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Rodrigo F. Araújoa, Pedro H. S. Coutinhob, Anh-Tu Nguyenc, Reinaldo M.
Palharesd,⇤

aAmazonas State University, Department of Control and Automation, Manaus, AM, Brazil
bFederal University of Minas Gerais, Graduate Program in Electrical Engineering,

Belo Horizonte, MG, Brazil
cLAMIH UMR CNRS 8201, Univ. Polytechnique Hauts-de-France, Valenciennes, France

dFederal University of Minas Gerais, Department of Electronics Engineering,
Belo Horizonte, MG, Brazil

Abstract

This work deals with the design of fuzzy controllers for stabilization of continuous-

time nonlinear systems subject to L2 disturbances, which are represented by

nonlinear Takagi-Sugeno fuzzy models, i.e., Takagi-Sugeno fuzzy models with

nonlinear consequents. A nonquadratic Lyapunov function is used to derive suf-

ficient design conditions based on linear matrix inequality constraints as well as

to reduce the conservativeness when compared to existing control approaches in

the literature. Furthermore, the nonquadratic Lyapunov function is defined in

terms of an integral membership function, which leads to a delayed nonquadratic

L2-stabilization condition. This condition avoids the well-known di�culties in

dealing with time derivatives of membership functions and/or path-independent

conditions, found in most of the nonquadratic control approaches for continuous-

time Takagi-Sugeno fuzzy models. Two numerical examples are performed to

illustrate the reduction in conservativeness provided by the proposed approach.
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1. Introduction

Takagi-Sugeno (TS) fuzzy models have been recognized as an e↵ective way

to represent nonlinear systems with an arbitrary precision by means of convex

combination of local models, which in general are linear state-space equations

[27]. By exploiting the convex structure of TS models, stability analysis and5

control design conditions can be formulated as convex optimization problems

under linear matrix inequality (LMI) constraints [22].

It is well known that exact TS fuzzy models can be obtained to represent

nonlinear systems by employing the sector nonlinearity approach [28]. As a

consequence, the number of local models (or fuzzy rules) exponentially grows10

with the amount of the system nonlinearities related to the number of premise

variables. Thus, for nonlinear systems with a high number of nonlinearities, the

increased number of fuzzy rules leads to a high computational burden to solve

stability or stabilization LMI conditions and di�culties for online controller

implementation if needed.15

An alternative to obtain exact TS models with reduced number of fuzzy rules

is to consider TS fuzzy models with nonlinear consequent parts, in short: N-TS

fuzzy models. In [16, 29], TS fuzzy models with nonlinear consequents have been

used. However, the consequents are polynomial and sum-of-squares conditions

were derived for the control design of nonlinear systems. On the other hand,20

in [8, 10], a class of N-TS fuzzy models was proposed from the introduction of

sector-bounded nonlinear functions of states to the local models, and the con-

sequent parts can be viewed as local Lur’e-type systems. Thus, conditions were

obtained in terms of LMI constraints. This latter TS fuzzy approach is useful to

reduce both the design conservativeness and the computational complexity of25

the analysis and design conditions compared to the traditional TS fuzzy mod-

eling. In addition, such representation has been used successfully in di↵erent

applications, such as fault-tolerant control [2] and interconnected systems [1].

For discrete-time N-TS fuzzy models, nonquadratic stabilization approaches

2



have been developed such as the design of dynamic output feedback fuzzy con-30

trollers [9, 13], disturbance attenuation [10], robust fuzzy model predictive con-

trol [30], multiple-parameterization approach [5] and constrained output feed-

back control [21]. On the other hand, for continuous-time N-TS fuzzy models,

quadratic Lyapunov functions have been employed to develop conditions for

L2-stabilization [8], distributed control [1], fault-tolerant control [2], and state35

estimation [24].

A nonquadratic stabilization condition has been proposed in [17] with a

particular Lyapunov function, which is composed of a quadratic term and a

nonquadratic one constructed from the integral of the nonlinearities. As a

result, path-independent assumptions [25] are required, which may introduce40

extra complexity and conservativeness to the control design approach. Besides,

the work in [17] is concerned with obtaining estimates of the domain of attrac-

tion and neglects the L2 control stabilization since the extent of its conditions

for this scenario is not trivial. To the best of the authors’ knowledge, there

is no any other work besides the one in [8] (quadratic stabilization) consider-45

ing the main topic of this submission, namely to deal with the problem of L2

control stabilization for N-TS fuzzy models Therefore, there exists a lack of

nonquadratic stabilization conditions for continuous-time N-TS systems, espe-

cially when L2-stabilization is concerned. Then, the first motivation for this

work is to derive nonquadratic L2-stabilization conditions for continuous-time50

N-TS fuzzy systems.

Nevertheless, the major challenge on nonquadratic stabilization of continuous-

time fuzzy systems is dealing with the time derivatives of the membership func-

tions [3]. To this end, many works in di↵erent scenarios have been done based on

the assumption of bounded time-derivatives [3, 4, 18–20] or path-independent55

conditions [17, 18, 25]. Unlike traditional articles that deal with the time-delay

in state variables [14, 23], more recently for TS fuzzy models, the authors in

[11, 15] proposed a nonquadratic Lyapunov function depending on the integral

of membership functions, such that artificially delayed membership functions

are introduced in the design conditions. The idea of delayed membership func-60

3



tions has been exploited to derive less conservative nonquadratic stabilization

conditions mainly for discrete-time TS fuzzy models [6, 7, 32] and, recently,

discrete-time N-TS fuzzy models [5]. Thus, the second motivation for this work

is to employ a nonquadratic Lyapunov function as in [11, 15] to derive a less

conservative delayed nonquadratic L2-stabilization condition than the results65

in the related literature.

In this work is proposed new nonquadratic stabilization conditions for N-

TS fuzzy models subject to L2 disturbances. The conditions are based on a

general nonlinear control law and a delayed nonquadratic Lyapunov function

similar to [11]. The main contributions of this paper are summarized as follows.70

• The new delayed nonquadratic L2-stabilization approach avoids dealing

with time derivatives of the membership functions, and any specific struc-

tures imposed by Lyapunov functions such as path-independent condi-

tions [25].

• We consider a general nonlinear control law whose structure is entirely75

independent of the used nonquadratic Lyapunov function. This feature

contributes to derive an LMI-based condition with significantly reduced

conservativeness for continuous-time N-TS fuzzy systems compared to re-

lated existing control results.

The paper is organized as follows. The class of N-TS fuzzy systems and80

the problem formulation are described in Section 2. Section 3 presents the

proposed stabilization conditions. In Section 4, two numerical examples are

given to illustrate the e↵ectiveness of the proposed control approach. Section 5

concludes this paper.

Notation. For a square matrix X, X � 0 (respectively X � 0) means that X is

symmetric positive (respectively negative) definite. diag(X1, X2) represents a

block-diagonal matrix composed of X1 and X2, and “?” represents a symmetric

matrix block. Let Ip = {1, . . . , p} ⇢ N, with p 2 N. The convex hull of the set

4



S is denoted by co{S}. The following notation is adopted for convex sum:

⌥✓ =
rX

i=1

✓i(⇠(t))⌥i

for any matrix ⌥i of appropriate dimension. The norm in the L2 space of contin-85

uous square-integrable functions is defined as: k⇣(t)k2 =
qR1

0 ⇣(t)>⇣(t)dt < 1.

Arguments are omitted when their meaning is clear.

2. Preliminaries and Problem Formulation

2.1. Takagi-Sugeno Fuzzy Models with Nonlinear Consequents

Consider a continuous-time and input a�ne nonlinear system given by

ẋ(t) = f1(x(t)) + f2(x(t))w(t) + f3(x(t))u(t)

z(t) = f4(x(t)) + f5(x(t))w(t) + f6(x(t))u(t)
(1)

Following the sector nonlinearity approach [28], it is known that the nonlinear

system (1) can be represented by the following class of N-TS fuzzy models [8]:

ẋ(t) = A✓x(t) +B1✓w(t) +B2✓u(t) +G✓'(x)

z(t) = C✓x(t) +D1✓w(t) +D2✓u(t) + L✓'(x)
(2)

where x(t) 2 X ⇢ Rnx is the state vector, X is a convex polytope containing

the origin and defines also the validity domain of model (2), u(t) 2 Rnu is the

input vector, w(t) 2 Rnw is the L2 disturbance, '(x) 2 Rn' is the vector of

sector-bound nonlinearities, z(t) 2 Rnz is the controlled output. The constant

matrices (Ai, B1i, B2i, Gi, Ci, D1i, D2i, Li) of the ith local model are of appro-

priate dimensions. The normalized membership functions ✓i(⇠(t)), for i 2 Ir,

satisfy the following convex sum property:

rX

i=1

✓i(⇠(t)) = 1, ✓i(⇠(t)) � 0, i 2 Ir,

where r the number of fuzzy rules, and ⇠(t) 2 Rnv stands for the vector of

premise variables, which depends on the state vector. The convex region X is

given as follows:

X = {x 2 Rnx : h>
mx  1; hm 2 Rnx ,m 2 Ine}, (3)

5



where ne is the number of hyperplanes. The following assumption is also con-90

sidered for system (2).

Assumption 1. The vector '(x(t)) satisfies the sector-boundedness condition

given by '(i)(x(t)) 2 co{0, Eix(t)}, 8i 2 In' , which is equivalent to [8]:

'(x(t))>⇤�1
✓ (Ex(t)� '(x(t))) � 0, (4)

where matrix E = [E>
1 , . . . , E

>
n'

]> 2 Rn'⇥nx is given, and ⇤✓ 2 Rn'⇥n' is a

positive definite diagonal matrix.

As aforementioned, the classical TS fuzzy modeling may lead to an excessive

number of fuzzy rules. Using N-TS fuzzy model (2) can be useful to reduce the95

number of fuzzy rules, since only some nonlinearities are selected as premise

variables, while others belong to the sector satisfying Assumption 1. Hence, an

exact N-TS fuzzy model with reduced number of local models is obtained.

2.2. Problem Formulation

Consider the following nonlinear control law:

u(t) = K✓H
�1
✓ x(t) + F✓J

�1
✓ '(x(t)), (5)

where the matrices K✓ 2 Rnu⇥nx , H✓ 2 Rnx⇥nx , F✓ 2 Rnu⇥n' and J✓ 2100

Rn'⇥n' , are to be determined.

Remark 1. The control law proposed in [8] can be obtained from (5) by choosing

H✓ = I and J✓ = I. Moreover, controller (5) is similar to the one used in

[10, Corollary 12] and [5] for the discrete-time case with the particular choice

J✓ = ⇤✓. Hence, the new control law (5) is more general than those in previous105

related works.

Substituting (5) into (2) leads to the closed-loop system of the form

ẋ(t) = Aclx(t) +Gcl'(x(t)) +B1✓w(t)

z(t) = Cclx(t) + Lcl'(x(t)) +D1✓w(t)
(6)

6



where

Acl = A✓ +B2✓K✓H
�1
✓ , Gcl = G✓ +B2✓F✓J

�1
✓

Ccl = C✓ +D2✓K✓H
�1
✓ , Lcl = L✓ +D2✓F✓J

�1
✓ .

This paper considers the L2-stabilization control problem for N-TS fuzzy sys-

tems (2), i.e., we aim to design a nonlinear control law (5) such that the closed-

loop system has the following properties.

(i) If w(t) = 0, for 8t � 0, the origin of the closed-loop system (6) is asymp-110

totically stable.

(ii) If w(t) 6= 0, for 8t � 0, the closed-loop system (6) is L2�stable from w(t)

to z(t) with L2�gain less than or equal to � under zero initial condition:

kzk2  �kwk2, 8t 2 [0,1). (7)

For control design, we consider the following nonquadratic Lyapunov function:

V (x) = x
>

 
rX

i=1

⌫i(⇠)Pi

!�1

x = x
>
P

�1
⌫ x, (8)

where Pi � 0, for i 2 Ir, and ⌫i(⇠(t)) is defined as

⌫i(⇠(t)) =
1

↵

Z t

t�↵
✓i(⇠(⌧))d⌧ � 0. (9)

The given scalar ↵ > 0 is an artificial time delay. Note that the convex sum

property holds for the integral function ⌫i(⇠(t)) since

rX

i=1

⌫i(⇠(t)) =
1

↵

Z t

t�↵

 
rX

i=1

✓i(⇠(⌧))

!
d⌧ = 1. (10)

Furthermore, the time derivative of ⌫i(⇠(t)) is given by

⌫̇i(⇠(t)) =
1

↵
(✓i(⇠(t))� ✓i(⇠(t� ↵))) , (11)

with the initial function given by x(t) = �(t), t 2 [�↵, 0], � 2 C ([�↵, 0],R),

where C ([�↵, 0],R) is the Banach space of real continuous functions on the

interval [�↵, 0] with maxt2[�↵,0] |�(t)|.

The following technical lemma, adapted from [12, Lemma 2], is useful to115

derive delayed nonquadratic stabilization conditions for N-TS fuzzy systems.
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Lemma 1. Consider matrices of appropriate dimensions A and C. If there

exists a matrix P � 0 such that
2

4��(P) ?

PA �P � C

3

5 � 0, (12)

where �(P) is an arbitrary matrix expression related to P or not. Then, there

exist matrices P � 0 and Z such that
2

4��(P) ?

Z>A P � Z � Z> � C

3

5 � 0. (13)

3. Delayed Nonquadratic L2-Stabilization of N-TS Fuzzy Models

The following theorem provides su�cient conditions to design a nonlinear

controller (5) for system (2).

Theorem 1. Given an N-TS fuzzy model (2), positive scalars µ, ↵ and a suf-

ficiently small ✏. If there exist positive definite matrices Pi, positive definite

diagonal matrices ⇤i, symmetric matrices Mkl
ij , and matrices Ki, Fi, Hi, Ji, of

appropriate dimensions, such that

⌥kl
ii � M

kl
ii , i, k, l 2 Ir, (14)

⌥kl
ij +⌥

kl
ji � M

kl
ij +M

kl
ij

>
, i, j, k, l 2 Ir and i 6= j, (15)

2

6664

M
kl
11 · · · M

kl
1r

...
. . .

...

M
kl
r1 · · · M

kl
rr

3

7775
� 0, k, l 2 Ir, (16)

2

41 h
>
mHj

? �Pk +Hj +H
>
j

3

5 ⌫ 0, j, k 2 Ir,m 2 Ine , (17)

8



where

⌥kl
ij =

2

6666666666664

�✏�1
I ? ? ? ? ?

 21  22 ? ? ? ?

 31 0  33 ? ? ?

0  42 ✏ 43 �Pl ? ?

0 ✏EHj (1� ✏)Jj 0 �⇤i ?

✏
�1

D
>
1i 0 0 B

>
1i 0 �µ✏

�1
I

3

7777777777775

,

 21 = H
>
j C

>
i +K

>
j D

>
2i,

 22 = Pl � ✏↵
�1(Pi � Pk)�Hj �H

>
j ,

 31 = J
>
j L

>
i + F

>
j D

>
2i,  33 = ⇤i � Jj � J

>
j ,

 42 = Hj + ✏(AiHj +B2iKj),  43 = GiJj +B2iFj .

Then, if w(t) = 0, the origin of the closed-loop system (6) is asymptotically120

stable and the region LV = {x 2 Rnx : V (x)  1}, LV ⇢ X , is included in its

region of attraction. Moreover, if w(t) 6= 0, then system (6) is L2-stable from

w(t) to z(t) with an L2-gain less than or equal to � =
p
µ.

Proof. By the relaxation result in [31], it follows from (14), (15) and (16) that

rX

l=1

rX

k=1

rX

i=1

rX

j=1

⌫l(⇠(t))✓
�
k (⇠(t))✓i(⇠(t))✓j(⇠(t))⌥

kl
ij � 0 (18)

where we denote ✓�k (⇠(t)) = ✓k(⇠(t�↵)). Note that the satisfaction of inequality

(18) guarantees that J✓ + J
>
✓ � 0, and H✓ + H

>
✓ � 0, for a su�ciently small

scalar ✏. This, in turn, guarantees the existence of J
�1
✓ and H

�1
✓ , thus the

validity of the control expression (5). Note also that inequality (18) can be

represented similar to (13) as

2

6664

��(P) ? ?

Z>A P � Z � Z> � C ?

⌃ 0 �µ✏
�1

I

3

7775
� 0, (19)

9



with

P = diag(P⌫ ,⇤✓), �(P) = diag(✏�1
I, P⌫ ,⇤✓),

Z = diag(H✓, J✓), C = diag(✏↵�1(P✓ � P✓�), 0),

A =

2

4C
>
cl I + ✏A>

cl ✏E
>

L>
cl ✏G>

cl (1� ✏)I

3

5 , P✓� =
rX

i=1

✓
�
i (⇠(t))Pi,

⌃ =
h
✏
�1

D
>
1✓ B

>
1✓ 0

i
.

Applying Lemma 1, inequality (19) is equivalent to
2

6666666666664

�P⌫ ? ? ? ? ?

0 �⇤✓ ? ? ? ?

⇥31 ✏P⌫E
> ⇥33 ? ? ?

✏⇥41 ⇥42 0 �⇤✓ ? ?

0 0 B
>
1h 0 �µ✏

�1
I ?

0 0 ⇥63 ⇥64 ✏
�1

D1✓ �✏�1
I

3

7777777777775

� 0, (20)

with

⇥31 = P⌫ + ✏P⌫A
>
cl, ⇥33 = �P⌫ � ✏↵

�1(P✓ � P✓�),

⇥41 = ⇤✓G
>
cl, ⇥42 = (1� ✏)⇤✓,

⇥63 = CclP⌫ , ⇥64 = Lcl⇤✓.

Pre- and postmultiplying inequality (20) with

diag(
p
✏I,

p
✏I, (

p
✏P⌫)

�1
, (
p
✏⇤✓)

�1
,
p
✏I,

p
✏I),

it follows that
2

6664

�✏P�1
? ?

I + ✏A
> �� ?

0 � �⇧

3

7775
� 0, (21)

where

A =

2

4Acl Gcl

E �I

3

5 , P = diag(P�1
⌫ ,⇤�1

✓ ),

� =

2

4B
>
1✓P

�1
⌫ 0

Ccl Lcl

3

5 , ⇧ =

2

4 µI ?

�D1✓ I

3

5 ,

� = diag
�
✏
�1

P
�1
⌫ + ↵

�1
P

�1
⌫ (P✓ � P✓�)P

�1
⌫ , ✏

�1⇤�1
✓

�
.

10



Note that Ṗ�1
⌫ = �P

�1
⌫ Ṗ⌫P

�1
⌫ and Ṗ⌫ = ↵

�1 (P✓ � P✓�). Then, it follows that

✏
�1

P
�1
⌫ + ↵

�1
P

�1
⌫ (P✓ � P✓�)P

�1
⌫ = ✏

�1
P

�1
⌫ � Ṗ

�1
⌫ . (22)

Hence, inequality (21) can be rewritten in the form

2

6664

�✏P�1
? ?

I + ✏A
> �✏�1

P + C ?

0 � �⇧

3

7775
� 0, (23)

with C = diag(Ṗ�1
⌫ , 0). By Schur complement lemma, we can prove that in-

equality (23) is equivalent to

2

4A
>

P + PA + C + ✏A
>

PA ?

� �⇧

3

5 � 0. (24)

Since ✏A >
PA � 0, then it follows from inequality (24) that

2

6666664

⌅ ? ? ?

G>
clP

�1
⌫ + ⇤�1

✓ E �2⇤�1
✓ ? ?

B
>
1✓P

�1
⌫ 0 �µI ?

Ccl Lcl D1✓ �I

3

7777775
� 0, (25)

with ⌅ = P
�1
⌫ Acl + A>

clP
�1
⌫ + Ṗ

�1
⌫ . Applying Schur complement lemma to

(25), then pre- and postmultiplying the result with
h
x
>

'(x)> w
>
i
and its

transpose, the following inequality can be obtained:

V̇ (x) < µw
>
w � z

>
z � 2'(x)>⇤�1

✓ (Ex� '(x)), (26)

where V̇ (x) is the time derivative of the Lyapunov function (8) along the tra-

jectory of system (6). From (4) and (26), it follows that

V̇ (x) + z
>
z < µw

>
w. (27)

We distinguish two following cases.

• If w(t) = 0, for 8t > 0, then V̇ (x(t)) < �z(t)>z(t) < 0, for 8x(t) 6= 0.125

Then, the origin of the closed-loop system (6) is asymptotically stable.

11



• If w(t) 6= 0, for 8t > 0, then integrating both sides of (27) from 0 to 1

and considering that V (x(1)) > 0, it follows that

Z 1

0
z(t)>z(t)dt  µ

Z 1

0
w(t)>w(t)dt+ V (x(0)). (28)

Under zero initial conditions, it is clear that (28) leads to inequality (7),

which means that the closed-loop system (6) is L2-stable from w(t) to

z(t) with an L2-gain less than or equal to � =
p
µ.

Finally, it follows from (17) that LV ⇢ X . Thus, since V̇ (x) < 0, for w(t) =130

0, 8t, then it is included in the region of attraction. Hence, if x(0) 2 LV , the

state trajectories will never leave LV . This concludes the proof.

Remark 2. One of the major di�culties when deriving the design conditions in

Theorem 1 is to deal with the term Ṗ⌫ =
Pr

i=1 ⌫̇i(⇠)Pi in (22). Exploiting the in-

tegral membership functions ⌫i(⇠), it follows from (11) that Ṗ⌫ = ↵
�1 (P✓ � P✓�),135

which is a convex term. This avoids assuming conservative bounds for the time

derivative of the membership functions ✓i(⇠) or considering path-independent

Lyapunov functions to obtain numerically tractable LMI design conditions.

Remark 3. Based on Theorem 1, the L2-gain upper-bound �, with � =
p
µ,

can be minimized by solving the following optimization problem:

min
 i

µ

subject to (14)–(17), with  i = (Pi,⇤i,Ki, Fi, Hi, Ji).

(29)

Remark 4. Note that for a su�ciently small scalar 0 < ✏ ⌧ 1, conditions

given in (24) and (25) are equivalent since the only di↵erence between them is140

the term ✏A
>

PA . Then, less conservative results are expected from (29) with

0 < ✏⌧ 1, which can be determined with a simple gridding algorithm.

4. Numerical Examples

To illustrate the relaxation provided by the proposed approach, comparisons

with the control results in [8] are performed hereafter. Note that the method [8]145

12



is the only work currently available in the literature addressing L2-stabilization

for N-TS fuzzy models. Also, the application to a real-world example is em-

ployed to discuss the stabilization and the trade-o↵ between the parameter ✏

and the obtained L2-gain. All optimization problems were done using Yalmip

toolbox and Mosek solver.150

4.1. Example 1

Consider a nonlinear system whose N-TS fuzzy model (2) is described as

follows [17, Example 3]:

A1 =

2

42 �10

2 0

3

5 , A2 =

2

4a �5

1 2

3

5 ,

B11 = B12 =
h
1 1

i>
, B21 = B22 =

h
b 2

i>
,

G1 = G2 =

2

40.1b 0

0 0.1a

3

5 , E =

2

41 0

0 1

3

5 ,

where x1, x2 2 [�2, 2]. The controlled output of the system is defined by

z(t) =
h
x1(t) x2(t)

i>
. For an artificial time-delay ↵ = 0.003 s and ✏ = 10�3,

the feasibility regions obtained by solving the optimization problem (29) in

Theorem 1 and Corollary 1 of [8], for di↵erent values of a and b, are shown155

in Figure 1. Observe that the feasibility region obtained with the proposed

condition is clearly enlarged when compared to the control approach in [8].

Also, by taking b = 13, the values of the upper-bound of the L2-gain � for

di↵erent values of a are depicted in Figure 2. It can be noticed that the proposed

approach provides smaller upper-bounds for all values of a. In particular, as a is160

increased, this improvement is even more evident, which clearly illustrates the

conservativeness reduction in comparison with [8, Corollary 1].

Finally, the smallest value of � obtained for all parameters a and b considered

in Figure 1 and the related computational complexity are depicted in Table 1.

It is worth mentioning that the constraint (17), with Hj = Pk = P , is added to

the approach in [8] to account the validity domain X of the N-TS fuzzy model.
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-7 -6 -5 -4 -3 -2 -1 0 1
13

13.2

13.4

13.6

13.8

14

Figure 1: Feasibility regions provided by Corollary 1 [8] (‘⇥’) and Theorem 1 (‘⇥’ and ‘�’) –

Example 1.

-7 -6 -5 -4 -3 -2 -1 0 1
10

15

20

25

30

35

40

Figure 2: Comparison of upper-bound of the L2�gain (�) for Corollary 1 [8] (‘⇥’) and The-

orem 1 (‘⇥’ and ‘�’), considering b = 13 – Example 1.

The numerical complexity is evaluated in terms of number of decision variables
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Nd, and number of LMI rows Nl. For Theorem 1, these values are given by

Nd = 1 + (n' + (nu + nx)nx + (nu + n')n')r

+ 1
2

�
nx(nx + 1) + r

2
N⌃(rN⌃ + 1)

�
r,

Nl =
1
2r

3(r + 3)N⌃ + (1 + nx)r
2
ne,

with N⌃ = 2nx + 2n' + nz + nw.

Table 1: Computational complexity and comparison of the smallest upper-bound of the

L2�gain �, considering the variation of parameters in Figure 1.

Design approach � (solution of (29)) Nd Nl log(N3
dNl)

[8, Corollary 1] 14.3662 119 47 18.1875

Theorem 1 12.1741 1047 268 26.4520

Although the proposed control approach has a slightly higher computational

complexity than the design condition in [8], it provides a significant improvement165

in terms of both the enlargement of the feasibility region and the reduction of

the upper-bound of the L2-gain. This clearly illustrates that the proposed

condition to design the control law (5), regarding the nonquadratic Lyapunov

function (8), leads to a conservativeness reduction in comparison to [8].

4.2. Example 2170

Consider the two-tank system [30, Example 2] illustrated in Figure 3 with

the following incremental model:

2

4ẋ1(t)

ẋ2(t)

3

5 =

2

4�
a1
A

2g
f(x1,x2)

a1
A

2g
f(x1,x2)

a1
A

2g
f(x1,x2)

�a1
A

2g
f(x1,x2)

3

5

2

4x1(t)

x2(t)

3

5+

2

4
k
A

0

3

5�v(t)

+

2

4 0

� 2ga2

A

3

5 '̄(x2) +

2

40.1

0

3

5w(t), (30)

in which x1(t) = h1(t)� h1e, x2(t) = h2(t)� h2e with h1(t) and h2(t) denoting

the water level of each tank, respectively, and h1e and h2e are the given operating

points. �v = v(t)�ve and v(t) denotes the flow rate of the pump (control input).
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w(t) represents an exogenous disturbance which can be considered as an extra

flow beyond the control input, A = 100 cm2 is the horizontal section, k = 4 is a

constant, a1 = 1 cm2 is the section of the connecting the tanks, a2 = 0.7 cm2 is

the section of the outlet valve, g = 981 cm/s2 is the gravitational acceleration

constant. The control objective is to keep the water level of the two tanks in

the operating point
h
h1e h2e

i>
=
h
9 6

i>
cm. Also,

f(x1, x2) =
p
2g(x1 � x2 + h1e � h2e) +

p
2g(h1e � h2e),

'̄(x2) =
x2p

2g(x2 + h2e) +
p
2gh2e

.

v(t)

h1(t)

h2(t)

Tank 1 Tank 2

Figure 3: Two-tank system schematic – Example 2.

Assume that |x1|  8, |x2|  5. Then, the premise variable ⇠ = 1
f(x1,x2)

2

[0.0054, 0.0130] and the sector nonlinearity '̄(x2) 2 co{0.0039x2(t), 0.0065x2(t)}.

After a loop-transformation, it follows that '(x2) = '̄(x2)�0.0039x2. Note that

'(x2) 2 co{0,⌦x2} with ⌦ = 0.0026. We consider �v(t) ⌘ u(t). Hence, system

16



(30) can be rewritten in the form
2

4ẋ1(t)

ẋ2(t)

3

5 =

2

4�
a1
A

2g
f(x1,x2)

a1
A

2g
f(x1,x2)

a1
A

2g
f(x1,x2)

�a1
A

2g
f(x1,x2)

� 0.0078ga2

A

3

5

2

4x1(t)

x2(t)

3

5

+

2

4
k
A

0

3

5u(t) +

2

4 0

� 2ga2

A

3

5'(x2) +

2

40.1

0

3

5w(t). (31)

Then, using the sector nonlinearity approach [28], the corresponding local state-

space matrices of the N-TS fuzzy model (2) for system (31) are given by

A1 =

2

4�0.1059 0.1059

0.1059 �0.1595

3

5 , A2 =

2

4�0.2551 0.2551

0.2551 �0.3086

3

5 ,

B1i =

2

40.1

0

3

5 , B2i =

2

40.04

0

3

5 , Gi =

2

4 0

�13.734

3

5 , 8i 2 I2.

Let us consider the controlled output as same of the previous example and the

artificial time delay ↵ = 0.001 s. Fig. 4 depicts the relation between the value of

the scalar ✏ and the minimum value of the L2-gain obtained from the optimiza-

tion problem (29). Note that the improvement achieved by applying Theorem 1

is not a monotonically increasing function of ✏. Moreover, to obtain a better175

result of the upper-bound of the L2-gain �, one should solve the optimization

problem (29) by iterating over ✏, see also Remark 2 in [26].

Note that, for ✏  10�2, the upper bound of the L2-gain is lower than the

one obtained from the approach in [8], which is equal to � = 1.7205. The best

case corresponds to � = 1.7102 obtained when ✏ = 3⇥ 10�3. This numerically180

confirms the statement in Remark 4.

Consider the corresponding controller, Fig. 5 depicts the trajectories of the

water levels (h1(t) and h2(t)) of the two tanks when the following disturbance

is applied:

w(t) =

8
><

>:

1, 10  t  12,

0, otherwise.

It is clear that the designed controller e↵ectively attenuates the disturbance

e↵ect and guarantees the closed-loop stability.
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Figure 4: Relation between ✏ and the L2-gain in Example 2.
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Figure 5: Response of the water levels h1(t) and h2(t) in Example 2.

5. Conclusions

The stabilization problem for nonlinear Takagi-Sugeno fuzzy systems subject185

to L2 disturbances has been investigated in this paper. A nonquadratic Lya-

punov function with integral membership functions have been considered and

su�cient delayed design conditions have been obtained. The considered non-

18



quadratic Lyapunov function avoids assuming bounds for the time derivatives

of the membership functions or path-independent conditions, which are sources190

of conservativeness. Moreover, based on appropriate matrix transformations,

the control law structure can be entirely independent of the Lyapunov func-

tion in a new fashion, contributing to reduce the design conservativeness. Two

examples have been provided to illustrate the reduction of conservativeness by

the proposed control approach, the application to a real system model, and the195

trade-o↵ between the L2-gain and the ✏ parameter introduced in the relaxation

of the design constraints. Future directions focus on developing a delayed non-

quadratic approach to design observers for the class of nonlinear Takagi-Sugeno

fuzzy models [24].
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