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Adaptive gain-scheduling control for continuous-time systems with polytopic
uncertainties: An LMI-based approach

Víctor Costa da Silva Camposa,∗, Anh-Tu Nguyenb, Reinaldo Martínez Palharesa

aDepartment of Electronics Engineering, Universidade Federal de Minas Gerais, Brazil
bLAMIH-CNRS laboratory UMR 8201, INSA Hauts-de-France, Université Polytechnique Hauts-de-France, Valenciennes, France

Abstract

We develop a new adaptive gain-scheduling control scheme for continuous-time linear systems with polytopic uncertainties. The
gain-scheduled control law is proposed as a convex sum of a fixed set of controller gains, exploiting the polytopic representation
of the system uncertainty, which is not possible with classical robust control results in the literature. To realize this scheme, an
adaptation law is proposed to adaptively provide the tuning parameter for the gain-scheduling implementation. The admissible
domain of the stabilizing control feedback gains, defined by the fixed set of controller gains, can be determined offline by solving
a set of linear matrix inequality constraints over a scalar line search. Using Lyapunov-based arguments, the proposed design
conditions and the adaptation law ensure that all closed-loop signals are bounded. In particular, if the uncertain parameters are
not time-varying, then the system states asymptotically converge to the origin. Theoretical arguments and appropriate numerical
illustrations are provided to demonstrate the effectiveness of the proposed control scheme.

Keywords: Robust control, adaptive control, linear systems, polytopic uncertainty, parameter estimation, linear matrix inequality.

1. Introduction

Dealing with system uncertainty is a central issue in con-
trol theory and applications [1]. Within this context, robust
control of uncertain polytopic systems [2] and gain-scheduling
control of linear parameter-varying (LPV) systems [3] have re-
ceived considerable attention. An appealing feature of these
approaches is that using Lyapunov-based arguments, a large
number of robust analysis and control design problems can be
reformulated as convex optimization procedures under linear
matrix inequalities (LMIs), which are effectively solved with
numerical solvers [2]. Significant advances have been achieved
with various classes of parameter-dependent Lyapunov func-
tions and/or control laws, see e.g. [4–9] and related references.

A key assumption for the gain-scheduling technique is that
the time-varying parameters must be available online (measured
or estimated) to design parameter-dependent control laws for
LPV systems [3, 10–12]. The design of LPV controllers with
inexact scheduling parameters affected by bounded uncertain-
ties has been discussed in [13–16]. However, for uncertain

∗Corresponding author. A preliminary version of this work appeared in the
proceedings of the 55th IEEE Conference on Decision and Control, see Sec-
tion 1 for the new contributions of the present work. This work is partially
supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
– Brasil (CAPES) – Finance Code 001, Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico – Brasil (CNPq) - grant number 426207/2018-1
and 307933/2018-0, and Fundação de Amparo à Pesquisa do Estado de Minas
Gerais - Brasil (FAPEMIG) - grant number PPM-00053-17.

Email addresses: victor@cpdee.ufmg.br (Víctor Costa da Silva
Campos), nguyen.trananhtu@gmail.com (Anh-Tu Nguyen),
rpalhares@ufmg.br (Reinaldo Martínez Palhares)

polytopic systems, the uncertain parameters are essentially un-
known for control design. Hence, the main goal has been to
propose less conservative methods to design a linear parameter-
independent (LPI) control law [17–19]. The so-called S-variable
approach has played a key role to accomplish this goal [20].
However, an LPI controller may not exist or may not be found
with numerical routines [21]. Moreover, using a single LPI con-
troller may lead to poor closed-loop performance when the un-
certainty domain is large.

Adaptive control is known as another effective methodol-
ogy to deal with system uncertainties [22]. Generally speak-
ing, two parameter estimation schemes can be distinguished in
adaptive control [23], i.e., direct [24, 25] and indirect [22, 26–
28] schemes. In a direct adaptive scheme, the controller param-
eters are directly updated online without requiring any estima-
tion of the plant dynamics. However, the plant parameters must
be first estimated for control design/implementation in an in-
direct adaptive scheme. Hence, parameter estimation is a core
component in the second scheme. Up to now, several parameter
estimation algorithms have been proposed in the literature for
adaptive control, see e.g. [26–31] and a recent survey in [32].

Motivated by the advantages of gain-scheduling control and
indirect adaptive control, we developed in the preliminary ver-
sion [33] a new robust control method for linear time-invariant
(LTI) systems with polytopic uncertainties. This method can
be viewed as an adaptive gain-scheduling scheme for uncertain
polytopic systems, whose fixed set of controller gains, which
represent the possible values the stabilizing control feedback
gains may assume, is predetermined offline by solving a set
of LMIs over a scalar line search. Using Lyapunov-based ar-
guments, we prove that the proposed adaptive gain-scheduling
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controller guarantees the asymptotic convergence of the system
state to the origin and the stability of the parameter adaptation
scheme.

One of the attractive characteristics of the adaptive control
law proposed in [33] is that the control gains and the terms
defining the adaptation law are found offline by solving an op-
timization problem subject to matrix inequalities. In that same
manner, [34] presents a set of conditions for a system to be
strictly positive real (SPR) in closed loop, which allows the use
of a simple adaptive control law, [35] presents conditions which
ensure that, given an almost strictly positive real system, a sim-
ple adaptive control law will guarantee an upper bound for the
H∞ norm, and [36] provides a set of conditions that ensure that
an adaptive diagonal output feedback control law guarantees an
L2 performance in closed loop.

This paper generalizes the result in our conference version
[33]1 using a parameter-dependent Lyapunov function and al-
lowing the uncertain parameters to be time-varying. Such a
generalization is not trivial since both the parameter adapta-
tion law and the control law in [33] depend on the inverse of
the Lyapunov matrix. To avoid a nonconvex control formula-
tion, we judiciously introduce S-variables in the design proce-
dure through specific algebraic equations and appropriate ma-
trix properties. As a result, the Lyapunov matrix is no longer
involved in the parameter adaptation law and the control gain
expression, leading to an LMI-based control formulation. In
particular, it is possible to prove theoretically that the proposed
formulation is less conservative than some existing robust con-
trol results, which cannot be demonstrated in [33]. Illustrative
examples numerically confirm the interests of the new adaptive
gain-scheduling scheme.

Notation. Rm×n is the set of m-by-n real matrices. For a
vector x, xi denotes its ith entry and the Euclidean norm of x is
defined by ‖x‖ =

√
xTx. Given a matrix X , XT indicates its

transpose, X−1 indicates its inverse, and He(X) = X + XT .
For symmetric matrices P and X , P � X (respectively X ≺
Y ) if and only if P −X is positive (respectively negative) def-
inite. diag(X,Y ) denotes a block-diagonal matrix composed
of matrices X and Y , X ⊗ Y denotes the Kronecker product
of X and Y . ? denotes a component that can be inferred by
symmetry in a symmetric matrix. I denotes the identity matrix
of appropriate dimensions. Kr = {i ∈ N : 1 ≤ i ≤ r} de-
notes the set of positive integer indices less than or equal to r.
Arguments are omitted whenever their meaning is clear.

2. Problem Statement

Consider the following uncertain system:

ẋ(t) = A(α)x(t) +B(α)u(t), (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control in-
put, and α =

[
α1 . . . αr

]T
is the uncertain, possibly time-

varying, parameter vector. Matrices A(α) and B(α) are not

1Note that a quadratic parameter-independent Lyapunov function was used
in [33] to derive the design conditions.

precisely known, but belong to a polytopic uncertainty domain
given by

[
A(α) B(α)

]
=

r∑
i=1

αi
[
Ai Bi

]
, α ∈ Ξr,

where the unit simplex Ξr is defined as

Ξr =

{
α ∈ Rr : 0 ≤ αi ≤ 1,

r∑
i=1

αi = 1

}
.

Note that r is the number of vertices of the polytope, and the
known matrices (Ai, Bi), for i ∈ Kr, are the vertices.

Since α is unknown, a parameter-dependent control law of
the form u(t) =

∑r
i=1 αiKix(t) cannot be implemented for

practical uses. Hence, a single LPI control law u(t) = Kx(t),
i.e., Ki = K, for ∀i ∈ Kr, has been largely used for control de-
sign of uncertain polytopic systems in most of existing results,
see e.g. [2, 17–20] and related references.

Note that a parameter-independent control law cannot fully
exploit the polytopic structure of system (1). Hence, the results
obtained with an LPI control law may be conservative, espe-
cially when the domain of the uncertainty is large. To over-
come this major drawback, we consider a parameter-dependent
controller of the form

u(t) =

r∑
i=1

α̂i(t)Kix(t) = K(α̂)x(t), (2)

where the control gains Ki ∈ Rm×n, for i ∈ Kr, and the time-
varying scheduling parameter α̂(t) =

[
α̂1(t) . . . α̂r(t)

]T
are adapted in closed-loop. Throughout this paper, we con-
sider adaptation laws which ensure that

∑r
i=1 α̂j(t) = 1, so

that from (1) and (2), the closed-loop system is expressed by

ẋ =

r∑
i=1

r∑
j=1

αiα̂j(Ai +BiKj)x. (3)

We are now in the position to formulate the control problem.

Problem 1. Given a polytopic uncertain system (1). Deter-
mine the control gains Ki, for ∀i ∈ Kr, and the time-varying
scheduling parameter α̂(t) such that the closed-loop system (3)
is asymptotically stable for ∀α ∈ Ξr.

3. Adaptive Gain-Scheduling Control Design

Based on Lyapunov arguments and an adaptive parameter
tuning, two theorems are presented in this next section. The
first one presents a novel set of LMI-based conditions to deal
with the control problem when the uncertain parameters are
constant, i.e. α̇ = 0. Whereas the second one modifies the
first theorem conditions and adaptive control law to deal with
the case of time-varying uncertain parameters with a bounded
variation rate, |α̇j | ≤ φj , for j ∈ Kr.
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Theorem 1. Consider an uncertain system (1) with α ∈ Ξr
constant and a parameter-dependent controller (2). If there ex-
ist symmetric positive definite matrices Pi ∈ Rn×n, symmet-
ric matrices Jii ∈ Rn×n, M ∈ Rrn×rn, H ∈ Rm×m, V ∈
Rrn×rn, Ωi ∈ Rn×n, Λi ∈ Rn×n, and matrices Jij ∈ Rn×n
(i 6= j), Jji = JTij , Lij ∈ Rn×n, L̄i ∈ Rn×n, N ∈ Rn×n,
E ∈ Rm×n, Xi ∈ Rm×n , with i, j ∈ Kr, and a positive scalar
µ, such that

Qii ≺ 0, Qij + Qji ≺ 0, i, j ∈ Kr, i < j (4)
1

2

(
S + S T −M

)
− V � 0 (5)[

V ?
X H

]
� 0 (6)[

J ?
L T 2M

]
� 0 (7)

where X =
[
X1 − E · · · Xr − E

]
and

Qij = He

[
AiN +BiXj + 1

2Jij −N
Pi + µ(AiN +BiXj)

µ2

2 BiHB
T
i − µN

]
(8)

J =

J11 . . . J1r

...
. . .

...
Jr1 . . . Jrr

 (9)

L =

L11 + L̄1 . . . L1r + L̄1

...
. . .

...
Lr1 + L̄r . . . Lrr + L̄r

 (10)

S =

He(B1X1) + Ψ11 . . . He(B1Xr) + Ψr1

...
. . .

...
He(BrX1) + Ψ1r . . . He(BrXr) + Ψrr

 (11)

with Ψij = Ωi + Λj + Lji, for i, j ∈ Kr. Then, the controller
(2) together with its parameter adaptation law

˙̂αj(t) = gj(t)−
1

r

r∑
k=1

gk(t),

r∑
j=1

α̂j(0) = 1,

where

gj(t) = −γ
r∑

k=1

α̂kx(t)TRkjx(t), γ > 0,

Rkj = N−1LkjN
−1 +N−1BkKj +KT

j B
T
k N
−1,

(12)

guarantee that the states of the closed-loop system (3) asymp-
totically converge to the origin and that all closed-loop signals
are bounded. Furthermore, the control gains are given by

Ki = XiN
−1, i ∈ Kr. (13)

Proof. Consider a Lyapunov candidate function of the form

V(x,∆α) = xTP(α)x +
1

2γ

r∑
j=1

∆α2
j ,

where ∆αj = α̂j − αj and

P(α) =

r∑
i=1

αiPi, Pi = N−TPiN
−1, i ∈ Kr. (14)

Note that condition (4) ensures the existence of N−1. Hence,
by definition (14), matrix P(α) is well defined and positive
definite since Pi � 0, ∀i ∈ Kr. As the unknown parameters αj
are constant, then the time derivative of V(x,∆α) is given by

V̇(x,∆α) =

[
x
ẋ

]T [
0 P(α)
P(α) 0

] [
x
ẋ

]
+

1

γ

r∑
j=1

∆αj

(
gj −

1

r

r∑
k=1

gk

)
. (15)

The adaptation law includes the projection term − 1
r

∑r
k=1 gk,

which ensures that, if
∑r
j=1 α̂j(0) = 1, then

∑r
j=1 α̂j(t) =

1, ∀t. This, in turn, implies that
∑r
j=1 ∆αj = 0 and

r∑
j=1

∆αj

(
1

r

r∑
k=1

gk

)
= 0. (16)

Using the S-variable approach [20], and considering the closed-
loop dynamics in (3), we have that[

x
ẋ

]T [
0 P(α)
P(α) 0

] [
x
ẋ

]
=[

x
ẋ

]T ([
0 P(α)
P(α) 0

]
+He

([
N−T

µN−T

] [
AT (α) +KT (α̂)BT (α)

−I

]T))[
x
ẋ

]
(17)

which allows decoupling the Lyapunov parameter matrix from
the system’s dynamics as well as introducing the slack variable
N . From (16) and (17), it follows that (15) can be rewritten as

V̇(x,∆α) =

r∑
i=1

r∑
j=1

αiα̂j

[
x
ẋ

]T [
Q

(11)
ij ?

Q
(21)
ij Q

(22)
ij

][
x
ẋ

]

+
1

γ

r∑
j=1

∆αjgj , (18)

with

Q
(11)
ij = N−TAi +ATi N

−1 +N−TBiKj +KT
j B

T
i N
−1

Q
(21)
ij = N−TPiN

−1 −N−1 + µ
(
N−TAi +N−TBiKj

)
Q

(22)
ij = −µ

(
N−1 +N−T

)
.
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Note that α̂j = αj + ∆αj . Then, substituting gj from (12) to
(18), it follows that

V̇(x,∆α) =

r∑
i=1

r∑
j=1

αiαj

[
x
ẋ

]T [
Q

(11)
ij ?

Q
(21)
ij Q

(22)
ij

] [
x
ẋ

]

+2µ

r∑
i=1

r∑
j=1

αi∆αjx
TKT

j B
T
i N
−1ẋ

+

r∑
j=1

r∑
i=1

∆αjαix
THe

(
KT
j B

T
i N
−1
)
x

−
r∑
j=1

r∑
k=1

∆αjα̂kx
TN−1LkjN

−1x

−
r∑
j=1

r∑
k=1

∆αjα̂kx
THe

(
KT
j B

T
i N
−1
)
x. (19)

Note that

2µ

r∑
i=1

r∑
j=1

αi∆αjx
TKT

j B
T
i N
−1ẋ

≤
r∑
i=1

r∑
j=1

∆αi∆αjx
TKT

i H
−1Kjx

+ µ2
r∑
i=1

αiẋ
TN−TBiHB

T
i N
−1ẋ, (20)

for any matrix of appropriate dimension H � 0. Then, consid-
ering the variable transformation x = Nz, it follows from (19)
and (20) that

V̇(x,∆α) ≤
r∑
i=1

r∑
j=1

αiαj

[
z
ż

]T [
Q̂

(11)
ij ?

Q̂
(21)
ij Q̂

(22)
ij

] [
z
ż

]

−
r∑
j=1

r∑
i=1

∆αj∆αiz
TΥijz

−
r∑
j=1

r∑
i=1

∆αjα̂iz
TLijz, (21)

with Υij = BiXj +XT
j B

T
i −XT

i H
−1Xj , and

Q̂
(11)
ij = AiN +NTATi +BiXj +XT

j B
T
i

Q̂
(21)
ij = Pi −NT + µ (AiN +BiXj)

Q̂
(22)
ij = µ2BiHB

T
i − µ

(
N +NT

)
.

Using again the relation α̂i = αi + ∆αi, it follows from condi-
tion (21) that

V̇(x,∆α) ≤
r∑
i=1

r∑
j=1

αiαj

[
z
ż

]T [
Q̂

(11)
ij ?

Q̂
(21)
ij Q̂

(22)
ij

] [
z
ż

]

−
r∑
j=1

r∑
i=1

∆αj∆αiz
TΥijz

−
r∑
j=1

r∑
i=1

∆αj∆αiz
TLijz−Π(z, α), (22)

with Π(z, α) =
∑r
j=1

∑r
i=1 ∆αjαiz

TLijz. Since
∑r
j=1 ∆αj =

0, we can introduce slack variables L̄i in Π(z, α), leading to

Π(z, α) =

r∑
j=1

r∑
i=1

∆αjαiz
T
(
Lij + L̄i

)
z

= zT
(
αT ⊗ I

)
L (∆α⊗ I) z, (23)

with L in (10) and ∆α =
[
∆α1 ∆α2 . . . ∆αr

]T
. Since

−2
(
αT ⊗ I

)
L (∆α⊗ I) �

(
∆αT ⊗ I

)
M(∆α⊗ I)

+
(
αT ⊗ I

)
LM−1L T (α⊗ I),

and inequality (7) implies that 1
2LM−1L T � J , with J

defined in (9), it follows that

−
(
αT ⊗ I

)
L (∆α⊗ I)

�
r∑
i=1

r∑
j=1

αiαjJij +
1

2

(
∆αT ⊗ I

)
M(∆α⊗ I). (24)

From (22), (23) and (24), it follows that

V̇(x,∆α) ≤
r∑
i=1

r∑
j=1

αiαj

[
z
ż

]T
Qij

[
z
ż

]

−
r∑
j=1

r∑
i=1

∆αj∆αiz
T
(
BiXj +XT

j B
T
i + Lij

)
z

+

r∑
j=1

r∑
i=1

∆αj∆αiz
T
(
XT
i H

−1Xj

)
z

+
1

2
∆αT

(
zT ⊗ I

)
M(z⊗ I)∆α, (25)

with Qij defined in (8). Once again, we make use of the fact
that

∑r
i=1 ∆αi = 0 to introduce slack variables, leading to

r∑
j=1

r∑
i=1

∆αj∆αiz
T
(
BiXj +XT

j B
T
i + Lij

)
z

=

r∑
i=1

r∑
j=1

∆αi∆αjz
T
(
BiXj +XT

j B
T
i + Lij + Λi + Ωj

)
z,

(26)

for any symmetric matrices Λi and Ωj of appropriate dimen-
sions, with i, j ∈ Kr. A suitable slack matrix E can also be
introduced, leading to

r∑
j=1

r∑
i=1

∆αj∆αiz
T
(
XT
i H

−1Xj

)
z

=

r∑
j=1

r∑
i=1

∆αj∆αiz
T
(
XT
i − ET

)
H−1(Xj − E)z. (27)

To obtain LMI-based design conditions, an upper bound for this
term is assured from inequality (6), which implies that

r∑
j=1

r∑
i=1

∆αj∆αiz
T
(
XT
i − ET

)
H−1(Xj − E)z

≤ ∆αT
(
zT ⊗ I

)
V (z⊗ I)∆α. (28)
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Taking into account (26), (27) and (28), it follows from inequal-
ity (25) that

V̇(x,∆α) ≤
r∑
i=1

r∑
j=1

αiαj

[
z
ż

]T
Qij

[
z
ż

]
−∆αT

(
zT ⊗ I

)
Σ(z⊗ I)∆α, (29)

where Σ = 1
2

(
S + S T −M

)
−V and S defined in (11). It is

clear now that conditions (4) and (5) guarantee V̇(x,∆α) ≤ 0.
Furthermore, note from condition (29) that V̇(x,∆α) = 0 only
if x = 0. By LaSalle’s invariance principle [37], we conclude
that the conditions in Theorem 1 guarantee that the state of the
closed-loop uncertain system (3) asymptotically converges to
the origin, i.e., limt→∞ x = 0.

Remark 1. From the design conditions in Theorem 1, by se-
lecting Xi = X = E and Lij = Li = −L̄i, for ∀i, j ∈ Kr, we
can make the matrices Jij � εI , H � εI and M � εI , with an
arbitrarily small scalar ε > 0. Then, the conditions

He

[
AiN

T +BiX Pi
µ
(
AiN

T +BiX
)
−N −µN

]
≺ 0, i ∈ Kr.

can be directly recovered. This means that given the same
Lyapunov candidate function, the design results obtained from
Theorem 1 include those given by [33, Lemma 2], which is a
common set of conditions obtained from either the S-variable
approach or Finsler’s lemma [20]. This inclusion cannot be
proved with the results proposed in our preliminary work [33].
In particular, following similar arguments with appropriate choices
of the decision variables N = P = Pi, Xi = E, for ∀i ∈ Kr,
M = εI ,H = εI , with an arbitrarily small scalar ε > 0, we can
also precisely recover the control results given in [33, Theorem
1] from the proposed design conditions.

Theorem 2. Consider an uncertain system (1) where the time-
varying parameter α(t) ∈ Ξr is with a bounded variation rate,
i.e. |α̇j | < φj , for j ∈ Kr. If the design conditions in Theorem
1 are satisfied with a fixed Lyapunov matrix, i.e. Pi = P , for
∀i ∈ Kr, and Qij in (4) given by

Qij = He

[
AiN +BiXj + 1

2Jij+σP −N
P + µ(AiN +BiXj)

µ2

2 BiHB
T
i − µN

]
,

with σ > 0, instead of expression (8). Then, the adaptive con-
troller (2) guarantees that the states of the closed-loop system
(3) are ultimately bounded by

‖x‖ ≤

√∑r
j=1

(
φj + σ

4

)
γσλmin

, (30)

with λmin the smallest eigenvalue of N−TPN−1, and γ > 0 a
learning parameter of the adaptation law. The control gains are
given in (13) while the parameter adaptation law is defined as

˙̂αj(t)= PΞr

(
gj(t)−

1

r

r∑
k=1

gk(t)

)
, α̂(0) ∈ Ξr,

gj(t)= −γ

(
r∑

k=1

α̂kx(t)TRkjx(t)

)
− σ

2

(
α̂j −

1

2

)
,

with γ > 0, Rkj given by (12) and PΞr a projection that guar-
antees that α̂(t) ∈ Ξr, for ∀t > 0.

Proof. As presented in adaptive control theory, the term intro-
duced in the Lyapunov stability analysis by a projection onto a
convex set can only make the Lyapunov function’s time deriva-
tive more negative, and can be disregarded [22, Chapter 4.4].
Hence, following the proof from Theorem 1, we can prove that

V̇(x,∆α)≤ −σxTPx +
1

γ

r∑
j=1

∆αj

(
−α̇j −

σ

2

(
α̂j −

1

2

))
.

Using the fact that α̂j = αj + ∆αj and due to the projection,
|∆αj | < 1, it follows that

V̇(x,∆α) ≤ −σV(x,∆α) +
1

γ

r∑
j=1

(
|α̇j |+

σ

4

)
≤ −σV(x,∆α) +

1

γ

r∑
j=1

(
φj +

σ

4

)
. (31)

Integrating both sides of (31) from 0 to t, it follows that

V(x,∆α) ≤ V(0) +
(
1− e−σt

)(∑r
j=1

(
φj + σ

4

)
γσ

)
.

Finally, the ultimate bound given in (30) is derived using the
fact that xTN−TPN−1x ≤ V(x,∆α).

Remark 2. Note that since the term − 1
r

∑r
k=1 gk(t) already

guarantees that
∑r
k=1 α̂j(t) = 1, the projection PΞr

only
needs to guarantee that 0 ≤ α̂(t) ≤ 1 without breaking the
constraint already imposed. To do so, it checks if α̂j = 0 and
˙̂αj < 0, or if α̂j = 1 and ˙̂αj > 0, for ∀j ∈ Kr. If any of
those affirmations is true, then it makes ˙̂αj = 0, for ∀j ∈ Kr.
Otherwise, it does not make any change.

4. Illustrative Examples

This section presents two illustrative examples to demon-
strate the effectiveness of the proposed control method. All
numerical optimizations are performed with Matlab software
using YALMIP toolbox [38] and Mosek solver.

Example 1 (Comparative study). Consider the following un-
certain polytopic system taken from Example 1 in [33]:

ẋ =

4∑
i=1

αi(Aix +Biu), α ∈ Ξ4, (32)

with

A1 =

[
−8.1818 0
0.0909 0

]
, B1 =

[
−18.1818

0.0909

]
,

A2 =

[
−1.6364 0
0.0909 0

]
, B2 =

[
−3.6364
0.0909

]
,

A3 =

[
10(k−1)
k+1 0
k
k+1 0

]
, B3 =

[−20
k+1
k
k+1

]
,

A4 =

[
2(k−1)
k+1 0
k
k+1 0

]
, B4 =

[ −4
k+1
k
k+1

]
,
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and k is a positive parameter. The goal here is to determine
the largest feasible value of k > 0, denoted by k∗, for which a
control solution can be found for system (32). Table 1 shows the
results obtained with the design conditions in Theorem 1 and
related existing control approaches. Specifically, the proposed
control conditions are compared to the adaptive conditions in
[33], and fixed-gain conditions (i.e., linear control laws) in [2,
17–19] (without taking into account the disturbances).

Table 1: Maximum feasible value of k > 0 in Example 1.

Design conditions k∗

Theorem 1, µ = 10−11 30.32
[33, Theorem 1] 11.80
[19, adapted Theorem 1], ξ = −0.999, ε = 0.11 9.77
[18, adapted Theorem 1], ξ = 10−11 9.77
[17, adapted Lemma 3.1], ε = 0.99× 10−5 9.74
[2, equation (7.12)] 9.76

Observe from Table 1 that the new control approach pro-
vides a significant improvement compared to the previous adap-
tive result in [33] which, for this example, already outperforms
the existing linear robust control approaches.

Example 2 (Physically motivated system). Consider a brush-
less DC (BLDC) motor system whose dynamics is given by

ẋ =

6∑
i=1

αi(θ)(Aix +Bu), α(θ) ∈ Ξ6, (33)

with x =
[
ia ib ic ω

]T
, u =

[
va vb vc

]T
. The states

ia, ib and ic represent the phase currents and ω is the angular ve-
locity of the motor. The control inputs va, vb and vc respectively
represent the voltage of each phase. The uncertain parameters
αi(θ), for i ∈ K6, are functions of the unmeasurable angle θ
of the motor shaft. Using the parameters in the datasheet of
the BG75 × 75 SI motor from Dunkermotoren company, the
state-space matrices of system (33) are expressed as follows:

Ai =


−111.11 0 0 βφi1

0 −111.11 0 βφi2
0 0 −111.11 βφi3

δφi1 δφi2 δφi3 −4.65



B =


τ 0 0
0 τ 0
0 0 τ
0 0 0

 , φi =
[
φi1 φi2 φi3

]
,

with β = 128.25, δ = −1825.2, τ = 1587.3, and

φ1 =
[
−1 1 0

]
, φ2 =

[
−1 0 1

]
,

φ3 =
[
0 −1 1

]
, φ4 =

[
1 −1 0

]
,

φ5 =
[
1 0 −1

]
, φ6 =

[
0 1 −1

]
.

Note that the parameter α(θ) of system (33) is unknown and
time-varying. In this case, conditions from [2, 17–19] are in-
feasible, whereas conditions from Theorem 2 are feasible with
µ ∈

[
10−10, 10−4

]
.

For illustrations, Figure 1 depicts the closed-loop state in-
duced by the adaptive gain-scheduling controller obtained with
µ = 5 × 10−5, σ = 0.2 and γ = 10−3. The uncertain time-
varying parameters αi(θ(t)), the respective estimated param-
eters and control input are shown in Figure 2. Note that the
obtained closed-loop behavior physically corresponds to that of
the BLDC motor during a braking phase.

0 0.01 0.02 0.03 0.04 0.05 0.06
-50

0

50

0 0.01 0.02 0.03 0.04 0.05 0.06
0

1000

2000

Figure 1: States from the BLDC motor in Example 2 in closed loop with the
adaptive controller found using the conditions from Theorem 2.
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0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.2

0.4

0 0.01 0.02 0.03 0.04 0.05 0.06
-200

0

200

Figure 2: Time-varying uncertain parameters,estimated parameters and control
input from the BLDC motor in Example 2 with the adaptation law presented in
Theorem 2.

5. Concluding Remarks

A new method to design an adaptive gain-scheduling con-
troller for uncertain polytopic systems has been proposed. This
enables exploiting the system polytopic structure for the con-
trol design, which contributes to overcome the conservatism
issue of the standard robust control approaches. The possible
feedback gains, employed in a gain-scheduled manner with the
estimated convex weights, as well as the adaptation law gains

6



are determined offline by solving a set of LMI design condi-
tions. Using Lyapunov theory, the asymptotic stability of the
closed-loop system and the stability of the parameter adapta-
tion scheme are guaranteed. Numerical examples are given to
point out the interests of the proposed method over the state-of-
the-art control results in robust control.
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