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This work deals with the design of fuzzy controllers for stabilization of continuoustime nonlinear systems subject to L 2 disturbances, which are represented by nonlinear Takagi-Sugeno fuzzy models, i.e., Takagi-Sugeno fuzzy models with nonlinear consequents. A nonquadratic Lyapunov function is used to derive sufficient design conditions based on linear matrix inequality constraints as well as to reduce the conservativeness when compared to existing control approaches in the literature. Furthermore, the nonquadratic Lyapunov function is defined in terms of an integral membership function, which leads to a delayed nonquadratic L 2 -stabilization condition. This condition avoids the well-known di culties in dealing with time derivatives of membership functions and/or path-independent conditions, found in most of the nonquadratic control approaches for continuoustime Takagi-Sugeno fuzzy models. Two numerical examples are performed to illustrate the reduction in conservativeness provided by the proposed approach.

Introduction

Takagi-Sugeno (TS) fuzzy models have been recognized as an e↵ective way to represent nonlinear systems with an arbitrary precision by means of convex combination of local models, which in general are linear state-space equations [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]. By exploiting the convex structure of TS models, stability analysis and control design conditions can be formulated as convex optimization problems under linear matrix inequality (LMI) constraints [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF].

It is well known that exact TS fuzzy models can be obtained to represent nonlinear systems by employing the sector nonlinearity approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]. As a consequence, the number of local models (or fuzzy rules) exponentially grows with the amount of the system nonlinearities related to the number of premise variables. Thus, for nonlinear systems with a high number of nonlinearities, the increased number of fuzzy rules leads to a high computational burden to solve stability or stabilization LMI conditions and di culties for online controller implementation if needed.

An alternative to obtain exact TS models with reduced number of fuzzy rules is to consider TS fuzzy models with nonlinear consequent parts, in short: N-TS fuzzy models. In [START_REF] Meng | Output feedback and stability analysis of positive polynomial fuzzy systems[END_REF][START_REF] Tanaka | A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems[END_REF], TS fuzzy models with nonlinear consequents have been used. However, the consequents are polynomial and sum-of-squares conditions were derived for the control design of nonlinear systems. On the other hand, in [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF][START_REF] Dong | H 1 and mixed H 2 /H 1 control of discrete-time T-S fuzzy systems with local nonlinear models[END_REF], a class of N-TS fuzzy models was proposed from the introduction of sector-bounded nonlinear functions of states to the local models, and the consequent parts can be viewed as local Lur'e-type systems. Thus, conditions were obtained in terms of LMI constraints. This latter TS fuzzy approach is useful to reduce both the design conservativeness and the computational complexity of the analysis and design conditions compared to the traditional TS fuzzy modeling. In addition, such representation has been used successfully in di↵erent applications, such as fault-tolerant control [START_REF] Bessa | TS fuzzy reconfiguration blocks for fault tolerant control of nonlinear systems[END_REF] and interconnected systems [START_REF] Araújo | Distributed control of networked nonlinear systems via interconnected Takagi-Sugeno fuzzy systems with nonlinear consequent[END_REF].

For discrete-time N-TS fuzzy models, nonquadratic stabilization approaches have been developed such as the design of dynamic output feedback fuzzy controllers [START_REF] Dong | Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems[END_REF][START_REF] Klug | Fuzzy dynamic output feedback control through nonlinear Takagi-Sugeno models[END_REF], disturbance attenuation [START_REF] Dong | H 1 and mixed H 2 /H 1 control of discrete-time T-S fuzzy systems with local nonlinear models[END_REF], robust fuzzy model predictive control [START_REF] Teng | Robust fuzzy model predictive control of discrete-time Takagi-Sugeno systems with nonlinear local models[END_REF], multiple-parameterization approach [START_REF] Coutinho | A multipleparameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF] and constrained output feedback control [START_REF] Nguyen | Constrained output-feedback control for discrete-time fuzzy systems with local nonlinear models subject to state and input constraints[END_REF]. On the other hand, for continuous-time N-TS fuzzy models, quadratic Lyapunov functions have been employed to develop conditions for L 2 -stabilization [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF], distributed control [START_REF] Araújo | Distributed control of networked nonlinear systems via interconnected Takagi-Sugeno fuzzy systems with nonlinear consequent[END_REF], fault-tolerant control [START_REF] Bessa | TS fuzzy reconfiguration blocks for fault tolerant control of nonlinear systems[END_REF], and state estimation [START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF].

A nonquadratic stabilization condition has been proposed in [START_REF] Moodi | On stabilization conditions for T-S systems with nonlinear consequent parts[END_REF] with a particular Lyapunov function, which is composed of a quadratic term and a nonquadratic one constructed from the integral of the nonlinearities. As a result, path-independent assumptions [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF] are required, which may introduce extra complexity and conservativeness to the control design approach. Besides, the work in [START_REF] Moodi | On stabilization conditions for T-S systems with nonlinear consequent parts[END_REF] is concerned with obtaining estimates of the domain of attraction and neglects the L 2 control stabilization since the extent of its conditions for this scenario is not trivial. To the best of the authors' knowledge, there is no any other work besides the one in [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF] (quadratic stabilization) considering the main topic of this submission, namely to deal with the problem of L 2 control stabilization for N-TS fuzzy models Therefore, there exists a lack of nonquadratic stabilization conditions for continuous-time N-TS systems, especially when L 2 -stabilization is concerned. Then, the first motivation for this work is to derive nonquadratic L 2 -stabilization conditions for continuous-time N-TS fuzzy systems.

Nevertheless, the major challenge on nonquadratic stabilization of continuoustime fuzzy systems is dealing with the time derivatives of the membership functions [START_REF] Campos | A comparison of di↵erent upper-bound inequalities for the membership functions derivative[END_REF]. To this end, many works in di↵erent scenarios have been done based on the assumption of bounded time-derivatives [START_REF] Campos | A comparison of di↵erent upper-bound inequalities for the membership functions derivative[END_REF][START_REF] Chen | New relaxed stability and stabilization conditions for continuous-time T-S fuzzy models[END_REF][START_REF] Mozelli | A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems[END_REF][START_REF] Mozelli | Equivalent techniques, extra comparisons and less conservative control design for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Mozelli | Reducing conservativeness in recent stability conditions of TS fuzzy systems[END_REF] or path-independent conditions [START_REF] Moodi | On stabilization conditions for T-S systems with nonlinear consequent parts[END_REF][START_REF] Mozelli | A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems[END_REF][START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]. Unlike traditional articles that deal with the time-delay in state variables [START_REF] Kwon | Stability and stabilization of T-S fuzzy systems with time-varying delays via augmented Lyapunov-Krasovskii functionals[END_REF][START_REF] Oliveira | Improved Takagi-Sugeno fuzzy output tracking control for nonlinear networked control systems[END_REF], more recently for TS fuzzy models, the authors in [START_REF] González | Nonquadratic controller and observer design for continuous TS models: A discrete-inspired solution[END_REF][START_REF] Márquez | A non-quadratic Lyapunov functional for H 1 control of nonlinear systems via TS models[END_REF] proposed a nonquadratic Lyapunov function depending on the integral of membership functions, such that artificially delayed membership functions are introduced in the design conditions. The idea of delayed membership func-tions has been exploited to derive less conservative nonquadratic stabilization conditions mainly for discrete-time TS fuzzy models [START_REF] Coutinho | E cient LMI conditions for enhanced stabilization of discrete-time Takagi-Sugeno models via delayed nonquadratic Lyapunov functions[END_REF][START_REF] Coutinho | Generalized non-monotonic Lyapunov functions for analysis and synthesis of Takagi-Sugeno fuzzy systems[END_REF][START_REF] Xie | Relaxed real-time scheduling stabilization of discrete-time T-S fuzzy systems via an alterable-weights-based ranking 305 switching mechanism[END_REF] and, recently, discrete-time N-TS fuzzy models [START_REF] Coutinho | A multipleparameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF]. Thus, the second motivation for this work is to employ a nonquadratic Lyapunov function as in [START_REF] González | Nonquadratic controller and observer design for continuous TS models: A discrete-inspired solution[END_REF][START_REF] Márquez | A non-quadratic Lyapunov functional for H 1 control of nonlinear systems via TS models[END_REF] to derive a less conservative delayed nonquadratic L 2 -stabilization condition than the results in the related literature.

In this work is proposed new nonquadratic stabilization conditions for N-TS fuzzy models subject to L 2 disturbances. The conditions are based on a general nonlinear control law and a delayed nonquadratic Lyapunov function similar to [START_REF] González | Nonquadratic controller and observer design for continuous TS models: A discrete-inspired solution[END_REF]. The main contributions of this paper are summarized as follows.

• The new delayed nonquadratic L 2 -stabilization approach avoids dealing with time derivatives of the membership functions, and any specific structures imposed by Lyapunov functions such as path-independent conditions [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF].

• We consider a general nonlinear control law whose structure is entirely independent of the used nonquadratic Lyapunov function. This feature contributes to derive an LMI-based condition with significantly reduced conservativeness for continuous-time N-TS fuzzy systems compared to related existing control results.

The paper is organized as follows. The class of N-TS fuzzy systems and the problem formulation are described in Section 2. Section 3 presents the proposed stabilization conditions. In Section 4, two numerical examples are given to illustrate the e↵ectiveness of the proposed control approach. Section 5 concludes this paper.

Notation. For a square matrix X, X 0 (respectively X 0) means that X is symmetric positive (respectively negative) definite. diag(X 1 , X 2 ) represents a block-diagonal matrix composed of X 1 and X 2 , and "?" represents a symmetric matrix block. Let I p = {1, . . . , p} ⇢ N, with p 2 N. The convex hull of the set S is denoted by co{S}. The following notation is adopted for convex sum:

⌥ ✓ = r X i=1 ✓ i (⇠(t))⌥ i
for any matrix ⌥ i of appropriate dimension. The norm in the L 2 space of contin-85 uous square-integrable functions is defined as:

k⇣(t)k 2 = q R 1 0 ⇣(t) > ⇣(t)dt < 1.
Arguments are omitted when their meaning is clear.

Preliminaries and Problem Formulation

Takagi-Sugeno Fuzzy Models with Nonlinear Consequents

Consider a continuous-time and input a ne nonlinear system given by

ẋ(t) = f 1 (x(t)) + f 2 (x(t))w(t) + f 3 (x(t))u(t) z(t) = f 4 (x(t)) + f 5 (x(t))w(t) + f 6 (x(t))u(t) (1)
Following the sector nonlinearity approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF], it is known that the nonlinear system (1) can be represented by the following class of N-TS fuzzy models [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF]:

ẋ(t) = A ✓ x(t) + B 1✓ w(t) + B 2✓ u(t) + G ✓ '(x) z(t) = C ✓ x(t) + D 1✓ w(t) + D 2✓ u(t) + L ✓ '(x) (2)
where x(t) 2 X ⇢ R nx is the state vector, X is a convex polytope containing the origin and defines also the validity domain of model [START_REF] Bessa | TS fuzzy reconfiguration blocks for fault tolerant control of nonlinear systems[END_REF],

u(t) 2 R nu is the input vector, w(t) 2 R nw is the L 2 disturbance, '(x) 2 R n' is the vector of sector-bound nonlinearities, z(t) 2 R nz is the controlled output. The constant matrices (A i , B 1i , B 2i , G i , C i , D 1i , D 2i , L i ) of the ith local model are of appro- priate dimensions. The normalized membership functions ✓ i (⇠(t)), for i 2 I r ,
satisfy the following convex sum property:

r X i=1 ✓ i (⇠(t)) = 1, ✓ i (⇠(t)) 0, i 2 I r ,
where r the number of fuzzy rules, and ⇠(t) 2 R nv stands for the vector of premise variables, which depends on the state vector. The convex region X is given as follows:

X = {x 2 R nx : h > m x  1; h m 2 R nx , m 2 I ne }, (3) 
where n e is the number of hyperplanes. The following assumption is also considered for system (2).

Assumption 1. The vector '(x(t)) satisfies the sector-boundedness condition given by

' (i) (x(t)) 2 co{0, E i x(t)}, 8i 2 I n'
, which is equivalent to [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF]:

'(x(t)) > ⇤ 1 ✓ (Ex(t) '(x(t))) 0, (4) 
where matrix

E = [E > 1 , . . . , E > n' ] > 2 R n'⇥nx is given, and ⇤ ✓ 2 R n'⇥n' is a positive definite diagonal matrix.
As aforementioned, the classical TS fuzzy modeling may lead to an excessive number of fuzzy rules. Using N-TS fuzzy model (2) can be useful to reduce the number of fuzzy rules, since only some nonlinearities are selected as premise variables, while others belong to the sector satisfying Assumption 1. Hence, an exact N-TS fuzzy model with reduced number of local models is obtained.

Problem Formulation

Consider the following nonlinear control law:

u(t) = K ✓ H 1 ✓ x(t) + F ✓ J 1 ✓ '(x(t)), (5) 
where the matrices

K ✓ 2 R nu⇥nx , H ✓ 2 R nx⇥nx , F ✓ 2 R nu⇥n' and J ✓ 2
R n'⇥n' , are to be determined.

Remark 1. The control law proposed in [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF] can be obtained from (5) by choosing H ✓ = I and J ✓ = I. Moreover, controller (5) is similar to the one used in [10, Corollary 12] and [START_REF] Coutinho | A multipleparameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF] for the discrete-time case with the particular choice

J ✓ = ⇤ ✓ .
Hence, the new control law (5) is more general than those in previous related works.

Substituting (5) into (2) leads to the closed-loop system of the form

ẋ(t) = A cl x(t) + G cl '(x(t)) + B 1✓ w(t) z(t) = C cl x(t) + L cl '(x(t)) + D 1✓ w(t) (6) 
where

A cl = A ✓ + B 2✓ K ✓ H 1 ✓ , G cl = G ✓ + B 2✓ F ✓ J 1 ✓ C cl = C ✓ + D 2✓ K ✓ H 1 ✓ , L cl = L ✓ + D 2✓ F ✓ J 1 ✓ .
This paper considers the L 2 -stabilization control problem for N-TS fuzzy systems (2), i.e., we aim to design a nonlinear control law [START_REF] Coutinho | A multipleparameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF] such that the closedloop system has the following properties.

(i) If w(t) = 0, for 8t 0, the origin of the closed-loop system ( 6) is asymp-110 totically stable.

(ii) If w(t) 6 = 0, for 8t 0, the closed-loop system ( 6) is L 2 stable from w(t) to z(t) with L 2 gain less than or equal to under zero initial condition:

kzk 2  kwk 2 , 8t 2 [0, 1). ( 7 
)
For control design, we consider the following nonquadratic Lyapunov function:

V (x) = x > r X i=1 ⌫ i (⇠)P i ! 1 x = x > P 1 ⌫ x, (8) 
where P i 0, for i 2 I r , and ⌫ i (⇠(t)) is defined as

⌫ i (⇠(t)) = 1 ↵ Z t t ↵ ✓ i (⇠(⌧ ))d⌧ 0. ( 9 
)
The given scalar ↵ > 0 is an artificial time delay. Note that the convex sum property holds for the integral function

⌫ i (⇠(t)) since r X i=1 ⌫ i (⇠(t)) = 1 ↵ Z t t ↵ r X i=1 ✓ i (⇠(⌧ )) ! d⌧ = 1. (10) 
Furthermore, the time derivative of

⌫ i (⇠(t)) is given by ⌫i (⇠(t)) = 1 ↵ (✓ i (⇠(t)) ✓ i (⇠(t ↵))) , (11) 
with the initial function given by 

x(t) = (t), t 2 [ ↵, 0], 2 C ([ ↵, 0], R),
where (P) is an arbitrary matrix expression related to P or not. Then, there exist matrices P 0 and Z such that 2

4 (P) ? Z > A P Z Z > C 3 5 0. ( 13 
)
3. Delayed Nonquadratic L 2 -Stabilization of N-TS Fuzzy Models

The following theorem provides su cient conditions to design a nonlinear controller (5) for system (2).

Theorem 1. Given an N-TS fuzzy model (2), positive scalars µ, ↵ and a sufficiently small ✏. If there exist positive definite matrices P i , positive definite diagonal matrices ⇤ i , symmetric matrices M kl ij , and matrices K i , F i , H i , J i , of appropriate dimensions, such that

⌥ kl ii M kl ii , i,k,l 2 I r , (14) 
⌥ kl ij + ⌥ kl ji M kl ij + M kl ij >
, i,j,k,l 2 I r and i 6 = j, (15) 2 6 6 6 4

M kl 11 • • • M kl 1r . . . . . . . . . M kl r1 • • • M kl rr 3 7 7 7 5 0, k,l 2 I r , (16) 
2 4 1 h > m H j ? P k + H j + H > j 3 5 ⌫ 0, j,k 2 I r , m 2 I ne , (17) 
where 

⌥ kl ij = 2 
? ? 0 ✏EH j (1 ✏)J j 0 ⇤ i ? ✏ 1 D > 1i 0 0 B > 1i 0 µ✏ 1 I 3 7 7 7 7 7 7 7 7 7 7 7 7 5 
,

21 = H > j C > i + K > j D > 2i , 22 = P l ✏↵ 1 (P i P k ) H j H > j , 31 = J > j L > i + F > j D > 2i , 33 = ⇤ i J j J > j , 42 = H j + ✏(A i H j + B 2i K j ), 43 = G i J j + B 2i F j .
Then, if w(t) = 0, the origin of the closed-loop system (6) is asymptotically 120 stable and the region

L V = {x 2 R nx : V (x)  1}, L V ⇢ X , is included in its region of attraction. Moreover, if w(t) 6 = 0, then system (6) is L 2 -stable from
w(t) to z(t) with an L 2 -gain less than or equal to = p µ.

Proof. By the relaxation result in [START_REF] Xiaodong | New approaches to H 1 controller designs based on fuzzy observers for T-S fuzzy systems via LMI[END_REF], it follows from ( 14), ( 15) and ( 16) that

r X l=1 r X k=1 r X i=1 r X j=1 ⌫ l (⇠(t))✓ k (⇠(t))✓ i (⇠(t))✓ j (⇠(t))⌥ kl ij 0 ( 18 
)
where we denote ✓ k (⇠(t)) = ✓ k (⇠(t ↵)). Note that the satisfaction of inequality [START_REF] Mozelli | A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems[END_REF] guarantees that J ✓ + J > ✓ 0, and H ✓ + H > ✓ 0, for a su ciently small scalar ✏. This, in turn, guarantees the existence of J 1 ✓ and H 1 ✓ , thus the validity of the control expression [START_REF] Coutinho | A multipleparameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF]. Note also that inequality (18) can be represented similar to (13) as 2 6 6 6 4

(P) ? ?

Z > A P Z Z > C ? ⌃ 0 µ✏ 1 I 3 7 7 7 5 0, (19) 9 with 
P = diag(P ⌫ , ⇤ ✓ ), (P) = diag(✏ 1 I, P ⌫ , ⇤ ✓ ), Z = diag(H ✓ , J ✓ ), C = diag(✏↵ 1 (P ✓ P ✓ ), 0), A = 2 4 C > cl I + ✏A > cl ✏E > L > cl ✏G > cl (1 ✏)I 3 5 , P ✓ = r X i=1 ✓ i (⇠(t))P i , ⌃ = h ✏ 1 D > 1✓ B > 1✓ 0 i .
Applying 

with

⇥ 31 = P ⌫ + ✏P ⌫ A > cl , ⇥ 33 = P ⌫ ✏↵ 1 (P ✓ P ✓ ), ⇥ 41 = ⇤ ✓ G > cl , ⇥ 42 = (1 ✏)⇤ ✓ , ⇥ 63 = C cl P ⌫ , ⇥ 64 = L cl ⇤ ✓ .
Pre-and postmultiplying inequality [START_REF] Mozelli | Reducing conservativeness in recent stability conditions of TS fuzzy systems[END_REF] 

I + ✏A > ? 0 ⇧ 3 7 7 7 5 0, (21) 
where

A = 2 4 A cl G cl E I 3 5 , P = diag(P 1 ⌫ , ⇤ 1 ✓ ), = 2 4 B > 1✓ P 1 ⌫ 0 C cl L cl 3 5 , ⇧ = 2 4 µI ? D 1✓ I 3 5 , = diag ✏ 1 P 1 ⌫ + ↵ 1 P 1 ⌫ (P ✓ P ✓ )P 1 ⌫ , ✏ 1 ⇤ 1 ✓ . Note that Ṗ 1 ⌫ = P 1 ⌫ Ṗ⌫ P 1 ⌫
and Ṗ⌫ = ↵ 1 (P ✓ P ✓ ). Then, it follows that

✏ 1 P 1 ⌫ + ↵ 1 P 1 ⌫ (P ✓ P ✓ )P 1 ⌫ = ✏ 1 P 1 ⌫ Ṗ 1 ⌫ . (22) 
Hence, inequality ( 21) can be rewritten in the form 2 6 6 6 4

✏P 1 ? ?

I + ✏A > ✏ 1 P + C ? 0 ⇧ 3 7 7 7 5 0, (23) 
with C = diag( Ṗ 1 ⌫ , 0). By Schur complement lemma, we can prove that inequality ( 23) is equivalent to

2 4 A > P + PA + C + ✏A > PA ? ⇧ 3 5 0. ( 24 
)
Since ✏A > PA 0, then it follows from inequality ( 24) that 2 6 6 6 6 6 6 4

⌅ ? ? ? G > cl P 1 ⌫ + ⇤ 1 ✓ E 2⇤ 1 ✓ ? ? B > 1✓ P 1 ⌫ 0 µI ? C cl L cl D 1✓ I 3 7 7 7 7 7 7 5 
0, [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF] with

⌅ = P 1 ⌫ A cl + A > cl P 1 ⌫ + Ṗ 1 ⌫ .
Applying Schur complement lemma to [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF], then pre-and postmultiplying the result with

h x > '(x) > w >
i and its transpose, the following inequality can be obtained:

V (x) < µw > w z > z 2'(x) > ⇤ 1 ✓ (Ex '(x)), (26) 
where V (x) is the time derivative of the Lyapunov function ( 8) along the trajectory of system [START_REF] Coutinho | E cient LMI conditions for enhanced stabilization of discrete-time Takagi-Sugeno models via delayed nonquadratic Lyapunov functions[END_REF]. From ( 4) and ( 26), it follows that

V (x) + z > z < µw > w. ( 27 
)
We distinguish two following cases.

• If w(t) = 0, for 8t > 0, then V (x(t)) < z(t) > z(t) < 0, for 8x(t) 6 = 0.

125 Then, the origin of the closed-loop system ( 6) is asymptotically stable.

• If w(t) 6 = 0, for 8t > 0, then integrating both sides of ( 27) from 0 to 1 and considering that V (x(1)) > 0, it follows that

Z 1 0 z(t) > z(t)dt  µ Z 1 0 w(t) > w(t)dt + V (x(0)). ( 28 
)
Under zero initial conditions, it is clear that (28) leads to inequality [START_REF] Coutinho | Generalized non-monotonic Lyapunov functions for analysis and synthesis of Takagi-Sugeno fuzzy systems[END_REF], which means that the closed-loop system ( 6) is L 2 -stable from w(t) to z(t) with an L 2 -gain less than or equal to = p µ.

Finally, it follows from ( 17) that L V ⇢ X . Thus, since V (x) < 0, for w(t) = 0, 8t, then it is included in the region of attraction. Hence, if x(0) 2 L V , the state trajectories will never leave L V . This concludes the proof.

Remark 2. One of the major di culties when deriving the design conditions in Theorem 1 is to deal with the term Ṗ⌫ = P r i=1 ⌫i (⇠)P i in [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF]. Exploiting the integral membership functions ⌫ i (⇠), it follows from (11) that Ṗ⌫ = ↵ 1 (P ✓ P ✓ ), which is a convex term. This avoids assuming conservative bounds for the time derivative of the membership functions ✓ i (⇠) or considering path-independent Lyapunov functions to obtain numerically tractable LMI design conditions. Remark 3. Based on Theorem 1, the L 2 -gain upper-bound , with = p µ, can be minimized by solving the following optimization problem:

min i µ subject to (14)-(17), with i = (P i , ⇤ i , K i , F i , H i , J i ). ( 29 
)
Remark 4. Note that for a su ciently small scalar 0 < ✏ ⌧ 1, conditions given in [START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF] and (25) are equivalent since the only di↵erence between them is the term ✏A > PA . Then, less conservative results are expected from (29) with 0 < ✏ ⌧ 1, which can be determined with a simple gridding algorithm.

Numerical Examples

To illustrate the relaxation provided by the proposed approach, comparisons with the control results in [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF] are performed hereafter. Note that the method [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF] is the only work currently available in the literature addressing L 2 -stabilization for N-TS fuzzy models. Also, the application to a real-world example is employed to discuss the stabilization and the trade-o↵ between the parameter ✏ and the obtained L 2 -gain. All optimization problems were done using Yalmip toolbox and Mosek solver.

Example 1

Consider a nonlinear system whose N-TS fuzzy model ( 2) is described as follows [START_REF] Moodi | On stabilization conditions for T-S systems with nonlinear consequent parts[END_REF]Example 3]:

A 1 = 2 4 2 10 2 0 3 5 , A 2 = 2 4 a 5 1 2 3 5 , B 11 = B 12 = h 1 1 i > , B 21 = B 22 = h b 2 i > , G 1 = G 2 = 2 4 0.1b 0 0 0.1a 3 5 , E = 2 4 1 0 0 1 3 5 , 
where

x 1 , x 2 2 [ 2, 2]
. The controlled output of the system is defined by

z(t) = h x 1 (t) x 2 (t) i >
. For an artificial time-delay ↵ = 0.003 s and ✏ = 10 3 , the feasibility regions obtained by solving the optimization problem (29) in Theorem 1 and Corollary 1 of [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF], for di↵erent values of a and b, are shown in Figure 1. Observe that the feasibility region obtained with the proposed condition is clearly enlarged when compared to the control approach in [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF].

Also, by taking b = 13, the values of the upper-bound of the L 2 -gain for di↵erent values of a are depicted in Figure 2. It can be noticed that the proposed approach provides smaller upper-bounds for all values of a. In particular, as a is increased, this improvement is even more evident, which clearly illustrates the conservativeness reduction in comparison with [8, Corollary 1].

Finally, the smallest value of obtained for all parameters a and b considered in Figure 1 and the related computational complexity are depicted in Table 1.

It is worth mentioning that the constraint [START_REF] Moodi | On stabilization conditions for T-S systems with nonlinear consequent parts[END_REF], with H j = P k = P , is added to the approach in [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF] to account the validity domain X of the N-TS fuzzy model. The numerical complexity is evaluated in terms of number of decision variables N d , and number of LMI rows N l . For Theorem 1, these values are given by

N d = 1 + (n ' + (n u + n x )n x + (n u + n ' )n ' )r + 1 2 n x (n x + 1) + r 2 N ⌃ (rN ⌃ + 1) r, N l = 1 2 r 3 (r + 3)N ⌃ + (1 + n x )r 2 n e ,
with N ⌃ = 2n x + 2n ' + n z + n w .

Table 1: Computational complexity and comparison of the smallest upper-bound of the L 2 gain , considering the variation of parameters in Figure 1.

Design approach (solution of ( 29)) Although the proposed control approach has a slightly higher computational complexity than the design condition in [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF], it provides a significant improvement 165 in terms of both the enlargement of the feasibility region and the reduction of the upper-bound of the L 2 -gain. This clearly illustrates that the proposed condition to design the control law [START_REF] Coutinho | A multipleparameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF], regarding the nonquadratic Lyapunov function [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF], leads to a conservativeness reduction in comparison to [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF].

N d N l log(N 3 d N l ) [8,
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Consider the two-tank system [30, Example 2] illustrated in Figure 3 with the following incremental model:

2 4 ẋ1 (t) ẋ2 (t) 3 5 = 2 4 a1 A 2g f (x1,x2) a1 A 2g f (x1,x2) a1 A 2g f (x1,x2) a1 A 2g f (x1,x2) 3 5 2 4
x 1 (t)

x 2 (t) 

in which x 1 (t) = h 1 (t) h 1e , x 2 (t) = h 2 (t) h 2e with h 1 (t) and h 2 (t) denoting the water level of each tank, respectively, and h 1e and h 2e are the given operating points. v = v(t) v e and v(t) denotes the flow rate of the pump (control input).

w(t) represents an exogenous disturbance which can be considered as an extra flow beyond the control input, A = 100 cm 2 is the horizontal section, k = 4 is a constant, a 1 = 1 cm 2 is the section of the connecting the tanks, a 2 = 0.7 cm 2 is the section of the outlet valve, g = 981 cm/s 2 is the gravitational acceleration constant. The control objective is to keep the water level of the two tanks in the operating point

h h 1e h 2e i > = h 9 6 i > cm. Also, f (x 1 , x 2 ) = p 2g(x 1 x 2 + h 1e h 2e ) + p 2g(h 1e h 2e ), '(x 2 ) = x 2 p 2g(x 2 + h 2e ) + p 2gh 2e . v(t) h 1 (t) h 2 (t)
Tank 1 Tank 2 Assume that

|x 1 |  8, |x 2 |  5. Then, the premise variable ⇠ = 1 f (x1,x2
) 2 [0.0054, 0.0130] and the sector nonlinearity '(x 2 ) 2 co{0.0039x 2 (t), 0.0065x 2 (t)}.

After a loop-transformation, it follows that '(x 2 ) = '(x 2 ) 0.0039x 2 . Note that '(x 2 ) 2 co{0, ⌦x 2 } with ⌦ = 0.0026. We consider v(t) ⌘ u(t). Hence, system (30) can be rewritten in the form 2 4 ẋ1 (t) ẋ2 (t)

3 5 = 2 4 a1 A 2g f (x1,x2) a1 A 2g f (x1,x2) a1 A 2g f (x1,x2) a1 A 2g f (x1,x2) 0.0078ga2 A 3 5 2 4 x 1 (t)
x 2 (t) 

Then, using the sector nonlinearity approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF], the corresponding local statespace matrices of the N-TS fuzzy model (2) for system [START_REF] Xiaodong | New approaches to H 1 controller designs based on fuzzy observers for T-S fuzzy systems via LMI[END_REF] are given by Note that, for ✏  10 2 , the upper bound of the L 2 -gain is lower than the one obtained from the approach in [START_REF] Dong | Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models[END_REF], which is equal to = 1.7205. The best case corresponds to = 1.7102 obtained when ✏ = 3 ⇥ 10 3 . This numerically 180 confirms the statement in Remark 4.

A 1 = 2 
Consider the corresponding controller, Fig. 5 depicts the trajectories of the water levels (h 1 (t) and h 2 (t)) of the two tanks when the following disturbance is applied: 

w(t) =

Conclusions

The stabilization problem for nonlinear Takagi-Sugeno fuzzy systems subject the proposed control approach, the application to a real system model, and the trade-o↵ between the L 2 -gain and the ✏ parameter introduced in the relaxation of the design constraints. Future directions focus on developing a delayed nonquadratic approach to design observers for the class of nonlinear Takagi-Sugeno fuzzy models [START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF].

1 . 2 4

 12 where C ([ ↵, 0], R) is the Banach space of real continuous functions on theinterval [ ↵, 0] with max t2[ ↵,0] | (t)|.The following technical lemma, adapted from [12,Lemma 2], is useful to Lemma Consider matrices of appropriate dimensions A and C. If there exists a matrix P 0 such that
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 1 Figure 1: Feasibility regions provided by Corollary 1 [8] ('⇥') and Theorem 1 ('⇥' and ' ') -Example 1.

Figure 2 :

 2 Figure 2: Comparison of upper-bound of the L 2 gain ( ) for Corollary 1 [8] ('⇥') and Theorem 1 ('⇥' and ' '), considering b = 13 -Example 1.

Figure 3 :

 3 Figure 3: Two-tank system schematic -Example 2.

3 5 , 8i 2 I 2 .

 32 Let us consider the controlled output as same of the previous example and the artificial time delay ↵ = 0.001 s. Fig.4depicts the relation between the value of the scalar ✏ and the minimum value of the L 2 -gain obtained from the optimization problem[START_REF] Tanaka | A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems[END_REF]. Note that the improvement achieved by applying Theorem 1 is not a monotonically increasing function of ✏. Moreover, to obtain a better 175 result of the upper-bound of the L 2 -gain , one should solve the optimization problem (29) by iterating over ✏, see also Remark 2 in[START_REF] Shaked | Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty[END_REF].

  that the designed controller e↵ectively attenuates the disturbance e↵ect and guarantees the closed-loop stability.

Figure 4 :

 4 Figure 4: Relation between ✏ and the L 2 -gain in Example 2.

Figure 5 :

 5 Figure 5: Response of the water levels h 1 (t) and h 2 (t) in Example 2.

185 to L 2

 2 disturbances has been investigated in this paper. A nonquadratic Lyapunov function with integral membership functions have been considered and su cient delayed design conditions have been obtained. The considered non-quadratic Lyapunov function avoids assuming bounds for the time derivatives of the membership functions or path-independent conditions, which are sources of conservativeness. Moreover, based on appropriate matrix transformations, the control law structure can be entirely independent of the Lyapunov function in a new fashion, contributing to reduce the design conservativeness. Two examples have been provided to illustrate the reduction of conservativeness by

derive delayed nonquadratic stabilization conditions for N-TS fuzzy systems.
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