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Abstract-This paper investigates the design of unknown input (UI) observers for a large class of nonlinear systems using Takagi-Sugeno (TS) fuzzy modeling. To avoid the well-known issue on the unmeasured premise variables in fuzzy observer design, we reformulate the nonlinear systems in a TS fuzzy form with local nonlinear models. A particular feature of these so-called N-TS fuzzy models is that all the unmeasured nonlinearities are isolated in a nonlinear consequent. Together with a judicious use of the differential mean value theorem, the N-TS fuzzy reformulation enables an effective framework to design fuzzy UI observers. Based on an UI decoupling technique, no specific information on the UI is required for fuzzy observer design. The asymptotic estimations of both the state and the UI are guaranteed with fuzzy Lyapunov arguments. The observer gains can be effectively computed following an LMI-based design procedure. Numerical illustrations are given to demonstrate the interests of the proposed method over related existing results.
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I. INTRODUCTION

S TATE estimation of nonlinear systems is a basic concern in control theory and applications. Since the pionner work on linear time-invariant systems [START_REF] Luenberger | Observers for multivariable systems[END_REF], numerous extensions have been studied for nonlinear cases, see [START_REF] Besançon | Nonlinear Observers and Applications[END_REF] for an overview. Moreover, unmodeled dynamics, uncertain disturbances and faults in engineering systems, or attack signals in secure communication or cyber-physical systems can be all considered as unknown inputs (UIs) [START_REF] Nguyen | Simultaneous estimation of state and unknown input with ∞ guarantee on error-bounds for fuzzy descriptor systems[END_REF]. Hence, observer design for nonlinear systems affected by UIs has played a key role for fault diagnosis [START_REF] Chen | Fuzzy nonlinear unknown input observer design with fault diagnosis applications[END_REF]- [START_REF] Zhao | A novel approach to state and unknown input estimation for Takagi-Sugeno fuzzy models with applications to fault detection[END_REF], robust and fault-tolerant control [START_REF] Jia | Fault reconstruction and faulttolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF], [START_REF] Lan | Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modeling[END_REF]. Motivated by these issues, we are interested in designing UI observers for nonlinear systems, described as

x k+1 = Ψ(x k , u k ) + Dd k , y k = Cx k , (1) 
where 

x k ∈ D x ⊆ R nx is the system state, u k ∈ D u ⊆ R nu is the known input, d k ∈ R n d is the unknown input, y k ∈ R
lim k→∞ |x k -xk | = 0, lim k→∞ |d k -dk | = 0.
Takagi-Sugeno (TS) fuzzy model-based technique [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] has been shown as a promising framework to deal with this problem [START_REF] Rotondo | Robust unknown input observer for state and fault estimation in discrete-time TS systems[END_REF], [START_REF] Jia | Fault reconstruction and faulttolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF], [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF]. The major interests of TS fuzzy approaches come from two main factors. First, TS fuzzy modeling can be used to approximate any smooth nonlinear system with any preciseness [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF]. In particular, the sector nonlinearity approach [10, Ch. 2] offers a systematic way to derive an equivalent TS fuzzy representation of the original nonlinear system in a compact set of the state space. Second, based on Lyapunov method, design conditions for fuzzy observers/controllers are derived in the form of linear matrix inequalities (LMIs), which are efficiently solved via convex optimization techniques, see for instance [START_REF] Li | Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables[END_REF]- [START_REF] Wang | H∞ observer design for fuzzy system with immeasurable state variables via a new Lyapunov function[END_REF]. To design a fuzzy observer for the nonlinear system (1), existing approaches have been mainly based on the following classical TS fuzzy representation:

x k+1 = n i=1 η i (z k ) (A i x k + B i u k + Dd k ) , (2) 
where the matrices of appropriate dimensions (A i , B i ) are constant, n is the number of fuzzy rules, z k is the vector of premise variables. The membership functions (MFs) are such that

η i (z k ) ≥ 0, n i=1 η i (z k ) = 1.
The existing TS fuzzy approaches to design fuzzy UI observers usually require some a priori information on the UIs. First, assuming that the UIs are of polynomial forms [START_REF] Koenig | Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation[END_REF], fuzzy proportional-integral observers [START_REF] Han | State and disturbance observers-based polynomial fuzzy controller[END_REF] are only suitable to estimate low-frequency UI signal. Second, the forms of the UIs are assumed to be known and generated by an exogenous system [START_REF] Wu | Disturbance rejection fuzzy control for nonlinear parabolic PDE systems via multiple observers[END_REF]. Third, norm-bound conditions on the UI and/or its time derivatives are also required in [START_REF] Jia | Fault reconstruction and faulttolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF], [START_REF] Zhang | Disturbance observerbased integral sliding-mode control for systems with mismatched disturbances[END_REF]. However, such a priori information on the UIs is not always available for many practical situations. To avoid this drawback, UI decoupling approaches have been proposed [START_REF] Zhao | A novel approach to state and unknown input estimation for Takagi-Sugeno fuzzy models with applications to fault detection[END_REF], [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF], [START_REF] Vu | State/disturbance observer and controller synthesis for the T-S fuzzy system with an enlarged class of disturbances[END_REF]. However, the system output in [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF] must be of the form y k = Cx k + F d k , with a full-row rank matrix F , leading to a restrictive design [START_REF] Rotondo | Robust unknown input observer for state and fault estimation in discrete-time TS systems[END_REF]. Moreover, the approaches in [START_REF] Zhao | A novel approach to state and unknown input estimation for Takagi-Sugeno fuzzy models with applications to fault detection[END_REF], [START_REF] Vu | State/disturbance observer and controller synthesis for the T-S fuzzy system with an enlarged class of disturbances[END_REF] can be only applied to TS fuzzy systems with measurable premise variables.

Two cases are distinguished for fuzzy observer design depending on the real-time availability of vector z k [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF]. For the first case, z k can be fully measured from the output y k . Then, the MFs η i (z k ), for i = 1, 2, . . . , n, are directly used to construct the fuzzy observers. The main goal here is to reduce the design conservativeness via various matrix transformations and fuzzy Lyapunov functions [START_REF] Nguyen | Simultaneous estimation of state and unknown input with ∞ guarantee on error-bounds for fuzzy descriptor systems[END_REF], [START_REF] Xie | Relaxed fuzzy observer design of discrete-time nonlinear systems via two effective technical measures[END_REF], [START_REF] Li | Weighted fuzzy observerbased fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions[END_REF]. However, the design approaches in this case can be only applied to a restrictive class of nonlinear systems. To overcome this major drawback, most of research efforts have been devoted to the second case, much more challenging, for which the premise variables z k are unmeasured or only partially measured. The technical difficulty consists in dealing with a mismatch nonlinear term, function of η i (z k ) -η i (ẑ k ), where ẑk is an estimate of z k . Up to now, the most common approach is based on the Lipschitz property of the MFs [START_REF] Chen | Fuzzy nonlinear unknown input observer design with fault diagnosis applications[END_REF], [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF], [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF]. Despite its simplicity, this approach generally leads to over-conservative results [START_REF] Ichalal | How to cope with unmeasurable premise variables in Takagi-Sugeno observer design: dynamic extension approach[END_REF]. Differential mean value theorem (DMVT) has been exploited in [START_REF] Guerra | H∞ LMIbased observer design for nonlinear systems via Takagi-Sugeno models with unmeasured premise variables[END_REF] to handle the unmeasurable MFs. However, the normbounded uncertainty approach used to deal with the unknown time-varying terms issued from the application of DMVT may lead to a complex and conservative design framework.

It is important to note that existing results on TS fuzzy observer design are mostly concerned with known inputs, see [START_REF] Ichalal | How to cope with unmeasurable premise variables in Takagi-Sugeno observer design: dynamic extension approach[END_REF], [START_REF] Guerra | H∞ LMIbased observer design for nonlinear systems via Takagi-Sugeno models with unmeasured premise variables[END_REF] and related works. Moreover, fuzzy UI observers and fuzzy fault detection/diagnosis have been mainly proposed for TS systems with measurable premise variables [START_REF] Nguyen | Simultaneous estimation of state and unknown input with ∞ guarantee on error-bounds for fuzzy descriptor systems[END_REF], [START_REF] Rotondo | Robust unknown input observer for state and fault estimation in discrete-time TS systems[END_REF], [START_REF] Jia | Fault reconstruction and faulttolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF], [START_REF] Han | State and disturbance observers-based polynomial fuzzy controller[END_REF], [START_REF] Vu | State/disturbance observer and controller synthesis for the T-S fuzzy system with an enlarged class of disturbances[END_REF], [START_REF] Li | Weighted fuzzy observerbased fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions[END_REF], [START_REF] Zhang | Reduced-order observer design for switched descriptor systems with unknown inputs[END_REF]. Some few extensions based on the conservative Lipschitz assumption to deal with the unmeasured premise variables can be found in [START_REF] Chen | Fuzzy nonlinear unknown input observer design with fault diagnosis applications[END_REF], [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF]. DMVT has been recently exploited in [START_REF] Guerra | Decoupling unknown input observer for nonlinear quasi-LPV systems[END_REF] to design UI observers for continuous-time systems with unmeasured nonlinearities. Unfortunately, the proposed observer structure requires the information of the time-derivative of the measured premise variables, which can be unmeasurable. In particular, asymptotic estimation convergence cannot be guaranteed in [START_REF] Guerra | Decoupling unknown input observer for nonlinear quasi-LPV systems[END_REF]. Motivated by the above practical and theoretical issues, this letter proposes a new method to design fuzzy UI observers while avoiding the issue of unmeasured premise variables. Specifically, our main contributions are as follows.

i) We reformulate system (1) as a N-TS fuzzy model, for which all the unmeasured nonlinearities in (1) are isolated in a local nonlinear consequent. With a judicious use of the differential mean value theorem, this particular feature of the resulting N-TS model enables an effective framework to design UI observers with reduced conservatism. ii) The asymptotic estimations of both the state and the UI are guaranteed using fuzzy Lyapunov-based arguments.

No specific information on the UI is required for UI observer design as in most of existing results [START_REF] Jia | Fault reconstruction and faulttolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF], [START_REF] Han | State and disturbance observers-based polynomial fuzzy controller[END_REF]- [START_REF] Zhang | Disturbance observerbased integral sliding-mode control for systems with mismatched disturbances[END_REF]. Moreover, the observer gains can be effectively computed following an LMI-based design procedure.

Notation. The set of nonnegative integers is denoted by Z + and I r = {1, 2, . . . , r} ⊂ Z + . For i ∈ I r , we denote σ r (i) = [0, . . . , 0, ith 1 , 0, . . . , 0] ∈ R r a vector of the canonical basis of R r . For a vector x, x i denotes its ith entry. For two vectors x, y ∈ R n , the convex hull of these vectors is denoted as

co(x, y) = {λx + (1 -λ)y : λ ∈ [0, 1]}. For a matrix X, X
denotes its transpose, X 0 means X is positive definite, and HeX = X + X . When the existence is guaranteed, X † denotes the Moore-Penrose pseudo-inverse of matrix X, i.e., X † = X X -1 X . diag(X 1 , X 2 ) denotes a block-diagonal matrix composed of X 1 , X 2 . I denotes the identity matrix of appropriate dimension. In block matrices, the symbol stands for the terms deduced by symmetry.

II. PROBLEM STATEMENT

This section formulates a new framework to design UI observers for fuzzy systems with unmeasured premise variables.

A. Fuzzy System Description

For fuzzy observer design, inspired by the N-TS fuzzy modeling [START_REF] Dong | Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems[END_REF], [START_REF] Coutinho | A multipleparameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF], we propose to reformulate the nonlinear system (1) as

x k+1 = A(ξ k )x k + Dd k + f (ξ k , u k ) + G(ξ k )φ(x k , u k ), (3) 
where ξ k ∈ R n ξ is the vector of measured premise variables. The nonlinear functions f :

D x × D u → R nx and φ : D x × D u → R n φ
are differentiable with respect to the state x k . The elements of the vector-valued function f (•) and the matrixvalued functions A(•) and G(•) are measurable whereas those of φ(•) cannot be measured from the output. Using the fuzzy modeling technique [10, Ch. 2], system (3) can be represented by the following TS fuzzy model with nonlinear consequents:

RULE R i : IF ξ 1 is M i 1 and . . . and ξ n ξ is M i n ξ THEN x k+1 = A i x k + Dd k + f (ξ k , u k ) + G i φ(x k , u k ) (4)
where the constant matrices (A i , G i ) are known. R i denotes the ith fuzzy inference rule, and r is the number of inference rules. M i j , with i ∈ I r and j ∈ I n ξ , is the fuzzy set. The fuzzy MFs are given by h

i (ξ k ) = n ξ j=1 µ i j (ξ jk ) r i=1 n ξ j=1 µ i j (ξ jk ) , i ∈ I r ,
where µ i j (ξ jk ) represents the membership grade of ξ jk in the respective fuzzy set M i j . Note that the MFs h i (ξ k ), for i ∈ I r , satisfy the convex sum property

r i=1 h i (ξ k ) = 1, 0 ≤ h i (ξ k ) ≤ 1, ∀i ∈ I r . (5) 
Let Ω be the set of membership functions satisfying (5), i.e.,

h = h 1 (ξ k ), h 2 (ξ k ), . . . , h r (ξ k ) ∈ Ω. We denote also h + = h 1 (ξ k+1 ), h 2 (ξ k+1 ), . . . , h r (ξ k+1 )
∈ Ω. Applying the center-of-gravity method for defuzzification, the fuzzy system (4) can be represented in the compact form [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] [START_REF] Zhang | Sensor fault estimation of switched fuzzy systems with unknown input[END_REF] where

x k+1 = A(h)x k + Dd k + f (ξ k , u k ) + G(h)φ(x k , u k ),
A(h) G(h) = r i=1 h i (ξ k ) A i G i . Remark 1.
All the unmeasurable premise variables of system (1) are isolated in the nonlinear term φ(x, u) of (3). Then, the MFs h i (ξ k ), i ∈ I r , of system (6) are measurable, and can be directly used to construct fuzzy observers. This particular feature of the N-TS fuzzy modeling (3)-( 6) enables an effective fuzzy UI observer design for nonlinear system (1). Moreover, through the system reformulation (3), a part of the nonlinearities of system (1) are retained in f (ξ k , u k ) and φ(x k , u k ). Hence, the resulting N-TS fuzzy model [START_REF] Zhang | Sensor fault estimation of switched fuzzy systems with unknown input[END_REF] requires fewer fuzzy rules than the classical TS fuzzy model (2), i.e., r < n. In many situations, especially for complex nonlinear systems, this can lead to several advantages: (i) simpler observer structure, (ii) less computational burden and less conservative results for fuzzy observer design [START_REF] Dong | Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems[END_REF].

The following assumptions are considered for system [START_REF] Zhang | Sensor fault estimation of switched fuzzy systems with unknown input[END_REF].

Assumption 1. We assume that matrix C is of full row rank, matrix D is of full column rank and rank(CD) = rank(D).

The rank condition in Assumption 1 is common in UI observer design framework for UI decoupling [START_REF] Jia | Fault reconstruction and faulttolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF], [START_REF] Koenig | Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation[END_REF], [START_REF] Vu | State/disturbance observer and controller synthesis for the T-S fuzzy system with an enlarged class of disturbances[END_REF].

Assumption 2. The function φ(x k , u k ) satisfies the condition

θ ij ≤ ∂φ i ∂x j (x, u) ≤ θ ij , for ∀(i, j) ∈ I n φ × I nx , (7) 
with

θ ij = min µ∈Dx×Du ∂φ i ∂x j (µ) , θ ij = max µ∈Dx×Du ∂φ i ∂x j (µ) .
Remark 2. The boundedness condition ( 7) is not restrictive for fuzzy observer design since TS fuzzy models are generally defined within a compact set D x [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. Moreover, the input u k of engineering systems is physically bounded, i.e., u k ∈ D u . Note that in many situations the bounds of u k are not required for the proposed UI observer design, i.e., when the Jacobian of φ(x k , u k ) is independent to u k . This is not the case of the recent DMVT-based TS fuzzy observer design in [START_REF] Guerra | H∞ LMIbased observer design for nonlinear systems via Takagi-Sugeno models with unmeasured premise variables[END_REF], where the bounds of u k are always required for observer design.

B. Problem Definition

We consider the following UI observer structure:

z k+1 = N (h)z k + L(h)y k + M Φ(ξ k , u k , xk ), (8) xk 
= z k -F y k , z 0 = 0, (9) 
dk = (CD) † y k+1 -C Φ(ξ k , u k , xk ) -CA(h)x k , (10) 
with

Φ(ξ k , u k , xk ) = f (ξ k , u k ) + G(h)φ(x k , u k ) and M = I + F C. ( 11 
)
The existence of the pseudo-inverse matrix (CD) † is guaranteed by the rank condition in Assumption 1. The MFdependent matrices

N (h) ∈ R nx×nx , L(h) ∈ R nx×ny , M ∈ R nx×nx and F ∈ R nx×ny are to be designed such that L(h) N (h) = N i=1 h i (ξ k ) L i N i .
Let us define e k = xk -x k . It follows from ( 9) and ( 11) that

e k = z k -F y k -x k , or e k = z k -M x k . (12) 
Then, the estimation error dynamics can be defined from ( 6), ( 8), ( 9) and ( 12) as

e k+1 = z k+1 -M x k+1 = N (h)e k + M (h)x k + M G(h)∆ φ -M Dd k , ( 13 
)
where

∆ φ = φ(x k , u k ) -φ(x k , u k ) and M (h) = N (h)M + L(h)C -M A(h).
The "mismatch" term ∆ φ caused by the unmeasured nonlinearities raises major challenge for fuzzy observer design [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF], [START_REF] Guerra | H∞ LMIbased observer design for nonlinear systems via Takagi-Sugeno models with unmeasured premise variables[END_REF]. To effectively deal with this term and guarantee an asymptotic error convergence, the following differential mean value theorem is useful to convert ∆ φ into a function of the estimation error e k .

Lemma 1.

[30] Let h(x) : R nx → R q and a, b ∈ R nx . If h(x) is differentiable on co(a, b), then there exist constant vectors

c i ∈ co(a, b), c i = a, c i = b, for ∀i ∈ I q , such that h(a) -h(b) =   q i=1 nx j=1 σ q (i)σ nx (j) ∂h i ∂x j (c i )   (a -b).
Applying Lemma 1 to the nonlinear function φ(x k , u k ), it follows that there exist χ i ∈ co(x k , xk ), i ∈ I n φ , such that

∆ φ =   n φ i=1 nx j=1 σ n φ (i)σ nx (j) ∂φ i ∂x j (χ i , u k )   (x k -xk ).( 14 
)
Let us denote ρ ij = ∂φi ∂xj (χ i , u k ), for ∀(i, j) ∈ I n φ × I nx , and

ρ = ρ 11 , . . . , ρ 1nx , . . . , ρ n φ nx . (15) 
Due to condition [START_REF] Zhao | A novel approach to state and unknown input estimation for Takagi-Sugeno fuzzy models with applications to fault detection[END_REF], the parameter ρ belongs to a bounded convex set S φ , whose set of 2 n φ nx vertices is given by

V φ = {ρ . = ρ 11 , . . . , ρ 1nx , . . . , ρ n φ nx : ρ ij ∈ [θ ij , θ ij ]}.
From ( 13) and ( 14), the error dynamics can be rewritten as

e k+1 = N (h, ρ)e k + M (h)x k -M Dd k , (16) 
where N (h, ρ) = r i=1 h i (ξ k )N i (ρ lj ) and

N i (ρ lj ) = N i + n φ l=1 nx j=1 σ n φ (l)σ nx (j)ρ lj M G i . ( 17 
)
The observer design problem of interest is stated as follows.

Problem 1. Consider a nonlinear system in the N-TS fuzzy form [START_REF] Zhang | Sensor fault estimation of switched fuzzy systems with unknown input[END_REF]. Determine the matrices N (h), L(h), M and F of the UI observer ( 8)- [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] such that the state estimate xk and the UI estimate dk converge asymptotically to the system state x k and the unknown input d k , respectively.

Using Lyapunov-based arguments, this paper proposes a tractable solution for the above observer problem.

III. UI OBSERVER DESIGN FOR FUZZY SYSTEMS WITH UNMEASURED PREMISE VARIABLES

This section develops a new framework to design UI observers for nonlinear systems in the N-TS fuzzy form [START_REF] Zhang | Sensor fault estimation of switched fuzzy systems with unknown input[END_REF].

A. On Fuzzy Unknown Input Observer Design

The following theorem provides the theoretical basis to achieve our UI observer design goal.

Theorem 1. Consider the N-TS fuzzy system (6), there is an asymptotic UI observer in the form ( 8)-( 10) if there exist MF-dependent positive definite matrix

P (h) ∈ R nx×nx , MF-dependent matrices N (h) ∈ R nx×nx , L(h) ∈ R nx×ny , matrices R ∈ R nx×nx , M ∈ R nx×nx and F ∈ R nx×ny with M = I + F C,
and the following conditions are satisfied for h, h + ∈ Ω, ρ ∈ S φ :

N (h)M + L(h)C -M A(h) = 0, (18) M D = 0, (19) P (h) RN (h, ρ) R + R -P (h + ) 0, (20) 
with P (h + ) = r l=1 h l (ξ k+1 )P l . Proof. From ( 18) and ( 19), the error dynamics ( 16) can be represented as

e k+1 = N (h, ρ)e k . ( 21 
)
Pre-and postmultiplying [START_REF] Zhang | Disturbance observerbased integral sliding-mode control for systems with mismatched disturbances[END_REF] with I -N (h, ρ) , one has

N (h, ρ) P (h + )N (h, ρ) -P (h) ≺ 0. ( 22 
)
For the asymptotic stability analysis of the error dynamics ( 21), we consider the fuzzy Lyapunov function candidate

V(e k ) = e k P (h)e k , P (h) = r i=1 h i (ξ k )P i , (23) 
with P i 0, for i ∈ I r . The variation of the fuzzy Lyapunov function [START_REF] Li | Weighted fuzzy observerbased fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions[END_REF] along the trajectory of system ( 21) is defined as

∆V = V(e k+1 ) -V(e k ) = e k N (h, ρ) P (h + )N (h, ρ) -P (h) e k . ( 24 
)
It follows from ( 22) and ( 24) that ∆V < 0, for ∀e k = 0. Now, we prove that the UI estimate dk in [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] asymptotically converges to d k . To this end, note from (6) that

d k = (CD) † (y k+1 -CΦ k -CA(h)x k ) , (25) 
with

Φ k = f (ξ k , u k )+G(h)φ(x k , u k ).
The UI estimation error ε k = d k -dk can be obtained from ( 10) and [START_REF] Guerra | H∞ LMIbased observer design for nonlinear systems via Takagi-Sugeno models with unmeasured premise variables[END_REF] as

ε k = (CD) † C (A(h)e k + G(h)∆ φ ) .
Using expression [START_REF] Li | Observer-based fuzzy integral sliding mode control for nonlinear descriptor systems[END_REF], the UI estimation error ε k is rewritten as

ε k = (CD) † CA (h, ρ)e k , (26) 
where

A (h, ρ) = r i=1 h i (ξ k )A i (ρ lj ) and A i (ρ lj ) = A i + n φ l=1 nx j=1 σ n φ (l)σ nx (j)ρ lj G i . ( 27 
)
Note from the algebraic equation ( 26) that if e k → 0, then ε k → 0, when k → ∞. This concludes the proof.

Due to the nonlinear matrix equality [START_REF] Han | State and disturbance observers-based polynomial fuzzy controller[END_REF], the nonlinear matrix inequality [START_REF] Zhang | Disturbance observerbased integral sliding-mode control for systems with mismatched disturbances[END_REF], and their MF-dependency, Theorem 1 cannot be solved directly for UI observer design. Based on this result, we derive hereafter tractable conditions to design UI observer ( 8)- [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] for system [START_REF] Zhang | Sensor fault estimation of switched fuzzy systems with unknown input[END_REF]. The following technical lemma is useful for the theoretical developments. Lemma 2. [START_REF] Rao | Generalized Inverse of Matrices and Its Applications[END_REF] Consider matrix W ∈ R m×n with m ≥ n, and matrix Z ∈ R k×n . Matrix X of the form X = ZW † + Y I -WW † , with an arbitrary matrix Y ∈ R k×m , is a solution of XW = Z when the condition ZW † W = Z holds.

B. LMI-Based Fuzzy Unknown Input Observer Design

The following theorem provides an LMI-based solution for the N-TS fuzzy UI observer design in Problem 1.

Theorem 2. Consider the N-TS fuzzy system (6), there is an asymptotic UI observer in the form ( 8)-( 10) if there exist positive definite matrices

P i ∈ R nx×nx , matrices R ∈ R nx×nx , Z ∈ R nx×ny , X i ∈ R nx×ny , i ∈ I r , such that P i (R + (RU + ZV )C)A i (ρ lj ) -X i C R + R -P k 0, (28) 
for i, k ∈ I r and ρ lj ∈ V φ , l ∈ I n φ , j ∈ I nx , where

U = -D(CD) † , (29) 
V = I -(CD)(CD) † , (30) 
Z = RY, (31) 
X i = RH i . (32) 
Furthermore, the matrices M ∈ R nx×nx , F ∈ R nx×ny , N i ∈ R nx×nx , and L i ∈ R nx×ny , for i ∈ I r , of the fuzzy UI observer ( 8)-( 10) are computed as

F = U + Y V, (33) 
N i = M A i -H i C, (34) 
L i = H i (I + CF ) -M A i F, (35) 
and matrix M given by [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF].

Proof. Note that condition (28) implies R + R 0, which guarantees the existence of R -1 . Moreover, from [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF] and [START_REF] Wu | Disturbance rejection fuzzy control for nonlinear parabolic PDE systems via multiple observers[END_REF], we can obtain

F (CD) = -D. (36) 
Under the matrix rank condition in Assumption 1, according to Lemma 2, the solution F of the matrix equation ( 36) is directly obtained in (33) with U and V defined in ( 29) and [START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H∞ performance analysis[END_REF], respectively. We define

H i = L i + N i F, ∀i ∈ I r . (37) 
From ( 11), ( 18) and (37), we can obtain (34). Note also from (34) and (37) that

L i = H i -N i F = H i -(M A i -H i C)F = H i (I + CF ) -M A i F, ∀i ∈ I r ,
which is exactly expression (35). Moreover, it follows from [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF] and (34) that

N i = M A i -H i C = (I + F C)A i -H i C = (I + (U + Y V )C)A i -H i C, ∀i ∈ I r . (38) 
Using expressions [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF], ( 27), (33), (38), followed by the variable changes ( 31)- [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization in Matlab[END_REF], inequality (28) is rewritten as

P i RN i (ρ lj ) R + R -P k 0, (39) 
for i, k ∈ I r and ρ lj ∈ V φ , l ∈ I n φ , j ∈ I nx , with N i (ρ lj ) defined in [START_REF] Koenig | Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation[END_REF]. Since h, h + ∈ Ω and due the convexity property of S φ , it follows that condition (39) implies [START_REF] Zhang | Disturbance observerbased integral sliding-mode control for systems with mismatched disturbances[END_REF].

The proof can be concluded via the result of Theorem 1.

Remark 3. Condition (28) in Theorem 2 is expressed in an LMI form, which can be effectively solved with numerical solvers, e.g., YALMIP toolbox with SDPT3 solver [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization in Matlab[END_REF].

The UI observer design algorithm is summarized as follows.

Observer Design Procedure Input: Nonlinear system in the N-TS fuzzy form [START_REF] Zhang | Sensor fault estimation of switched fuzzy systems with unknown input[END_REF]. Output: Fuzzy UI observer ( 8)- [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] such that xk → x k and dk → d k , when k → ∞.

Step 1: Check the matrix rank conditions in Assumption 1.

• If YES, then go to Step 2.

• If NO, then the proposed algorithm is unapplicable to the considered system.

Step 2: Compute the matrices U and V from ( 29) and [START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H∞ performance analysis[END_REF].

Step 3: Solve LMI-based condition [START_REF] Dong | Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems[END_REF] to get R, Z, P i and X i , for i ∈ I r .

Step 4: Compute Y from [START_REF] Rao | Generalized Inverse of Matrices and Its Applications[END_REF] as Y = R -1 Z, and H i from [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization in Matlab[END_REF] as

H i = R -1 X i , for i ∈ I r .
Step 5: Compute the observer gains M , F , N i and L i from ( 11), ( 33), ( 34) and ( 35), respectively.

To illustrate the proposed fuzzy UI observer design, a numerical example is presented in the following section.

IV. NUMERICAL DISCUSSIONS

We revisit the following nonlinear discrete-time system [START_REF] Dong | Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems[END_REF]:

x 1(k+1) = (1 + T )x 1k + T x 2k + sin b b T x 3k -0.1T x 4k + T (1 + x 2 1k )u k + T η(x k ) x 2(k+1) = T x 1k + (1 -2T )x 2k x 3(k+1) = T x 1k + (1 -0.3T )x 3k + T x 2 1k x 2k x 4(k+1) = (1 -T )x 4k + sin b b T x 3k + T η(x k ) + T d k y k = x 1k (40) 
where

η(x k ) = sin(x 3k ) -sin b b x 3k , x 1k ∈ [-a, a], x 3k ∈ [-b, b] and b = π 2 .
The fixed step of discretization is T = 0.5. The premise variable is defined as ξ k = x 2 1k . Then, system (40) can be rewritten in the form (3) with

A(ξ k ) =     1 + T T 0 -0.1T T 1 -2T 0 0 T T ξ k 1 -0.3T 0 0 0 0 1 -T     , f (ξ k , u k ) =     T (1 + ξ k )u k 0 0 0     , G(ξ k ) = G =     T 0 0 T     , C = 1 0 0 0 , φ(x k ) = sin(x 3k ).
Using the sector nonlinearity approach [10, Ch. 2] with the measurable premise variable ξ k = x 2 1k , the following 2-rule N-TS fuzzy model can be obtained:

x k+1 = 2 i=1 h i (ξ k )A i x k + f (ξ k , u k ) + Gφ(x k ), (41) 
where

A 1 =     1 + T T 0 -0.1T T 1 -2T 0 0 T T a 2 1 -0.3T 0 0 0 0 1 -T     , A 2 =     1 + T T 0 -0.1T T 1 -2T 0 0 T 0 1 -0.3T 0 0 0 0 1 -T     .
The corresponding membership functions are given by h

1 (ξ k ) = x 2 1 a 2 and h 2 (ξ k ) = a 2 -x 2 1
a 2 . We define the parameter vector ρ as in [START_REF] Xie | Relaxed fuzzy observer design of discrete-time nonlinear systems via two effective technical measures[END_REF] with ρ 1i = 0, for i ∈ {1, 2, 4}, and

ρ 13 = cos(x 3k ). Since x 3k ∈ [-π 2 , π 2 
], then the bounded convex set S φ has two vertices, i.e., V φ = {ρ 13 : ρ 13 ∈ {0, 1}}. The design procedure in Section III can be now applied to design a N-TS fuzzy UI observer for system (40), equivalently represented as (41).

Note that the nonlinearity sin(x 3k ) cannot be measured, which raises technical difficulties for TS fuzzy observer design. For instance, the recent fuzzy UI observer designs with measured premise variables in [START_REF] Jia | Fault reconstruction and faulttolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF], [START_REF] Vu | State/disturbance observer and controller synthesis for the T-S fuzzy system with an enlarged class of disturbances[END_REF] cannot be used. Due to restrictive rank conditions, the fuzzy UI observer method in [START_REF] Chadli | Robust observer design for unknown inputs TS models[END_REF] is also not applicable in this case. Indeed, TS fuzzy UI observer design, guaranteeing an asymptotic estimation performance for the discrete-time nonlinear system (40), is not yet available in the literature. To provide an idea on the conservatism of the proposed UI observer design, we compare the following methods.

• Method 1: proposed result in Theorem 2.

• Method 2: similar as Method 1 using Lipschitz property in place of DMVT, which can be considered as an extension of [28, Theorem 1]. • Method 3: extension to the discrete-time case of the TS fuzzy UI observer design using Lipschitz property in [START_REF] Chen | Fuzzy nonlinear unknown input observer design with fault diagnosis applications[END_REF]. • Method 4: extension to the discrete-time case with UI of the TS fuzzy observer design using DMVT in [START_REF] Ichalal | How to cope with unmeasurable premise variables in Takagi-Sugeno observer design: dynamic extension approach[END_REF]. For each method, the goal is to search for the largest value of parameter a, denoted by a * , for which an UI observer can be found for system (40). Table I summarizes the numerical comparisons between four considered methods. Remark that the proposed method provides a significant improvement in reducing the conservatism over other ones. Note also that using N-TS fuzzy modeling in Theorem 2 and [START_REF] Dong | Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems[END_REF], the number of fuzzy rules is decreased from four to two, leading to a reduction on the computational burden, represented by the number of scalar decision variables N var and the number of rows N row of all involved LMIs, see Remark 1. For illustrations, we consider the UI observer design for system (40) with a = 9301. Fig. 1 depicts the response of the proposed observer with respect to x 0 = 1 -1 0 -1 and a randomly chosen UI signal d k = 5e -0.1k sin(7k). Remark that both the states and the UI are asymptotically estimated with a high accuracy. Moreover, differently from the UI estimation approach in [START_REF] Nguyen | Simultaneous estimation of state and unknown input with ∞ guarantee on error-bounds for fuzzy descriptor systems[END_REF], the proposed observer does not lead to an excessive initial UI estimation error ε 0 . V. CONCLUDING REMARKS An UI observer design has been proposed for nonlinear systems represented in a N-TS fuzzy form. All the unmeasured nonlinearities are contained in a nonlinear consequent part. Via the differential mean value theorem, this N-TS fuzzy reformulation allows for an effective framework to design fuzzy UI observers while avoiding the major issue on unmeasured premise variables. Both the state and the UI can be asymptotically estimated using UI decoupling technique and fuzzy Lyapunov arguments. No a priori information on the UI is required for fuzzy UI observer design. The observer gains can be easily computed from an LMI-based design procedure. Numerical illustrations are given to demonstrate the interests of the proposed fuzzy UI observer design. Future works focus on designing N-TS fuzzy UI observers for nonlinear systems, whose output is also affected by unmeasured nonlinearities.

Fig. 1 .

 1 Fig. 1. Asymptotic estimation performance obtained with system (40).

  ny is the system output. The nonlinear function Ψ : D x ×D u → R nx is differentiable with respect to the state x k . The matrices of appropriate dimensions C and D are constant. The problem is to design a dynamical observer, generating a state estimate xk and an UI estimate dk of system[START_REF] Luenberger | Observers for multivariable systems[END_REF], such that

TABLE I NUMERICAL

 I COMPARISON BETWEEN DIFFERENT METHODS.

	Design	Method 1 Method 2 Method 3 Method 4
	a *	9301.0	6341.7	371.7	7406.2
	Nb. rules	2	2	4	4
	Nvar	56	57	93	92
	Nrow	72	44	784	1040
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