in [START_REF] Marchese | Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator[END_REF] as an open-loop control strategy for a soft spatial fluidic elastomer manipulator. These model-based control methods may lead to a heavy computational burden, especially when accurate highdimensional models of soft robots are required for control design. To avoid this practical drawback, learning-based modelfree algorithms have been developed to open-loop control the dynamic motions of soft robots [START_REF] Thuruthel | Control strategies for soft robotic manipulators: A survey[END_REF], [START_REF] Vikas | Design and locomotion control of a soft robot using friction manipulation and motor-tendon actuation[END_REF]. Although open-loop control strategies can be applied to various types of soft robots, however such control strategies are only effective under quasistatic assumptions, i.e., with slow motions. Moreover, open-loop control suffers a lack of performance and robustness in presence of modeling uncertainty or disturbances.

Feedback control has been proved as a solution to improve the closed-loop behaviors of soft robots [START_REF] Thieffry | Trajectory tracking control design for large-scale linear dynamical systems with applications to soft robotics[END_REF]. Closed-loop controllers can be classified into two categories, i.e., kinematic control and dynamic control. For kinematic control, a data-driven model has been developed to design a disturbance observer based controller for a soft crawling robot in [START_REF] Cao | Control of a soft inchworm robot with environment adaptation[END_REF]. Based on visual servoing, an online learning kinematic algorithm has been proposed in [START_REF] Fang | Vision-based online learning kinematic control for soft robots using local Gaussian process regression[END_REF] for soft robots. Using a piecewise constant curvature (PCC) model, the authors in [START_REF] Wang | Visual servoing of soft robot manipulator in constrained environments with an adaptive controller[END_REF] have developed an adaptive kinematic controller for soft robot manipulators in constrained environments. Hyatt et al. have proposed a kinematic controller using soft-robot joint estimation, kinematic calibration, and visual servoing to deal with the uncertainty in forward kinematics [START_REF] Hyatt | Configuration estimation for accurate position control of large-scale soft robots[END_REF]. From the knowledge of the Jacobian, describing the relationship between the end-effector position and the control inputs, proportional-integral-derivative (PID) control has been designed for tracking tasks of soft robots [START_REF] Bajo | Configuration and joint feedback for enhanced performance of multi-segment continuum robots[END_REF], [START_REF] Marchese | Design, kinematics, and control of a soft spatial fluidic elastomer manipulator[END_REF]. Relying on the steady-state assumption, in many practical situations kinematic control methods cannot provide sufficient performance [START_REF] Marchese | Design, kinematics, and control of a soft spatial fluidic elastomer manipulator[END_REF], [START_REF] Thuruthel | Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators[END_REF], e.g., precision, rapidity, robustness, especially for high speed tracking tasks. This motivates the development of dynamic controllers. Using a modified Lagrange polynomial series-solution, the authors in [START_REF] Sadati | Control space reduction and real-time accurate modeling of continuum manipulators using ritz and Ritz-Galerkin methods[END_REF] have derived the Cosserat rod static and Lagrangian dynamic model of a continuum manipulator, which enables to design a nonlinear impedance and configuration feedback controller. An extended PCC-based formulation, linking a soft robot to a classic rigidbodied serial manipulator, has been recently proposed in [START_REF] Della Santina | Model-based dynamic feedback control of a planar soft robot: Trajectory tracking and interaction with the environment[END_REF] for dynamic tracking control of planar soft robots interaction with environments. Note that PCC-based methods are generally limited to beam-like robots with bending deformations, and seem difficult to be adapted to a wide range of soft robots [START_REF] Webster | Design and kinematic modeling of constant curvature continuum robots: A review[END_REF]. Model predictive control (MPC) has been proposed in [START_REF] Best | A new soft robot control method: Using model predictive control for a pneumatically actuated humanoid[END_REF], [START_REF] Bruder | Modeling and control of soft robots using the Koopman operator and model predictive control[END_REF] for the tracking control of soft robots. Note that the control performance of MPC methods strongly depends on the modeling accuracy of the considered robots [START_REF] Zheng | Control of a silicone soft tripod robot via uncertainty compensation[END_REF]. A tracking controller, combining a low-gain feedback component and a learning-based feedforward action, has been proposed in [START_REF] Angelini | Decentralized trajectory tracking control for soft robots interacting with the environment[END_REF] for articulated soft robots. However, the performance of the learned control action is only suited for a predefined desired trajectory and stiffness parameter profile. Reinforcement learning control method [START_REF] Thuruthel | Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators[END_REF] and a model-based adaptive control method [START_REF] Tang | Model-based online learning and adaptive control for a "human-wearable soft robot" integrated system[END_REF] have been also developed for various soft robots.

Despite a considerable research effort, dynamic control design still remains a challenging issue in soft robotics [START_REF] Thuruthel | Control strategies for soft robotic manipulators: A survey[END_REF], [START_REF] Della Santina | Model-based dynamic feedback control of a planar soft robot: Trajectory tracking and interaction with the environment[END_REF]. Most of existing approaches are only suitable for some classes of robots with specific geometries. Dynamic control based on finite element models of soft robots has been recently shown as a promising solution for this major drawback [START_REF] Thieffry | Trajectory tracking control design for large-scale linear dynamical systems with applications to soft robotics[END_REF]. Finite element methods (FEM) require a spatial discretization of the structure into a mesh [START_REF] Bathe | Finite Element Procedures[END_REF], which can thus handle a large class of elastic soft robots with different geometries and materials [START_REF] Laschi | Soft robot arm inspired by the octopus[END_REF]. However, the finer is the mesh the better is the model accuracy, as illustrated in Fig. 1. Then, a reliable robot model can be only obtained with a very large number of variables. The large-scale nature of soft robot models implies technical challenges in designing dynamic controllers with conventional control tools [START_REF] De Payrebrune | On constitutive relations for a rodbased model of a pneu-net bending actuator[END_REF]. Moreover, the obtained controllers cannot be directly applied to soft robots in practice. Hence, model order reduction (MOR) is useful for FEM-based dynamic control design [START_REF] Chenevier | Reduced-order modeling of soft robots[END_REF], [START_REF] Thieffry | Control design for soft robots based on reduced-order model[END_REF]. Motivated by the above technical issues, this paper proposes a systematic framework for dynamic reference tracking control of soft robots. To this end, we modify the proper orthogonal decomposition (POD) method used in [START_REF] Thieffry | Trajectory tracking control design for large-scale linear dynamical systems with applications to soft robotics[END_REF], [START_REF] Thieffry | Control design for soft robots based on reduced-order model[END_REF] to significantly reduce the order of FEM soft robot models while preserving their structure and stability properties. As will be shown, the structure preservation enables a more effective dynamic control scheme, especially in case of uncertainty and disturbances. The proposed control scheme is formed with three main components, i.e., feedforward control, disturbance-estimator control and feedback control. Using the dynamic FEM reduced-order model, the feedforward action is designed to account for the reference trajectory whereas the disturbance-estimator control is designed to compensate the modeling uncertainty. The observer-based feedback control is designed to guarantee a desired tracking performance, specified by an optimized ∞ -gain and a predefined linear matrix inequality (LMI) region of the closed-loop robot system. Specifically, our main contributions can be summarized as follows.

• Compared to the related works [START_REF] Thieffry | Trajectory tracking control design for large-scale linear dynamical systems with applications to soft robotics[END_REF], [START_REF] Thieffry | Control design for soft robots based on reduced-order model[END_REF], we propose a new projector for the POD reduction method. Then, the reduced-order models of soft robots can be obtained while preserving the structure and stability properties, which is crucial to design an effective feedback-feedforward control scheme in presence of modeling uncertainties. • Exploiting the equivalent-input-disturbance (EID) concept [START_REF] She | Equivalent-input-disturbance approachanalysis and application to disturbance rejection in dual-stage feed drive control system[END_REF], [START_REF] Wang | Modified equivalent-inputdisturbance approach to improving disturbance-rejection performance[END_REF] for a specific mechanical model structure of soft robots, we develop an FEM model-based control framework to achieve high-precision tracking tasks despite of unknown uncertainties and disturbances. The closed-loop performance is rigorously guaranteed by Lyapunov stability theory, which is not the case of most of existing results on soft robotics control. • High-fidelity SOFA simulations and experimental validations have been performed on two soft robots with different natures to demonstrate the effectiveness of the proposed control framework. Notation. R is the set of real numbers. For a matrix X, X denotes its transpose, X 0 means that X is symmetric positive definite, He(X) = X + X , Sym(X) = X -X , and λ min (X), λ max (X) denotes respectively the minimal and maximal eigenvalues of a symmetric matrix X. diag(X 1 , X 2 ) denotes a block-diagonal matrix composed of matrices X 1 and X 2 . I is the identity matrix of appropriate dimension. For a vector x ∈ R n , we denote its 2-norm as x = √

x x. For a function f : R → R n , its ∞ -norm is defined as

f ∞ = sup t∈R f (t)
, and B ∞ is the set of bounded functions f . The symbol ' ' stands for the terms deduced by symmetry in symmetric block matrices. The argument of a function is omitted when its meaning is clear.

II. MODELING OF SOFT ROBOTS

This section provides a procedure to obtain control-based models for large-scale soft robotics systems.

A. From FEM Modeling to State-Space Representation

For the modeling of soft robots, FEM method is used to approximate the infinite-dimensional model by subdividing it into a large amount of tiny elements [START_REF] Bathe | Finite Element Procedures[END_REF]. The resulting discretized model has the number of degrees of freedom proportional to the number of elements. The dynamics of a deformable soft robot can be described as follows [START_REF] Coevoet | Software toolkit for modeling, simulation, and control of soft robots[END_REF]: M(q)q = P(q) -F(q, q) + H(q)u,

where q ∈ R n is the displacement vector, q ∈ R n is the velocity vector, u ∈ R m is the control input, M(q) ∈ R n×n is the inertia matrix, F(q, q) represents the internal elastic forces of soft robots, P(q) represents known external forces, H(q) is the control input matrix. We consider the case that P(q) only contains the gravity force, and the mass distribution does not change over time. Hence, the positive definite matrices P(q) = P and M(q) = M are constant. Without loss of generality, assume that the tracking control of soft robots is performed around an equilibrium point, defined as (q 0 , q0 ) = (0, 0) and u 0 = 0. Then, it follows from (1) that

P -F(0, 0) = 0. (2) 
Moreover, around the equilibrium point the internal force F(q, q) can be approximated as F(q, q) ≈ F(0, 0) + K(q, q)q + D(q, q) q.

(3)

The compliance matrix K(q, q) and the damping matrix D(q, q) are respectively defined as

K(q, q) = ∂F(q, q) ∂q , D(q, q) = ∂F(q, q) ∂ q .
Substituting ( 2) and ( 3) into (1), the linearized FEM model of the soft robot can be obtained as

M q ≈ -K(0, 0)q -D(0, 0) q + H(0)u. (4) 
For conciseness, we denote K = K(0, 0), D = D(0, 0) and H = H(0). Then, system (4) can be rewritten in the state-space form

ẋ = Ax + Bu, y = Cx, (5) 
where x = q q ∈ R 2n . The matrices A ∈ R 2n×2n and B ∈ R 2n×m are large-scale sparse, defined as

A = -M -1 D -M -1 K I 0 , B = M -1 H 0 . (6) 
The system output y ∈ R p represents the coordinates of the robot end-effector.

Remark 1. The compliance matrix K and the damping matrix D are symmetric positive definite. Due to the large-scale feature of system (5), i.e., n > 3000, and the scattered connection between local neighbor elements in FEM modeling, these matrices are also sparse.

B. Model Order Reduction for Soft Robots

Many MOR methods have been proposed for large-scale systems, e.g., singular value decomposition (SVD), moment matching [START_REF] Antoulas | Approximation of Large-Scale Dynamical Systems[END_REF]. As an SVD-based method, POD enables an effective model order reduction with a priori error bound. Moreover, in contrast to most of existing MOR methods, POD algorithms can be directly applied to large-scale nonlinear systems [START_REF] Benner | Model Reduction and Approximation: Theory and Algorithms[END_REF]. Hence, POD has been shown as a suitable MOR method for soft robots [START_REF] Thieffry | Trajectory tracking control design for large-scale linear dynamical systems with applications to soft robotics[END_REF]. Exploiting the data interdependencies within snapshots, i.e., response of the system states with respect to excitation signals, this data-based method significantly reduces the system state dimension through an orthogonal projection operator T * r ∈ R 2n×2l , defined as

x r x r = T * r T * r x, (7) 
where x r ∈ R 2l is the reduced state vector with l n, x r is the neglected state vector, and T * r is the orthogonal complement of matrix T * r . Since the POD method only requires SVD operations to obtain the projector, this method is computationally efficient for a priori given snapshots [START_REF] Benner | Model Reduction and Approximation: Theory and Algorithms[END_REF].

Despite its effectiveness in reducing the order of system (5) for control design, the POD projection [START_REF] Liang | Control of dielectric elastomer soft actuators using antagonistic pairs[END_REF] generally does not allow preserving the stability and the mechanical structure properties of this large-scale system [START_REF] Prajna | POD model reduction with stability guarantee[END_REF], which are crucial for the proposed EID-based control scheme. To overcome this drawback, we propose a modified POD projection taking into account the specific matrix structures of system [START_REF] Gerboni | Feedback control of soft robot actuators via commercial flex bend sensors[END_REF]. To this end, only the displacement vector is projected into the low-dimension space. Then, the reduced velocity vector can be obtained with the same projector matrix. As a result, we have

x r = qr q r = T 0 0 T q q = T r x. (8) 
Applying the proposed projector (8) to system (5), the following approximated reduced-order model can be obtained:

ẋr = A r x r + B r u + T r AT r x r , y = C r x r , (9) 
where T r is the orthogonal complement of matrix T r , and

A r = T r AT r = -T M -1 DT -T M -1 KT I 0 , B r = T r B = T M -1 H 0 , C r = CT r .
The accuracy of the POD reduced-order models depends on the decay rate of the singular values of the snapshots [START_REF] Thieffry | Control design for soft robots based on reduced-order model[END_REF]. Fig. 2(a) depicts the evolution of the singular values corresponding to the position snapshots of the Trunk robot discussed in Section V. As shown in Fig. 2 1) Model Error Analysis: We consider uncertainty in the knowledge of compliance, damping and control matrices as

K = K + ∆K, D = D + ∆D, Ĥ = H + ∆H,
where K, D, Ĥ are the estimations, K, D, H the real values, and ∆K, ∆D, ∆H the uncertainties. Since the system structure is preserved, these uncertain terms are taken into account in the reduced-order model ( 9) as

ẋr = Âr x r + Br u + T r ÂT r x r , (10) 
with

Âr = A r + ∆A r , Br = B r + ∆B r , Â = A + ∆A, ∆A = -M -1 ∆D -M -1 ∆K 0 0 , ∆A r = T r ∆AT r , ∆B r = T M -1 ∆H 0 .
Note that due to the specific upper-half structures of matrices B r , ∆A r and ∆B r , the following matrix decompositions can be performed:

∆A r = B r B † r ∆ Ār , ∆B r = B r B † r ∆ Br , (11) 
where B † r = B r B r -1 B r is the pseudo-inverse of B r , and

∆ Ār = -T M -1 ∆DT -T M -1 ∆KT , ∆ Br = T M -1 ∆H.
Let us define a lumped disturbance as

d l = B † r ∆ Ār x r + B † r ∆ Br u. ( 12 
)
Moreover, to take into account the neglected state dynamics for the control design, we can decompose

T r ÂT r x r = B r d q + B r d q . ( 13 
)
where B r is an orthogonal complement of B r . Note that the disturbance d q (respectively d q ) corresponds to the neglected dynamics related to the acceleration q (respectively velocity q). From ( 11), ( 12) and ( 13), the uncertain reduced-order model ( 10) can be represented as

ẋr = A r x r + B r (u + d e ) + B r d q , y = C r x r , (14) 
with d e = d q + d l .

2) Transformation of Generalized Coordinates: Although the proposed POD projector (8) allows preserving the structures of the state-space matrices, the state variables of the reduced-order model [START_REF] Coevoet | Soft robots locomotion and manipulation control using FEM simulation and quadratic programming[END_REF] no longer represent the displacement and the velocity of soft robots in the Cartesian coordinates. These new state variables can be considered as generalized coordinates. Hence, a coordinate transformation between generalized coordinates and Cartesian coordinates is required to design an effective modelbased feedforward control action. Indeed, for trajectory tracking only the robot outputs are required to track their corresponding reference signals, directly defined in the Cartesian coordinate system, i.e., a reference model is generally not available in the generalized coordinate system for control design as in [START_REF] Thieffry | Trajectory tracking control design for large-scale linear dynamical systems with applications to soft robotics[END_REF].

Since the output of soft robots only includes the coordinates of the end-effectors, it follows from (9) that

y = C r x r = C g q r ,
with C r = 0 C g and C g ∈ R p×l . Then, if the MOR is performed with p = l, then the proposed POD method can provide a full-rank matrix C g . Hence, for any arbitrary desired trajectory r in Cartesian coordinates, the corresponding trajectory r g in generalized coordinates can be defined as r g = C -1 g r. As shown in [START_REF] Hyatt | Configuration estimation for accurate position control of large-scale soft robots[END_REF], this relation allows for a full use of the dynamic FEM reduced-order model ( 14) of soft robots to design an effective feedforward control action.

III. TRACKING CONTROL PROBLEM FORMULATION

This section formulates the tracking control problem of soft robots. To this end, we define the tracking error in generalized coordinates as e = x r -r g . Then, the tracking error dynamics can be defined from [START_REF] Cao | Control of a soft inchworm robot with environment adaptation[END_REF] as

ė = A r e + B r (u + d e ) + A r r g -ṙg + B r d q . ( 15 
)
To deal with the modeling uncertainty and improve the tracking control performance of soft robots, we propose a feedbackfeedforward control scheme composed of three components as

u = u f f + u dc + u f b , (16) 
where u f f is the feedforward control, u dc is the disturbanceestimator based control, and u f b is the feedback control. The proposed tracking control scheme is illustrated in Fig 3. 1) Feedforward Control: The feedforward control u f f accounts for the affect of the reference signal r g , considered as a known disturbance, on the closed-loop system. Hence, this control action is designed such that

B r u f f = -(A r r g -ṙg ). ( 17 
)
The feedforward action can be designed from [START_REF] Hyatt | Configuration estimation for accurate position control of large-scale soft robots[END_REF] as

u f f = -B † r (A r r g -ṙg ). (18) 
2) Disturbance-Estimator Based Control: The lumped disturbance d e includes the nonlinearity and modeling uncertainty. Note from [START_REF] Fang | Vision-based online learning kinematic control for soft robots using local Gaussian process regression[END_REF] that d e enters in the system dynamics via the same channel as the input u, i.e., matching disturbance. Then, the disturbance-estimator based control can be designed as follows:

u dc = -def , ( 19 
)
where def is an estimate of the filtered signal d ef of the lumped disturbance d e . To estimate this disturbance, we assume that d e is of low-frequency, whose dynamics can be efficiently captured using a piecewise second-order polynomial signal [START_REF] Koenig | Unknown input proportional multiple-integral observer design for descriptor systems: application to state and fault estimation[END_REF]. Note that this assumption is suitable due to the low-frequency behaviors of soft robots. Moreover, inspired by the EID approach [START_REF] She | Equivalent-input-disturbance approachanalysis and application to disturbance rejection in dual-stage feed drive control system[END_REF], we integrate a low-pass filter with a time constant T f of the form

F(s) = 1 1 + T f s I, ( 20 
)
where s is the Laplace variable, to limit the angular-frequency band of the disturbance estimate as shown in Fig. 3. Then, the disturbance model is given as

ḋ = Jd, (21) with d 
=   d ef d e ḋe   , J =   -1 T f I 1 T f I 0 0 0 I 0 0 0   .
From ( 14) and ( 21), we propose the following Luenberger-like unknown input observer to estimate simultaneously the state x r and the unknown disturbance d e : ẋr = A r xr + B r (u + de ) + L x (y -ŷ),

ḋ = J d + L d (y -ŷ), ŷ = C r xr , (22) 
where d is the estimate of d, the observer gains L x ∈ R 2l×p and L d ∈ R 3m×p are to be designed.

Remark 3. The filter F(s) in ( 20) is integrated into the unknown input observer [START_REF] Della Santina | Model-based dynamic feedback control of a planar soft robot: Trajectory tracking and interaction with the environment[END_REF] to offer a degree of freedom to regulate the angular-frequency band for disturbance rejection. Then, the value of T f can be selected as

T f ∈ 1 10ω r , 1 5ω r ,
where ω r is the highest angular frequency selected for disturbance rejection purposes [START_REF] She | Equivalent-input-disturbance approachanalysis and application to disturbance rejection in dual-stage feed drive control system[END_REF].

The estimation error dynamics can be defined from ( 14), ( 21) and ( 22) as follows:

ε = (A o -L o C o )ε + B od d q , (23) 
with

A o = A r Br 0 J , B od = B r 0 , ε = x r -xr d -d , L o = L x L d , Br = B r 0 , C o = C r 0 .
3) Feedback Control: The feedback control aims at guaranteeing the closed-loop stability and improving the steady-state tracking performance. To this end, we consider the following proportional-integral control law:

u f b = K p (x r -r g ) + K i e i , (24) 
where K p ∈ R m×2l and K i ∈ R m×p are the feedback gains to be designed, and

ėi = C r (x r -r g ).
With u f f , u dc and u f b respectively defined in ( 18), ( 19) and ( 24), substituting the control expression (16) into system [START_REF] Fang | Vision-based online learning kinematic control for soft robots using local Gaussian process regression[END_REF], the tracking error dynamics can be represented as

ξ = (A c + B c K c )ξ + B o ε + B cd d q , (25) 
where

ξ = e e i , A c = A r 0 C r 0 , B c = B r 0 , K c = K p K i , B o = -B r K p 0 0 0 , B cd = B r 0 .
The extended closed-loop system can be defined from ( 23) and ( 25) as

ẋ = Āc B o 0 Āo x + B cd B od d q , (26) 
where x = ξ ε , and

Āc = A c + B c K c , Āo = A o -L o C o .
Since we focus on the tracking control, the performance output associated to system [START_REF] Zheng | Control of a silicone soft tripod robot via uncertainty compensation[END_REF] is the position tracking error, i.e., z = e = Cr ξ, with Cr = C r 0 . Hence, one has

z = F x, F = Cr 0 . ( 27 
)
To specify the performance of the closed-loop system, we exploit the concept of D-stability [START_REF] Chilali | Robust pole placement in LMI regions[END_REF] to design both the observer [START_REF] Della Santina | Model-based dynamic feedback control of a planar soft robot: Trajectory tracking and interaction with the environment[END_REF] and the feedback controller [START_REF] Best | A new soft robot control method: Using model predictive control for a pneumatically actuated humanoid[END_REF]. To this end, we consider an LMI region D(r, θ, α) defined as a subset of the left-half complex plane to guarantee minimum decay rate α, a minimum damping ratio ζ = cos(θ) and a maximum undamped natural frequency ω d = r sin(θ). The following lemma guarantees the D-stability of a matrix A.

Lemma 1 ([40]

). All the eigenvalues of A are located inside the region D(r, θ, α) if and only if there exists a symmetric positive definite matrix X such that

A X + XA + 2αX ≺ 0, -rX AX -rX ≺ 0, sin(θ) AX + XA cos(θ) AX -XA sin(θ) AX + XA ≺ 0.
Hereafter, we propose an effective solution for the following observer-based feedback control problem. . Moreover, the extended system (26) satisfies the following closed-loop properties. (P1) For d q (t) = 0, ∀t ≥ 0, system (26) is exponentially stable with a decay rate α > 0. For any initial condition x(0) and any bounded disturbance d q (t) ∈ B ∞ , there exists a bound η(x(0), d q ∞ ) such that x(t) ≤ η(x(0), d q ∞ ), t ≥ 0.

(P2) For ∀x(0) and ∀d q (t) ∈ B ∞ , we have

lim t→∞ sup z ≤ γ d q ∞ , γ > 0, (28) 
where the ∞ -gain is specified in Theorem 1.

Remark from ( 27) and ( 28) that a smaller value of the ∞ -gain γ leads to a better tracking control performance.

IV. EID-BASED OUTPUT FEEDBACK TRACKING CONTROL

This section provides conditions to design both the unknown input observer [START_REF] Della Santina | Model-based dynamic feedback control of a planar soft robot: Trajectory tracking and interaction with the environment[END_REF] and the feedback control law ( 24) satisfying the closed-loop specifications in Problem 1.

Theorem 1. Consider the closed-loop system [START_REF] Zheng | Control of a silicone soft tripod robot via uncertainty compensation[END_REF] and two LMI regions

D c (r c , θ c , α c ) and D o (r o , θ o , α o ). If there exist symmetric positive definite matrices X ∈ R (2l+p)×(2l+p) , Q ∈ R (2l+3m)×(2l+3m) , matrices M ∈ R m×(2l+p) , N ∈ R (2l+3m)×p
, and positive scalars µ, ν such that the optimization problem ( 29) is feasible.

minimize µ + ν, (29) 
subject to

He A o + α c Q QB od 0 -α c νI ≺ 0, (30) 
He(A c + α c X) ≺ 0, ( 31 
) -r c X A c -r c X ≺ 0, (32) 
s θc He(A c ) c θc Sym(A c ) s θc He(A c ) ≺ 0, (33) 
He(A o + α o Q) ≺ 0, ( 34 
) -r o Q A o -r o Q ≺ 0, (35) 
s θo He(A o ) c θo Sym(A o ) s θo He(A o ) ≺ 0, (36) 
  X 0 X C r Q 0 µI   0, (37) 
with

A c = A c X + B c M, A o = QA o -N C o , c θc = cos(θ c ), s θc = sin(θ c ), c θo = cos(θ o ), s θo = sin(θ o ).
Then, the feedback observer-based controller [START_REF] Best | A new soft robot control method: Using model predictive control for a pneumatically actuated humanoid[END_REF] is such that the closed-loop properties specified in Problem 1 are satisfied with a guaranteed ∞ -gain γ = √ νµ. Furthermore, the control and observer gains are respectively given by

K c = M X -1 , L o = Q -1 N. ( 38 
)
Proof. The proof is postponed to Appendix A.

Remark 4. The design procedure in Theorem 1 is recast as a convex optimization problem under LMI constraints. Here, the control gain K c and observer gain L o can be effectively computed using YALMIP toolbox and SeDuMi solver [START_REF] Löfberg | YALMIP: A toolbox for modeling and optimization in Matlab[END_REF].

Remark 5. The LMI region D c (r c , θ c , α c ) is defined to represent the dominant low-frequency dynamics of soft robots. Moreover, the damping ratio should be chosen as small as possible to avoid oscillatory behaviors of the closed-loop robot systems. However, without restrictive constraints, the LMI region D o (r o , θ o , α o ) should be specified to guarantee a fast convergence of the estimation error dynamics [START_REF] Webster | Design and kinematic modeling of constant curvature continuum robots: A review[END_REF].

V. ILLUSTRATIVE RESULTS AND EVALUATIONS

This section presents the control results obtained with both FEM-based simulations and realtime experiments. To highlight the systematic feature of the proposed tracking control method, we consider two different silicone soft robots for validations: Diamond robot and Trunk robot, whose physical prototypes are described in [START_REF] Coevoet | Soft robots locomotion and manipulation control using FEM simulation and quadratic programming[END_REF].

A. FEM-Based Validations with Diamond Robot

The Diamond robot has four soft legs, which are actuated by cables as depicted in Fig. 4. This cable-driven robot can be considered as a soft version of parallel robots. The movement of the Diamond robot is realized through a combination of bending and squeezing of its four legs. Hence, most of the PCC-based approaches [START_REF] Webster | Design and kinematic modeling of constant curvature continuum robots: A review[END_REF] are no longer suitable for dynamic modeling and control of such a soft robot. The weight of the Diamond robot is 0.5 [kg] and its height is 110 [mm] in the initial position. The material parameters of this soft robot are obtained through experiments. Then, the FEM model of the Diamond robot can be derived with 1570 nodes, leading to 9420 state variables. This high-fidelity FEM model is implemented in the SOFA open-source simulation platform [START_REF] Coevoet | Software toolkit for modeling, simulation, and control of soft robots[END_REF] for validations. Note that the modeling error between FEM-based model and the real robot is less than 10% in a workspace of 40 × 40 × 20 [mm 3 ] around the rest position of the robot [START_REF] Duriez | Control of elastic soft robots based on real-time finite element method[END_REF]. For control design, a six-order dynamical model of the Diamond robot can be obtained with the proposed POD model reduction method. The control algorithms are implemented in MATLAB/SIMULINK environment. This SIMULINK-SOFA co-simulation environment allows reducing significantly the costs related to not only the design but also the realtime validation of complex soft robots. More details on the plugin SoftRobots for the SOFA Framework with related publications can be found at the address: https://project.inria.fr/softrobot.

For the tracking control of the Diamond robot, we consider spiral trajectories of the form x(t) = 15 cos(ωt), y(t) = 15 sin(ωt), z(t) = 110 + t, [START_REF] Koenig | Unknown input proportional multiple-integral observer design for descriptor systems: application to state and fault estimation[END_REF] with ω = 1 [rad/s] for a fast trajectory tracking, and ω = 0.33 [rad/s] for a slow trajectory tracking. This trajectory is defined within the cylindrical workspace of the Diamond robot. To evaluate the control robustness performance with respect to the modeling errors, we consider two test scenarios, i.e., without and with uncertainty on Young's modulus. This latter characterizes the softness property of the silicone material, i.e., a softer material leads to a stronger oscillatory response in the open loop. Moreover, a comparison between the following FEM-based control methods is performed to demonstrate the effectiveness of the new control method:

• Method 1: Inverse kinematics based QP control [START_REF] Duriez | Control of elastic soft robots based on real-time finite element method[END_REF], [START_REF] Bieze | Design, implementation, and control of a deformable manipulator robot based on a compliant spine[END_REF].

• Method 2: Jacobian-based PID control [START_REF] Bajo | Configuration and joint feedback for enhanced performance of multi-segment continuum robots[END_REF], [START_REF] Marchese | Design, kinematics, and control of a soft spatial fluidic elastomer manipulator[END_REF].

• Method 3: Proposed EID-based control. For Method 1, the QP-based controller is composed of an PI controller and an QP solver. The PI controller aims at providing a desired action of the robot end-effector whereas the QP solver computes the actuation control through an inverse kinematic optimization. The details on the QP-based control architecture and the related tuning methods can be found in [START_REF] Bieze | Design, implementation, and control of a deformable manipulator robot based on a compliant spine[END_REF]. For Method 2, the PID controller is defined as

u(t) = J -1 K p e(t) + K i e(t)dt + K d ė(t) ,
where J is the Jacobian matrix of the soft robot, and K p , K i , K d are the PID control gains. Note that the Jacobian matrices of soft robots can be directly obtained with SOFA platform for control design. Note also that due to the low resonant frequency characteristics of soft robots, the ranges of the PID control gains are quite narrow to avoid aggressive closed-loop behaviors. Moreover, in this work the control design is only performed with reduced-order linear systems. Then, the PID controllers designed in both Method 1 and Method 2 can be empirically fine-tuned, e.g., using the well-known Ziegler-Nichols method.

1) Scenario 1 [Without Uncertainty on Young's Modulus]: For this test scenario, the Young's modulus of the FEM simulation model and the FEM control-based model of the Diamond robot are both set to 150 [KPa], i.e., no mismatch between two FEM models. The slow trajectory tracking is shown in Fig. 5. The feedforward action of the proposed controller and the inverse kinematic control of Method 1 allow for a better tracking performance during the steady-state phase compared to the PID controller. Observe in Fig. 6 that the drawbacks of Methods 1 and 2 become much more clear with a fast trajectory tracking in comparison to the EID-based method, i.e., the dynamic response of the QP-based controller is degraded and the steady-state tracking error induced by the PID controller increases. 2) Scenario 2 [With Uncertainty on Young's Modulus]: The Young's modulus of the Diamond robot implemented in SOFA platform remains 150 [KPa] as in Scenario 1. However, we modify the Young's modulus of the FEM control-based robot model to 180 [KPa] to introduce a modeling uncertainty in the control design. The control performance of the three considered methods for a slow spiral trajectory tracking is depicted in Fig. 7. Due to modeling errors and without taking into account the robot dynamics, as expected the QP-based controller leads to a worse behavior in transient responses compared to the tracking results in Scenario 1. Note that a satisfactory control performance can be maintained for both PID controller and EID-based controller in case of a slow trajectory tracking. Fig. 8 presents the fast trajectory tracking results. Since the modeling error directly affects the Jacobian matrix and the inverse kinematics, the tracking performance of the PID controller and QP controller is degraded, whereas the closed-loop behavior is preserved with the proposed controller due to its effective EID-based error compensation mechanism.

For a quantitative performance analysis, we define the following integral square tracking error (ISE) index: where ∆t is the tracking time. Fig. 9 summarizes the tracking performance comparisons in terms of ISE index [mm 2 s] between the three FEM-based control methods obtained with the 3D trajectory [START_REF] Koenig | Unknown input proportional multiple-integral observer design for descriptor systems: application to state and fault estimation[END_REF] and ∆t = 20 [s]. Remark that when there is no significant modeling uncertainty, the QP-based controller can provide a better tracking performance compared to the Jacobian-based controller. However, this latter seems to be more robust with respect to uncertainties than the QP-based controller.

ISE = ∆t 0 e(t) 2 dt, (40) 20 (a) 
We can see also that the proposed EID-based control method provides the best tracking performance in all the test scenarios.

To reveal the insights of the EID-based controller ( 16) for tracking purposes, we point out the specific role of each involved control component, i.e., feedback control u f b , feedforward control u f f , and disturbance-compensation based control u dc . To this end, we reconsider Scenario 2 with a fast trajectory tracking task, decomposed into three phases: in Fig. 10. During Phase 1, the tracking is performed with significant errors in amplitude and in phase. Integrating the feedforward control action in Phase 2 can only improve the phase error since the amplitude error is still observed due to the modeling uncertainty. Using the EID-based control law [START_REF] Wang | Visual servoing of soft robot manipulator in constrained environments with an adaptive controller[END_REF] in Phase 3, the amplitude error can be also significantly reduced with the error-compensation term u dc . Hence, the proposed method allows to achieve an effective fast (and slow) tracking control for soft robots despite the modeling errors. 

B. Experimental Validations

Hereafter, we present the tracking control results, experimentally obtained with the Trunk robot shown in Fig. 11 1) Hardware Setup: The silicone Trunk robot is composed of 14 segments to make it highly deformable. This soft robot driven by four stepper motors via cables mounted on the robot body to guarantee the accessibility of each direction in the workspace. The position of the end-effector, e.g., system output, is measured by a Polhemus Liberty magnetic motion tracking sensor. The weight of the Trunk robot is 40 [g] and its length is 195 [mm] in the initial position. The FEM model of this robot has 1944 nodes, leading to 3324 state variables. After performing the POD model reduction, a reduced four-order dynamical Trunk robot model can be obtained for control design. Since the workspace of the Trunk robot is a surface, then it is sufficient to determine the position of the end-effector with a 2D reference trajectory. For tracking control purposes, we consider the spiral trajectory x(t) = 0.2t cos(ωt), y(t) = 0.2t sin(ωt),

with ω = 1 [rad/s], corresponding to a fast trajectory tracking. Note that the linear speed of the spiral reference is continuously increasing according to the radius, making the tracking task more challenging.

2) Tracking Control Performance: For this trajectory tracking, we examine the experimental results obtained with two dynamic control methods: Jacobian-based PID control and EIDbased control. Fig. 12 depicts the evolutions of the end-effector position tracking in the xy-plane, performed by both considered controllers. We can see clearly that compared to Jacobian-based PID control, the proposed EID-based control method provides a significant improvement in terms of tracking performance. The tracking performance along x-axis and y-axis directions, and the corresponding force control inputs obtained with the spiral reference trajectory [START_REF] Löfberg | YALMIP: A toolbox for modeling and optimization in Matlab[END_REF] are given in Fig. 13. Observe in Figs. 13(c) and (d) that due to the effects of the feedforward action, the proposed EID-based controller provides a faster response with respect to the Jacobian-based PID controller, which allows for a better dynamic tracking performance as shown in Figs. 13(a) and (b). We can also see in Figs. 13(c) and (d) that the control inputs of both controllers start at the same values corresponding to the robot equilibrium point. Moreover, there is only a small amplitude difference concerning the x-axis force control inputs. However, along the y-axis the proposed EID-based controller provides a larger control action to better compensate the timevarying disturbance due to the gravity effect, which improves the control precision performance as indicated in Fig. 12. For quantitative comparison purposes, the ISE indices, defined in [START_REF] Chilali | Robust pole placement in LMI regions[END_REF], are computed for both EID-based control and Jacobianbased PID control over a time duration ∆t = 22 [s] as 153.3 [mm 2 s] and 778.9 [mm 2 s], respectively. For this experimental test, we can note a tracking performance improvement of about 80% in terms of ISE index. The validation videos can be found at the address: https://bit.ly/2VVwtLn.

VI. CONCLUDING REMARKS

A dynamic FEM model-based framework has been proposed for the tracking control of soft robots. For the control design, the large-scale FEM robot model is effectively reduced with a POD model reduction method. Using an EID approach, we propose an observer-based tracking control structure including three components, i.e., feedback control, feedforward control, error-compensation control. This control structure allows for an effective tracking control performance despite the presence of modeling uncertainty and unknown disturbances. To improve the closed-loop responses, the concept of LMI regions is exploited together with an ∞ control design via Lyapunov stability theory. The effectiveness of the proposed control method has been first demonstrated with high-fidelity SOFA simulations performed on a Diamond soft robot. Then, experimental validations have been also carried out with a Trunk robot. Under the considered experimental conditions, the proposed control method shows a clear tracking performance improvement compared to the existing Jacobian-PID control method, i.e., about 80% of improvement in terms of ISE index. Future works focus on extending the proposed method using linear parameter varying (LPV) framework and generalized proportional integral observer structures to deal with nonlinearities and modeling uncertainties caused by large deformations of soft robots. Extensions of the proposed results for the tracking control of soft robots in interaction with an unstructured environment are another promising direction.

APPENDIX A PROOF OF THEOREM 1

By Lemma 1, we can show that LMI conditions [START_REF] De Payrebrune | On constitutive relations for a rodbased model of a pneu-net bending actuator[END_REF], [START_REF] Chenevier | Reduced-order modeling of soft robots[END_REF] and [START_REF] Thieffry | Control design for soft robots based on reduced-order model[END_REF] (respectively [START_REF] She | Equivalent-input-disturbance approachanalysis and application to disturbance rejection in dual-stage feed drive control system[END_REF], [START_REF] Wang | Modified equivalent-inputdisturbance approach to improving disturbance-rejection performance[END_REF] and [START_REF] Antoulas | Approximation of Large-Scale Dynamical Systems[END_REF]) guarantee that the eigenvalues of the dynamic matrix Āc of the tracking error system (25) (respectively Āo of the estimation error system
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 1 Fig. 1. Illustrations of FEM modeling for a Trunk robot. (a) Visual model. (b) FEM model with a coarse mesh. (c) FEM model with a medium-size mesh.
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 2 Fig. 2. Singular values of the position snapshots of a Trunk robot. (a) Evolution of the singular values. (b) Six first singular values.
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 3 Fig. 3. EID observer-based tracking control structure for soft robots.
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 1 Consider two LMI regions D c (r c , θ c , α c ) and D o (r o , θ o , α o ). Determine the control gain K c (respectively the observer gain L o ) such that the poles of the dynamic matrix Āc (respectively Āo ) remain inside the region D c (r c , θ c , α c ) (respectively D o (r o , θ o , α o ))
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 4 Fig. 4. FEM-based schematic of the Diamond robot. The red point represents the end-effector and the gray lines represent the driving cables.
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 5 Fig. 5. Slow spiral trajectory tracking in Scenario 1.
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 6 Fig. 6. Fast spiral trajectory tracking in Scenario 1.
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 78 Fig. 7. Slow spiral trajectory tracking in Scenario 2.
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 9 Fig. 9. Summary of the ISE performance comparisons. (a) Slow tracking without uncertainty. (b) Fast tracking without uncertainty. (c) Slow tracking with uncertainty. (d) Fast tracking with uncertainty.
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 10 Fig. 10. Three-phase fast trajectory tracking along the y-axis in Scenario 2.
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 11 Fig. 11. Trunk robot. (a) Robot platform, (b) Stepper motors.
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 12 Fig. 12. Experimental results of spiral trajectory tracking control. (a) Jacobian-PID control. (b) Proposed EID-based control.

Fig. 13 .

 13 Fig. 13. Comparison of spiral trajectory tracking control. (a) Tracking performance along x-axis. (b) Tracking performance along y-axis. (c) Force control input in x-axis direction. (d) Force control input in y-axis direction.

 [START_REF] Webster | Design and kinematic modeling of constant curvature continuum robots: A review[END_REF]) are confined in the LMI region D c (r c , θ c , α c ) (respectively D o (r o , θ o , α o )).

Pre-and postmultiplying inequality [START_REF] De Payrebrune | On constitutive relations for a rodbased model of a pneu-net bending actuator[END_REF] with P = X -1 while considering [START_REF] Prajna | POD model reduction with stability guarantee[END_REF], it follows that He P Āc + α c P ≺ 0.

(

Let us denote

Note that Π o ≺ 0 and Π c ≺ 0 due to conditions [START_REF] Laschi | Soft robot arm inspired by the octopus[END_REF] and [START_REF] Yoneyama | Output stabilization of Takagi-Sugeno fuzzy systems[END_REF], respectively. Since Π c only depends on the control gain K c and matrix P , and Π o only depends on the observer gain L o and matrix Q, there always exists a positive scalar τ > 0, sufficiently small, such that [START_REF] Yoneyama | Output stabilization of Takagi-Sugeno fuzzy systems[END_REF] 

with Φ = P B o P B cd . By Schur complement lemma [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], we can prove that condition ( 43) is equivalent to

From the definitions of Π c , Π o , and Φ, condition (44) can be rewritten as

To study the stability of the extended closed-loop system (26), we consider a Lyapunov function candidate as

Now, pre-and postmultiplying (45) with x d q and its transpose, the following condition can be obtained after some algebraic manipulations:

where V (x) is the time derivative of the Lyapunov function (46) along the trajectory of the closed-loop system [START_REF] Zheng | Control of a silicone soft tripod robot via uncertainty compensation[END_REF]. From the relation of vector-norms, inequality (47) implies that

Applying the comparison lemma [START_REF] Khalil | Nonlinear Systems[END_REF]Lemma 3.4] to (48), it follows that

Note that

with α 1 = λ min (diag(τ P, Q)) and α 2 = λ max (diag(τ P, Q)).

It follows from ( 49) and (50) that

which guarantees Property (P1), i.e., the input-to-state stability of system [START_REF] Zheng | Control of a silicone soft tripod robot via uncertainty compensation[END_REF] with respect to any disturbance d q ∈ B ∞ .

Let us consider the definition of the performance output z in [START_REF] Angelini | Decentralized trajectory tracking control for soft robots interacting with the environment[END_REF]. Pre-and postmultiplying inequality [START_REF] Benner | Model Reduction and Approximation: Theory and Algorithms[END_REF] with diag(P, I, I), it follows that

Applying Schur complement lemma and congruence transformation [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] to inequality (51), it follows that

with τ > 0. Pre-and postmultiplying condition (52) with x and its transpose yields

From ( 49) and (53), we can deduce that

For any initial condition x(0) and any bounded signal d q , it follows from (54) that

which guarantees Property (P2). This concludes the proof.