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Avoiding Unmeasured Premise Variables in
Designing Unknown Input Observers for

Takagi-Sugeno Fuzzy Systems
Anh-Tu Nguyen∗, Member, IEEE, Juntao Pan, Thierry-Marie Guerra, and Zhenhua Wang

Abstract—This paper investigates the design of unknown input
(UI) observers for a large class of nonlinear systems using Takagi-
Sugeno (TS) fuzzy modeling. To avoid the well-known issue on
the unmeasured premise variables in fuzzy observer design, we
reformulate the nonlinear systems in a TS fuzzy form with local
nonlinear models. A particular feature of these so-called N-TS
fuzzy models is that all the unmeasured nonlinearities are isolated
in a nonlinear consequent. Together with a judicious use of the
differential mean value theorem, the N-TS fuzzy reformulation
enables an effective framework to design fuzzy UI observers.
Based on an UI decoupling technique, no specific information
on the UI is required for fuzzy observer design. The asymptotic
estimations of both the state and the UI are guaranteed with
fuzzy Lyapunov arguments. The observer gains can be effectively
computed following an LMI-based design procedure. Numerical
illustrations are given to demonstrate the interests of the proposed
method over related existing results.

Index Terms—Takagi-Sugeno models, fuzzy observers, unmea-
sured premise variables, unknown inputs, Lyapunov method.

I. INTRODUCTION

STATE estimation of nonlinear systems is a basic concern
in control theory and applications. Since the pionner work

on linear time-invariant systems [1], numerous extensions have
been studied for nonlinear cases, see [2] for an overview.
Moreover, unmodeled dynamics, uncertain disturbances and
faults in engineering systems, or attack signals in secure com-
munication or cyber-physical systems can be all considered
as unknown inputs (UIs) [3]. Hence, observer design for
nonlinear systems affected by UIs has played a key role for
fault diagnosis [4]–[7], robust and fault-tolerant control [8],
[9]. Motivated by these issues, we are interested in designing
UI observers for nonlinear systems, described as

xk+1 = Ψ(xk, uk) +Ddk,

yk = Cxk,
(1)

where xk ∈ Dx ⊆ Rnx is the system state, uk ∈ Du ⊆ Rnu is
the known input, dk ∈ Rnd is the unknown input, yk ∈ Rny is
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the system output. The nonlinear function Ψ : Dx×Du → Rnx
is differentiable with respect to the state xk. The matrices of
appropriate dimensions C and D are constant. The problem
is to design a dynamical observer, generating a state estimate
x̂k and an UI estimate d̂k of system (1), such that

lim
k→∞

|xk − x̂k| = 0, lim
k→∞

|dk − d̂k| = 0.

Takagi-Sugeno (TS) fuzzy model-based technique [10] has
been shown as a promising framework to deal with this prob-
lem [5], [8], [11]. The major interests of TS fuzzy approaches
come from two main factors. First, TS fuzzy modeling can be
used to approximate any smooth nonlinear system with any
preciseness [12]. In particular, the sector nonlinearity approach
[10, Ch. 2] offers a systematic way to derive an equivalent
TS fuzzy representation of the original nonlinear system in a
compact set of the state space. Second, based on Lyapunov
method, design conditions for fuzzy observers/controllers are
derived in the form of linear matrix inequalities (LMIs), which
are efficiently solved via convex optimization techniques, see
for instance [13]–[16]. To design a fuzzy observer for the
nonlinear system (1), existing approaches have been mainly
based on the following classical TS fuzzy representation:

xk+1 =

n∑
i=1

ηi(zk) (Aixk +Biuk +Ddk) , (2)

where the matrices of appropriate dimensions (Ai, Bi) are
constant, n is the number of fuzzy rules, zk is the vector of
premise variables. The membership functions (MFs) are such
that ηi(zk) ≥ 0,

∑n
i=1 ηi(zk) = 1.

The existing TS fuzzy approaches to design fuzzy UI
observers usually require some a priori information on the
UIs. First, assuming that the UIs are of polynomial forms [17],
fuzzy proportional-integral observers [18] are only suitable to
estimate low-frequency UI signal. Second, the forms of the
UIs are assumed to be known and generated by an exogenous
system [19]. Third, norm-bound conditions on the UI and/or its
time derivatives are also required in [8], [20]. However, such a
priori information on the UIs is not always available for many
practical situations. To avoid this drawback, UI decoupling
approaches have been proposed [7], [11], [21]. However, the
system output in [11] must be of the form yk = Cxk + Fdk,
with a full-row rank matrix F , leading to a restrictive design
[5]. Moreover, the approaches in [7], [21] can be only applied
to TS fuzzy systems with measurable premise variables.

Two cases are distinguished for fuzzy observer design
depending on the real-time availability of vector zk [22]. For



the first case, zk can be fully measured from the output yk.
Then, the MFs ηi(zk), for i = 1, 2, . . . , n, are directly used to
construct the fuzzy observers. The main goal here is to reduce
the design conservativeness via various matrix transformations
and fuzzy Lyapunov functions [3], [15], [23]. However, the de-
sign approaches in this case can be only applied to a restrictive
class of nonlinear systems. To overcome this major drawback,
most of research efforts have been devoted to the second
case, much more challenging, for which the premise variables
zk are unmeasured or only partially measured. The technical
difficulty consists in dealing with a mismatch nonlinear term,
function of ηi(zk)−ηi(ẑk), where ẑk is an estimate of zk. Up
to now, the most common approach is based on the Lipschitz
property of the MFs [4], [11], [22]. Despite its simplicity,
this approach generally leads to over-conservative results [24].
Differential mean value theorem (DMVT) has been exploited
in [25] to handle the unmeasurable MFs. However, the norm-
bounded uncertainty approach used to deal with the unknown
time-varying terms issued from the application of DMVT may
lead to a complex and conservative design framework.

It is important to note that existing results on TS fuzzy
observer design are mostly concerned with known inputs, see
[24], [25] and related works. Moreover, fuzzy UI observers
and fuzzy fault detection/diagnosis have been mainly proposed
for TS systems with measurable premise variables [3], [5],
[8], [18], [21], [23], [26]. Some few extensions based on the
conservative Lipschitz assumption to deal with the unmea-
sured premise variables can be found in [4], [11]. DMVT
has been recently exploited in [27] to design UI observers
for continuous-time systems with unmeasured nonlinearities.
Unfortunately, the proposed observer structure requires the
information of the time-derivative of the measured premise
variables, which can be unmeasurable. In particular, asymp-
totic estimation convergence cannot be guaranteed in [27].
Motivated by the above practical and theoretical issues, this
letter proposes a new method to design fuzzy UI observers
while avoiding the issue of unmeasured premise variables.
Specifically, our main contributions are as follows.

i) We reformulate system (1) as a N-TS fuzzy model, for
which all the unmeasured nonlinearities in (1) are isolated
in a local nonlinear consequent. With a judicious use of
the differential mean value theorem, this particular feature
of the resulting N-TS model enables an effective frame-
work to design UI observers with reduced conservatism.

ii) The asymptotic estimations of both the state and the UI
are guaranteed using fuzzy Lyapunov-based arguments.
No specific information on the UI is required for UI
observer design as in most of existing results [8], [18]–
[20]. Moreover, the observer gains can be effectively
computed following an LMI-based design procedure.

Notation. The set of nonnegative integers is denoted by Z+

and Ir = {1, 2, . . . , r} ⊂ Z+. For i ∈ Ir, we denote σr(i) =

[0, . . . , 0,

ith︷︸︸︷
1 , 0, . . . , 0]> ∈ Rr a vector of the canonical basis

of Rr. For a vector x, xi denotes its ith entry. For two vectors
x, y ∈ Rn, the convex hull of these vectors is denoted as
co(x, y) = {λx+ (1−λ)y : λ ∈ [0, 1]}. For a matrix X , X>

denotes its transpose, X � 0 means X is positive definite,
and HeX = X +X>. When the existence is guaranteed, X†

denotes the Moore–Penrose pseudo-inverse of matrix X , i.e.,
X† =

(
X>X

)−1
X>. diag(X1, X2) denotes a block-diagonal

matrix composed of X1, X2. I denotes the identity matrix of
appropriate dimension. In block matrices, the symbol ? stands
for the terms deduced by symmetry.

II. PROBLEM STATEMENT

This section formulates a new framework to design UI ob-
servers for fuzzy systems with unmeasured premise variables.

A. Fuzzy System Description

For fuzzy observer design, inspired by the N-TS fuzzy
modeling [28], [29], we propose to reformulate the nonlinear
system (1) as

xk+1 = A(ξk)xk +Ddk + f(ξk, uk) +G(ξk)φ(xk, uk), (3)

where ξk ∈ Rnξ is the vector of measured premise variables.
The nonlinear functions f : Dx × Du → Rnx and φ : Dx ×
Du → Rnφ are differentiable with respect to the state xk. The
elements of the vector-valued function f(·) and the matrix-
valued functions A(·) and G(·) are measurable whereas those
of φ(·) cannot be measured from the output. Using the fuzzy
modeling technique [10, Ch. 2], system (3) can be represented
by the following TS fuzzy model with nonlinear consequents:

RULE Ri : IF ξ1 is Mi
1 and . . . and ξnξ is Mi

nξ

THEN xk+1 = Aixk +Ddk + f(ξk, uk) +Giφ(xk, uk) (4)

where the constant matrices (Ai, Gi) are known. Ri denotes
the ith fuzzy inference rule, and r is the number of inference
rules. Mi

j , with i ∈ Ir and j ∈ Inξ , is the fuzzy set. The

fuzzy MFs are given by hi(ξk) =
∏nξ
j=1 µ

i
j(ξjk)∑r

i=1

∏nξ
j=1 µ

i
j(ξjk)

, i ∈ Ir,
where µij(ξjk) represents the membership grade of ξjk in the
respective fuzzy setMi

j . Note that the MFs hi(ξk), for i ∈ Ir,
satisfy the convex sum property

r∑
i=1

hi(ξk) = 1, 0 ≤ hi(ξk) ≤ 1, ∀i ∈ Ir. (5)

Let Ω be the set of membership functions satisfying (5), i.e.,
h =

[
h1(ξk), h2(ξk), . . . , hr(ξk)

]> ∈ Ω. We denote also
h+ =

[
h1(ξk+1), h2(ξk+1), . . . , hr(ξk+1)

]> ∈ Ω. Applying
the center-of-gravity method for defuzzification, the fuzzy
system (4) can be represented in the compact form [10]

xk+1 = A(h)xk +Ddk + f(ξk, uk) +G(h)φ(xk, uk), (6)

where
[
A(h) G(h)

]
=
∑r
i=1 hi(ξk)

[
Ai Gi

]
.

Remark 1. All the unmeasurable premise variables of system
(1) are isolated in the nonlinear term φ(x, u) of (3). Then,
the MFs hi(ξk), i ∈ Ir, of system (6) are measurable,
and can be directly used to construct fuzzy observers. This
particular feature of the N-TS fuzzy modeling (3)–(6) enables
an effective fuzzy UI observer design for nonlinear system
(1). Moreover, through the system reformulation (3), a part



of the nonlinearities of system (1) are retained in f(ξk, uk)
and φ(xk, uk). Hence, the resulting N-TS fuzzy model (6)
requires fewer fuzzy rules than the classical TS fuzzy model
(2), i.e., r < n. In many situations, especially for complex
nonlinear systems, this can lead to several advantages: (i)
simpler observer structure, (ii) less computational burden and
less conservative results for fuzzy observer design [28].

The following assumptions are considered for system (6).

Assumption 1. We assume that matrix C is of full row rank,
matrix D is of full column rank and rank(CD) = rank(D).

The rank condition in Assumption 1 is common in UI
observer design framework for UI decoupling [8], [17], [21].

Assumption 2. The function φ(xk, uk) satisfies the condition

θij ≤
∂φi
∂xj

(x, u) ≤ θij , for ∀(i, j) ∈ Inφ × Inx , (7)

with

θij = min
µ∈Dx×Du

(
∂φi
∂xj

(µ)

)
, θij = max

µ∈Dx×Du

(
∂φi
∂xj

(µ)

)
.

Remark 2. The boundedness condition (7) is not restrictive
for fuzzy observer design since TS fuzzy models are generally
defined within a compact set Dx [10]. Moreover, the input uk
of engineering systems is physically bounded, i.e., uk ∈ Du.
Note that in many situations the bounds of uk are not required
for the proposed UI observer design, i.e., when the Jacobian
of φ(xk, uk) is independent to uk. This is not the case of the
recent DMVT-based TS fuzzy observer design in [25], where
the bounds of uk are always required for observer design.

B. Problem Definition

We consider the following UI observer structure:

zk+1 = N(h)zk + L(h)yk +M Φ̂(ξk, uk, x̂k), (8)
x̂k = zk − Fyk, z0 = 0, (9)

d̂k = (CD)†
(
yk+1 − CΦ̂(ξk, uk, x̂k)− CA(h)x̂k

)
, (10)

with Φ̂(ξk, uk, x̂k) = f(ξk, uk) +G(h)φ(x̂k, uk) and

M = I + FC. (11)

The existence of the pseudo-inverse matrix (CD)† is guar-
anteed by the rank condition in Assumption 1. The MF-
dependent matrices N(h) ∈ Rnx×nx , L(h) ∈ Rnx×ny ,
M ∈ Rnx×nx and F ∈ Rnx×ny are to be designed such that[

L(h) N(h)
]

=

N∑
i=1

hi(ξk)
[
Li Ni

]
.

Let us define ek = x̂k − xk. It follows from (9) and (11) that
ek = zk − Fyk − xk, or

ek = zk −Mxk. (12)

Then, the estimation error dynamics can be defined from (6),
(8), (9) and (12) as

ek+1 = zk+1 −Mxk+1

= N(h)ek + M (h)xk +MG(h)∆φ −MDdk, (13)

where ∆φ = φ(xk, uk)− φ(x̂k, uk) and M (h) = N(h)M +
L(h)C − MA(h). The “mismatch” term ∆φ caused by the
unmeasured nonlinearities raises major challenge for fuzzy
observer design [11], [25]. To effectively deal with this term
and guarantee an asymptotic error convergence, the following
differential mean value theorem is useful to convert ∆φ into
a function of the estimation error ek.

Lemma 1. [30] Let h(x) : Rnx → Rq and a, b ∈ Rnx . If h(x)
is differentiable on co(a, b), then there exist constant vectors
ci ∈ co(a, b), ci 6= a, ci 6= b, for ∀i ∈ Iq , such that

h(a)− h(b) =

 q∑
i=1

nx∑
j=1

σq(i)σ
>
nx(j)

∂hi
∂xj

(ci)

 (a− b).

Applying Lemma 1 to the nonlinear function φ(xk, uk), it
follows that there exist χi ∈ co(xk, x̂k), i ∈ Inφ , such that

∆φ =

 nφ∑
i=1

nx∑
j=1

σnφ(i)σ>nx(j)
∂φi
∂xj

(χi, uk)

 (xk − x̂k).(14)

Let us denote ρij = ∂φi
∂xj

(χi, uk), for ∀(i, j) ∈ Inφ ×Inx , and

ρ =
[
ρ11, . . . , ρ1nx , . . . , ρnφnx

]
. (15)

Due to condition (7), the parameter ρ belongs to a bounded
convex set Sφ, whose set of 2nφnx vertices is given by

Vφ = {ρ .
=
[
ρ11, . . . , ρ1nx , . . . , ρnφnx

]
: ρij ∈ [θij , θij ]}.

From (13) and (14), the error dynamics can be rewritten as

ek+1 = N (h, ρ)ek + M (h)xk −MDdk, (16)

where N (h, ρ) =
∑r
i=1 hi(ξk)Ni(ρlj) and

Ni(ρlj) = Ni +

nφ∑
l=1

nx∑
j=1

σnφ(l)σ>nx(j)ρljMGi. (17)

The observer design problem of interest is stated as follows.

Problem 1. Consider a nonlinear system in the N-TS fuzzy
form (6). Determine the matrices N(h), L(h), M and F of
the UI observer (8)–(10) such that the state estimate x̂k and
the UI estimate d̂k converge asymptotically to the system state
xk and the unknown input dk, respectively.

Using Lyapunov-based arguments, this paper proposes a
tractable solution for the above observer problem.

III. UI OBSERVER DESIGN FOR FUZZY SYSTEMS WITH
UNMEASURED PREMISE VARIABLES

This section develops a new framework to design UI ob-
servers for nonlinear systems in the N-TS fuzzy form (6).

A. On Fuzzy Unknown Input Observer Design

The following theorem provides the theoretical basis to
achieve our UI observer design goal.

Theorem 1. Consider the N-TS fuzzy system (6), there is
an asymptotic UI observer in the form (8)–(10) if there
exist MF-dependent positive definite matrix P (h) ∈ Rnx×nx ,



MF-dependent matrices N(h) ∈ Rnx×nx , L(h) ∈ Rnx×ny ,
matrices R ∈ Rnx×nx , M ∈ Rnx×nx and F ∈ Rnx×ny with
M = I + FC, and the following conditions are satisfied for
h, h+ ∈ Ω, ρ ∈ Sφ:

N(h)M + L(h)C −MA(h) = 0, (18)
MD = 0, (19)[

P (h) ?
RN (h, ρ) R+R> − P (h+)

]
� 0, (20)

with P (h+) =
∑r
l=1 hl(ξk+1)Pl.

Proof. From (18) and (19), the error dynamics (16) can be
represented as

ek+1 = N (h, ρ)ek. (21)

Pre- and postmultiplying (20) with
[
I −N (h, ρ)

]>
, one has

N (h, ρ)>P (h+)N (h, ρ)− P (h) ≺ 0. (22)

For the asymptotic stability analysis of the error dynamics
(21), we consider the fuzzy Lyapunov function candidate

V(ek) = e>k P (h)ek, P (h) =

r∑
i=1

hi(ξk)Pi, (23)

with Pi � 0, for i ∈ Ir. The variation of the fuzzy Lyapunov
function (23) along the trajectory of system (21) is defined as

∆V = V(ek+1)− V(ek)

= e>k
(
N (h, ρ)>P (h+)N (h, ρ)− P (h)

)
ek. (24)

It follows from (22) and (24) that ∆V < 0, for ∀ek 6= 0.
Now, we prove that the UI estimate d̂k in (10) asymptoti-

cally converges to dk. To this end, note from (6) that

dk = (CD)† (yk+1 − CΦk − CA(h)xk) , (25)

with Φk = f(ξk, uk)+G(h)φ(xk, uk). The UI estimation error
εk = dk − d̂k can be obtained from (10) and (25) as

εk = (CD)†C (A(h)ek +G(h)∆φ) .

Using expression (14), the UI estimation error εk is rewritten
as

εk = (CD)†CA (h, ρ)ek, (26)

where A (h, ρ) =
∑r
i=1 hi(ξk)Ai(ρlj) and

Ai(ρlj) = Ai +

nφ∑
l=1

nx∑
j=1

σnφ(l)σ>nx(j)ρljGi. (27)

Note from the algebraic equation (26) that if ek → 0, then
εk → 0, when k →∞. This concludes the proof.

Due to the nonlinear matrix equality (18), the nonlinear
matrix inequality (20), and their MF-dependency, Theorem 1
cannot be solved directly for UI observer design. Based on
this result, we derive hereafter tractable conditions to design
UI observer (8)–(10) for system (6). The following technical
lemma is useful for the theoretical developments.

Lemma 2. [31] Consider matrix W ∈ Rm×n with m ≥ n,
and matrix Z ∈ Rk×n. Matrix X of the form X = ZW† +
Y
(
I −WW†

)
, with an arbitrary matrix Y ∈ Rk×m, is a

solution of XW = Z when the condition ZW†W = Z holds.

B. LMI-Based Fuzzy Unknown Input Observer Design

The following theorem provides an LMI-based solution for
the N-TS fuzzy UI observer design in Problem 1.

Theorem 2. Consider the N-TS fuzzy system (6), there is an
asymptotic UI observer in the form (8)–(10) if there exist pos-
itive definite matrices Pi ∈ Rnx×nx , matrices R ∈ Rnx×nx ,
Z ∈ Rnx×ny , Xi ∈ Rnx×ny , i ∈ Ir, such that[

Pi ?
(R+ (RU + ZV )C)Ai(ρlj)−XiC R+R> − Pk

]
� 0,

(28)

for i, k ∈ Ir and ρlj ∈ Vφ, l ∈ Inφ , j ∈ Inx , where

U = −D(CD)†, (29)

V = I − (CD)(CD)†, (30)
Z = RY, (31)
Xi = RHi. (32)

Furthermore, the matrices M ∈ Rnx×nx , F ∈ Rnx×ny ,
Ni ∈ Rnx×nx , and Li ∈ Rnx×ny , for i ∈ Ir, of the fuzzy
UI observer (8)–(10) are computed as

F = U + Y V, (33)
Ni = MAi −HiC, (34)
Li = Hi(I + CF )−MAiF, (35)

and matrix M given by (11).

Proof. Note that condition (28) implies R + R> � 0, which
guarantees the existence of R−1. Moreover, from (11) and
(19), we can obtain

F (CD) = −D. (36)

Under the matrix rank condition in Assumption 1, according
to Lemma 2, the solution F of the matrix equation (36) is
directly obtained in (33) with U and V defined in (29) and
(30), respectively. We define

Hi = Li +NiF, ∀i ∈ Ir. (37)

From (11), (18) and (37), we can obtain (34). Note also from
(34) and (37) that

Li = Hi −NiF = Hi − (MAi −HiC)F

= Hi(I + CF )−MAiF, ∀i ∈ Ir,

which is exactly expression (35). Moreover, it follows from
(11) and (34) that

Ni = MAi −HiC = (I + FC)Ai −HiC

= (I + (U + Y V )C)Ai −HiC, ∀i ∈ Ir. (38)

Using expressions (11), (27), (33), (38), followed by the
variable changes (31)–(32), inequality (28) is rewritten as[

Pi ?
RNi(ρlj) R+R> − Pk

]
� 0, (39)

for i, k ∈ Ir and ρlj ∈ Vφ, l ∈ Inφ , j ∈ Inx , with Ni(ρlj)
defined in (17). Since h, h+ ∈ Ω and due the convexity
property of Sφ, it follows that condition (39) implies (20).
The proof can be concluded via the result of Theorem 1.



Remark 3. Condition (28) in Theorem 2 is expressed in an
LMI form, which can be effectively solved with numerical
solvers, e.g., YALMIP toolbox with SDPT3 solver [32].

The UI observer design algorithm is summarized as follows.

Observer Design Procedure
Input: Nonlinear system in the N-TS fuzzy form (6).
Output: Fuzzy UI observer (8)–(10) such that x̂k → xk and

d̂k → dk, when k →∞.
Step 1: Check the matrix rank conditions in Assumption 1.

• If YES, then go to Step 2.
• If NO, then the proposed algorithm is unapplicable to

the considered system.
Step 2: Compute the matrices U and V from (29) and (30).
Step 3: Solve LMI-based condition (28) to get R, Z, Pi and

Xi, for i ∈ Ir.
Step 4: Compute Y from (31) as Y = R−1Z, and Hi from

(32) as Hi = R−1Xi, for i ∈ Ir.
Step 5: Compute the observer gains M , F , Ni and Li from

(11), (33), (34) and (35), respectively.

To illustrate the proposed fuzzy UI observer design, a numer-
ical example is presented in the following section.

IV. NUMERICAL DISCUSSIONS

We revisit the following nonlinear discrete-time system [28]:

x1(k+1) = (1 + T )x1k + Tx2k +
sin b

b
Tx3k

− 0.1Tx4k + T (1 + x21k)uk + Tη(xk)

x2(k+1) = Tx1k + (1− 2T )x2k

x3(k+1) = Tx1k + (1− 0.3T )x3k + Tx21kx2k

x4(k+1) = (1− T )x4k +
sin b

b
Tx3k + Tη(xk) + Tdk

yk = x1k

(40)

where η(xk) = sin(x3k) − sin b
b x3k, x1k ∈ [−a, a], x3k ∈

[−b, b] and b = π
2 . The fixed step of discretization is T = 0.5.

The premise variable is defined as ξk = x21k. Then, system
(40) can be rewritten in the form (3) with

A(ξk) =


1 + T T 0 −0.1T
T 1− 2T 0 0
T Tξk 1− 0.3T 0
0 0 0 1− T

 ,

f(ξk, uk) =


T (1 + ξk)uk

0
0
0

 , G(ξk) = G =


T
0
0
T

 ,
C =

[
1 0 0 0

]
, φ(xk) = sin(x3k).

Using the sector nonlinearity approach [10, Ch. 2] with the
measurable premise variable ξk = x21k, the following 2-rule
N-TS fuzzy model can be obtained:

xk+1 =

2∑
i=1

hi(ξk)Aixk + f(ξk, uk) +Gφ(xk), (41)

where

A1 =


1 + T T 0 −0.1T
T 1− 2T 0 0
T Ta2 1− 0.3T 0
0 0 0 1− T

 ,

A2 =


1 + T T 0 −0.1T
T 1− 2T 0 0
T 0 1− 0.3T 0
0 0 0 1− T

 .
The corresponding membership functions are given by
h1(ξk) =

x2
1

a2 and h2(ξk) =
a2−x2

1

a2 . We define the parameter
vector ρ as in (15) with ρ1i = 0, for i ∈ {1, 2, 4}, and
ρ13 = cos(x3k). Since x3k ∈ [−π2 ,

π
2 ], then the bounded con-

vex set Sφ has two vertices, i.e., Vφ = {ρ13 : ρ13 ∈ {0, 1}}.
The design procedure in Section III can be now applied to
design a N-TS fuzzy UI observer for system (40), equivalently
represented as (41).

Note that the nonlinearity sin(x3k) cannot be measured,
which raises technical difficulties for TS fuzzy observer de-
sign. For instance, the recent fuzzy UI observer designs with
measured premise variables in [8], [21] cannot be used. Due
to restrictive rank conditions, the fuzzy UI observer method
in [11] is also not applicable in this case. Indeed, TS fuzzy
UI observer design, guaranteeing an asymptotic estimation
performance for the discrete-time nonlinear system (40), is
not yet available in the literature. To provide an idea on the
conservatism of the proposed UI observer design, we compare
the following methods.
• Method 1: proposed result in Theorem 2.
• Method 2: similar as Method 1 using Lipschitz property

in place of DMVT, which can be considered as an
extension of [28, Theorem 1].

• Method 3: extension to the discrete-time case of the TS
fuzzy UI observer design using Lipschitz property in [4].

• Method 4: extension to the discrete-time case with UI of
the TS fuzzy observer design using DMVT in [24].

For each method, the goal is to search for the largest value
of parameter a, denoted by a∗, for which an UI observer can
be found for system (40). Table I summarizes the numerical
comparisons between four considered methods. Remark that
the proposed method provides a significant improvement in
reducing the conservatism over other ones. Note also that using
N-TS fuzzy modeling in Theorem 2 and [28], the number
of fuzzy rules is decreased from four to two, leading to a
reduction on the computational burden, represented by the
number of scalar decision variables Nvar and the number of
rows Nrow of all involved LMIs, see Remark 1.

TABLE I
NUMERICAL COMPARISON BETWEEN DIFFERENT METHODS.

Design Method 1 Method 2 Method 3 Method 4
a∗ 9301.0 6341.7 371.7 7406.2
Nb. rules 2 2 4 4
Nvar 56 57 93 92
Nrow 72 44 784 1040

For illustrations, we consider the UI observer design for
system (40) with a = 9301. Fig. 1 depicts the response of the



proposed observer with respect to x0 =
[
1 −1 0 −1

]>
and a randomly chosen UI signal dk = 5e−0.1k sin(7k).
Remark that both the states and the UI are asymptotically
estimated with a high accuracy. Moreover, differently from
the UI estimation approach in [3], the proposed observer does
not lead to an excessive initial UI estimation error ε0.
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Fig. 1. Asymptotic estimation performance obtained with system (40).

V. CONCLUDING REMARKS

An UI observer design has been proposed for nonlinear
systems represented in a N-TS fuzzy form. All the unmeasured
nonlinearities are contained in a nonlinear consequent part.
Via the differential mean value theorem, this N-TS fuzzy
reformulation allows for an effective framework to design
fuzzy UI observers while avoiding the major issue on unmea-
sured premise variables. Both the state and the UI can be
asymptotically estimated using UI decoupling technique and
fuzzy Lyapunov arguments. No a priori information on the UI
is required for fuzzy UI observer design. The observer gains
can be easily computed from an LMI-based design procedure.
Numerical illustrations are given to demonstrate the interests
of the proposed fuzzy UI observer design. Future works focus
on designing N-TS fuzzy UI observers for nonlinear systems,
whose output is also affected by unmeasured nonlinearities.
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