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Takagi-Sugeno Fuzzy Unknown Input Observers to
Estimate Nonlinear Dynamics of Autonomous

Ground Vehicles: Theory and Real-Time Verification
Anh-Tu Nguyen∗, Member, IEEE, Truong Quang Dinh, Senior Member, IEEE, Thierry-Marie Guerra, Juntao Pan

Abstract—We address the simultaneous estimation problem of
the lateral speed, the steering input and the effective engine
torque, which play a fundamental role in vehicle handling,
stability control and fault diagnosis of autonomous ground
vehicles. Due to the involved longitudinal-lateral coupling dy-
namics and the presence of unknown inputs (UIs), a new
nonlinear observer design technique is proposed to guarantee
the asymptotic estimation performance. To this end, we make
use of a specific Takagi-Sugeno (TS) fuzzy representation with
nonlinear consequents to exactly model the nonlinear vehicle
dynamics within a compact set of the vehicle state. This TS
fuzzy modeling not only allows reducing significantly the real-
time computational effort in estimating the vehicle variables
but also enables an effective way to deal with unmeasured
nonlinearities. Moreover, via a generalized Luenberger observer
structure, the UI decoupling can be achieved without requiring
a priori UI information. Using Lyapunov stability arguments,
the UI observer design is reformulated as an optimization
problem under linear matrix inequalities, which can be effectively
solved with standard numerical solvers. The effectiveness of the
proposed TS fuzzy UI observer design is demonstrated with real-
time hardware-in-the-loop experiments.

Index Terms—Vehicle dynamics, nonlinear observers, vehicle
state estimation, steering angle estimation, torque estimation,
Takagi-Sugeno fuzzy systems.

I. INTRODUCTION

REAL-time knowledge on the vehicle dynamics and the
driver-related variables is essential for active safety

control [1], vehicle fault detection and diagnosis [2], and
driver-vehicle monitoring systems [3] of autonomous ground
vehicles. Unfortunately, the onboard vehicle sensors are not
always available onboard due to economical and/or technical
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reasons [4], [5]. In particular, within some specific situations,
the human driver variables cannot be directly measured by
physical sensors [6]. Hence, developing estimation algorithms
to reconstruct the vehicle dynamics from the online infor-
mation of low-cost sensors has received an ever-increasing
interest worldwide [6]–[8].

The information on the lateral speed or the sideslip angle is
a crucial index for vehicle handling and lateral stability. How-
ever, commercial physical sensors to measure the lateral speed
are expensive, which cannot be directly used in practice [9].
Hence, a great deal of research efforts has been devolved to the
lateral speed estimation [4], [9]–[11]. An industrially amenable
kinematic-based approach has been proposed in [12]. Without
requiring tire–road friction parameters or other dynamical
vehicle properties, this method can lead to the drift phenomena
induced by bias errors [4]. Kalman filtering methods have
been widely exploited for estimating sideslip angle, especially
within nonlinear estimation context [13]–[16]. Despite their
effectiveness, these methods require a fine tuning task and a
priori information on the noises affected to the vehicles to
achieve a satisfactory estimation performance. To overcome
these drawbacks, robust observers based on dynamical vehicle
properties have been proposed [4], [17], [18]. However, the
design of robust observers becomes challenging in presence
of nonlinear dynamics and/or unknown disturbances, which is
unavoidable for critical driving situations [12]. By exploiting
the key features of different low-cost sensors, fusion-data-
based techniques have been proved as an effective technique
to estimate the vehicle sideslip angle [19]–[21]. However, such
techniques induce additional sensor costs and complexities
for estimation algorithms [12]. It is important to emphasize
that the longitudinal-lateral coupling has been ignored in most
of model-based estimation methods [13]. The main reason is
due to the challenges involved in the corresponding nonlinear
observer design [10].

Since the steering angle directly controls the vehicle direc-
tion, this variable is a fundamental input for path tracking
control, path planning, active safety control and also detection
of driver failure of intelligent vehicles [1], [22]. The steering
angle can be precisely measured with absolute rotary encoders,
which are quite expensive and fragile to most of passenger
vehicles [10]. The low-cost sensors may lead to faulty mea-
surement results or provide erroneous steering signals. Hence,
the estimation of the steering angle has attracted increasing
research attention. Based on the information from the global
positioning system (GPS) and the micro-electromechanical



system (MEMS), an unscented Kalman filter has been pro-
posed in [23] to estimate the steering angle for agricultural
tractors. A linear extended observer has been proposed in
[24] for steering angle estimation, which is then exploited to
reconstruct the road curvature signal for vehicle lateral control.
The effective engine torque is also crucial for various auto-
motive applications, e.g., brake torque control, speed control,
adaptive cruise control [25]. However, it is difficult to directly
measure this vehicle variable for commercial cars due to
both economic and technical reasons [26]. Then, the effective
engine torque is generally supplied in the form of look-up-
tables (LUTs) as a function of in-cylinder air flow rate, engine
speed, injected fuel, etc., which are established and calibrated
by steady-state engine tests [26], [27]. To reduce the costs
for development, testing, maintenance, and robustness related
to LUTs-based estimations, various model-based algorithms
have been developed to estimate the effective engine torque.
High-order sliding mode observer has been proposed in [28]
to estimate the engine friction torque and load torque. Based
on the principles of Kalman filtering, a method has been
developed in [29] for estimating the engine combustion torque.
A two-step observer design, requiring different intake air
measurement sensors and real-time engine speed, has been
proposed to estimate the real-time engine torque [30]. Na et
al. [31] have proposed an unknown input observer for online
estimation of unknown effective engine torque with measured
engine speed, load torque and air mass flow rate.

Despite significant advances on vehicle estimation tech-
niques, simultaneous estimation of both the sideslip angle and
the steering angle as well as the effective engine torque has
not been achieved. The significance of such an estimation
solution is multi-fold. First, the estimated sideslip angle can be
used for vehicle active safety control [1], while the estimates
of the steering angle and the effective engine torque are
useful for fault diagnosis of intelligent automotive systems
[2]. Second, the proposed estimation solution is cost-effective
since it only requires the online information from low-cost
sensors. These issues motivate the new observer design method
in this paper. The proposed unknown input (UI) observer
design is based on a combined longitudinal-lateral vehicle
model, whose steering angle and effective engine torque are
considered as UIs. Two design challenges arise concerning: (1)
dealing with the unmeasured nonlinearities of vehicle dynam-
ics, (2) guaranteeing an asymptotic convergence of both the
vehicle state and the UIs. To meet similar challenges, Takagi-
Sugeno (TS) fuzzy model-based techniques [32], [33] have
been attempted to design nonlinear UI observers [10], [34].
However, based on the Lipschitz property of the membership
functions (MFs), the existing results generally lead to over-
conservative results or complex observer design frameworks
[35]. Note also that due to technical challenges related to
dealing with unmeasured MFs, fuzzy UI observer design and
fuzzy fault detection/diagnosis have been mainly focused on
systems with measurable nonlinearities [34], which is not
the case of the considered nonlinear vehicle dynamics. The
following contributions of this paper can overcome the above-
mentioned drawbacks.

• The nonlinear vehicle system is equivalently rewritten
in a specific TS fuzzy form with both measured and
unmeasured nonlinear consequents. Hence, the number
of TS local subsystems, directly related to the real-
time computational cost, can be significantly reduced
[36]. Moreover, this TS fuzzy form permits an effective
application of the differential mean value theorem [37]
to deal with unmeasured nonlinearities.

• Using a generalized Luenberger observer structure, an
effective UI decoupling can be achieved. Hence, an
asymptotic estimation convergence of both the vehicle
state and UIs can be guaranteed via Lyapunov stability
without requiring any a priori UI information [34] or any
specific choice of UI matrix [10]. The UI observer design
is recast as a convex optimization problem under linear
matrix inequality (LMI) constraints, effectively solved
with standard numerical solvers.

• The effectiveness of the proposed fuzzy UI observer
framework is practically verified with real-time hardware-
in-the-loop (HiL) experiments.

Notation. The set of nonnegative integers is denoted by Z+

and Ir = {1, 2, . . . , r} ⊂ Z+. For i ∈ Ir, we denote ξr(i) =

[0, . . . , 0,

ith︷︸︸︷
1 , 0, . . . , 0]> ∈ Rr a vector of the canonical basis

of Rr. For a vector x, xi denotes its ith entry. For two vectors
x, y ∈ Rn, the convex hull of these vectors is denoted as
co(x, y) = {λx+ (1−λ)y : λ ∈ [0, 1]}. For a matrix X , X>

denotes its transpose, X � 0 means X is positive definite,
and HeX = X +X>. When the existence is guaranteed, X†

denotes the Moore–Penrose pseudo-inverse of matrix X , i.e.,
X† =

(
X>X

)−1
X>. diag(X1, X2) denotes a block-diagonal

matrix composed of X1, X2. I denotes the identity matrix of
appropriate dimension. In block matrices, the symbol ? stands
for the terms deduced by symmetry. Arguments are omitted
when their meaning is clear.

II. VEHICLE MODELING AND PROBLEM FORMULATION

This section presents the nonlinear vehicle model used for
UI observer design. Then, the related observer problem is
formulated. The vehicle nomenclature is given in Table I.

TABLE I
PARAMETER VALUES OF VEHICLE MODEL.

Parameter Description Value
M Vehicle mass 1476 [kg]
lf Distance from gravity center to front axle 1.13 [m]
lr Distance from gravity center to rear axle 1.49 [m]
Ie Effective longitudinal inertia 442.8 [kgm2]
Iz Vehicle yaw moment of inertia 1810 [kgm2]
Cf Front cornering stiffness 57000 [N/rad]
Cr Rear cornering stiffness 59000 [N/rad]
Cx Longitudinal aerodynamic drag coefficient 0.35 [–]
Cy Lateral aerodynamic drag coefficient 0.45 [–]

A. Nonlinear Vehicle Model

Fig. 1 depicts a two degrees-of-freedom vehicle model. This
model represents the vehicle motion in the horizontal plane,



whose dynamics is described as follows [38]:

v̇x =
Teng − Cxv2x

Ie
+ vyr

v̇y =
Fyf + Fyr − Cyv2y

M
− vxr

ṙ =
lfFyf − lrFyr

Iz

(1)

where vx is the vehicle longitudinal speed, vy is the lateral
speed, r is the vehicle yaw rate, and Teng represents the
torque input for the vehicle longitudinal dynamics [1]. The
cornering forces at the front tires Fyf and at the rear tires Fyr
are modeled using the magic formula [7] as

Fyi(αi) = Di sin(∇i), i ∈ {f, r}
∇i = Ci arctan[(1− Ei)Biαi + Ei arctan(Biαi))],

(2)

where the Pacejka parameters Bi, Ci, Di and Ei depend on the
characteristics of the tire, the road and the vehicle operating
conditions. Note that the Pacejka tire model (2) is used for
simulation validation purposes in Section IV. The wheel slip
angles for the front and rear tires are modeled as follows [1]:

αf = δ − arctan

(
vy + lfr

vx

)
, αr = arctan

(
lrr − vy
vx

)
,

where δ is the front wheel steering angle.

Fig. 1. Schematic of a two degrees-of-freedom vehicle model.

B. Observer Problem Statement

For observer design, we consider the normal driving situa-
tion with small angle assumption [1], [3], [9]. Moreover, the
lateral tire forces are proportional to the slip angles of each
axle. Hence, the lateral tire forces (2) can be approximated by

Fyf = 2Cf

(
δ − vy + lfr

vx

)
, Fyr = 2Cr

(
lrr − vy
vx

)
, (3)

From (1) and (3), the nonlinear vehicle dynamics used for
observer design can be obtained as follows:

ẋ = Av(x)x+Dvd, (4)

where x =
[
vx vy r

]>
is the vehicle state vector, d =[

Teng δ
]>

is the control input. The state-space matrices of
the nonlinear vehicle model (4) are given by

Av(x) =

a11 0 vy
0 a22 a23
0 a32 a33

 , Dv =

d11 0
0 d22
0 d32

 ,
with

a11 = −Cxvx
Ie

, d11 =
1

Ie

a22 = −2(Cf + Cr)

Mvx
− Cyvy

M
, a23 =

2(Crlr − Cf lf )

Mvx
− vx

a32 =
2(lrCr − Cf lf )

Izvx
, a33 = −

2(Cf l
2
f + Crl

2
r)

Izvx

d22 =
2Cf
M

, d32 =
2lfCf
Iz

.

Taking into account the physical limitations during normal
driving conditions [3], the compact set of the vehicle state
is defined as

Dx =
{
vx ∈ [vx, vx], vy ∈ [vy, vy], r ∈ [r, r]

}
. (5)

where vx = 5 [m/s], vx = 30 [m/s], vy = −1.5 [m/s], vy =
1.5 [m/s], r = −0.55 [rad/s] and r = 0.55 [rad/s]. For system
(4), we assume that the vehicle speed vx [m/s] and the yaw rate
r [rad/s] can be directly measured whereas the measurement
of the lateral speed vy [m/s] is not available. Hence, the output
equation of system (4) is given by

y = Cx, C =

[
1 0 0
0 0 1

]
. (6)

In this work, the steering angle δ and the effective engine
torque Teng are considered as unknown inputs to be estimated.

The vehicle system (4) has three nonlinearities (or premise
variables), i.e., vx, 1

vx
and vy . Using the sector nonlinearity

approach [32, Chapter 2], a classical eight-rule TS fuzzy model
of the nonlinear vehicle dynamics (4) can be easily derived as

ẋ =

8∑
i=1

hi(z)Aix+Dvd, y = Cx, (7)

where z =
[
vx

1
vx

vy
]>

is the vector of premise variables.
The local state-space matrices Ai, and the corresponding MFs
hi(z) of the TS fuzzy model (7), for i ∈ I8, are not given
here for brevity. Similar TS fuzzy representations as (7) have
been used for vehicle dynamics estimation, see for instance
[10]. However, this classical TS fuzzy form (7) leads to both
theoretical and practical difficulties [35].
• Due to the practical unavailability of vy , the MFs hi(z),

for i ∈ I8, are unmeasured. Designing TS fuzzy ob-
servers in this situation still remains challenging [35],
especially in presence of unknown inputs [10].

• The classical TS model (7) may yield a TS fuzzy observer
with complex structure for real-time implementation.

To overcome these drawbacks, we reformulate the vehicle
system (4) in the following form:

ẋ = A(ξ)x+Dvd+ fv(ξ) +Gvφ(x),

y = Cx,
(8)



where φ(x) = v2y , and

A(ξ) =

0 r 0

0 − 2(Cf+Cr)
Mvx

0

0
2(lrCr−Cf lf )

Izvx
0

 , ξ =

[
1
vx
r

]
,

fv(ξ) =


−Cxv

2
x

Ie
2(Crlr−Cf lf )r

Mvx
− vxr

− 2(Cf l
2
f+Crl

2
r)r

Izvx

 , Gv =

 0

−CyM
0

 .
In this paper, we perform the observer design in the discrete-

time domain for real-time implementation. To this end, Euler’s
discretization method, with the sampling time Ts = 0.01 [s],
is used to obtain the discrete-time model of system (8) as

xk+1 = A(ξk)xk +Ddk + f(ξk) +Gφ(xk),

yk = Cxk, (9)

where
A(ξk) = TsAv(ξk) + I, G = TsGv,

f(ξk) = Tsfv(ξk), D = TsDv.

For convenience of presentation, we explicitly denote A(ξ) =
A(Vx, r) with Vx = 1

vx
∈ [V x, V x]. Using the sector

nonlinearity approach [32] with the premise vector ξ ∈ R2,
the following four-rule TS model of system (9) can be derived:

xk+1 =

4∑
i=1

hi(ξk)Aixk +Ddk + f(ξk) +Gφ(xk),

yk = Cxk,

(10)

where the local matrices Ai, for i ∈ I4, are given by

A1 = A (V x, r) , A2 = A (V x, r) ,

A3 = A
(
V x, r

)
, A4 = A

(
V x, r

)
.

The corresponding membership functions hi(ξk), for i ∈ I4,
of the TS fuzzy model (10) are defined as

h1(ξ) = Ωv1Ωr1, h2(ξ) = Ωv1Ωr2,

h3(ξ) = Ωv2Ωr1, h4(ξ) = Ωv1Ωr1,
(11)

with

Ωv1 =
V x − Vx
V x − V x

, Ωr1 =
r − r
r − r

,

Ωv2 =
Vx − V x
V x − V x

, Ωr2 =
r − r
r − r

.

Remark 1. The reformulated vehicle model (8) has two
features deserving particular attention. First, the unmeasurable
nonlinearity is isolated in φ(xk). Then, the membership func-
tions hi(ξk), for i ∈ I4, defined in (11), of the TS fuzzy
model (10) only depend on the measured premise vector ξk.
Hence, these membership functions can be directly used to
construct the UI observer structure as in (16). Note that using
the classical TS fuzzy modeling, the membership functions
hi(z), for i ∈ I8, of the TS fuzzy model (7) cannot be
directly incorporated into the UI observer structure due to their
dependency on the unmeasured lateral speed vy . This induces
major technical challenges in designing effective UI observers
for systems with unmeasured nonlinearities [10]. Second, a
part of nonlinearities are retained in the measured consequent

f(ξk) and unmeasured consequent φ(xk). Hence, the resulting
TS observer can be of much simpler structure, i.e., with
only four fuzzy rules in place of eight-rule conservative TS
representation (7). As shown in the next section, these features
enable an effective framework for TS fuzzy UI observer
design in terms of dealing with unmeasured nonlinearities and
complexity reduction.

This paper provides an effective algorithm for the following
vehicle dynamics estimation problem.

Problem 1. Consider the vehicle nonlinear model (10) with
the compact set Dx defined in (5). Design an UI observer
such that the lateral speed vy , the steering action δ and the
engine torque Teng can be asymptotically and simultaneously
estimated from the output information (6).

III. UI OBSERVER DESIGN FOR TS FUZZY SYSTEMS WITH
UNMEASURED NONLINEAR CONSEQUENTS

This section presents a new framework to design UI ob-
servers for a generalized class of TS fuzzy systems.

A. Observer Structure and Useful Lemmas

For generality, we consider the TS fuzzy system (10) in a
more general form

xk+1 = A(h)xk +Ddk + f(ξk, uk) +G(h)φ(xk, uk),

yk = Cxk, (12)

where xk ∈ Dx ⊆ Rnx is the state vector, uk ∈ Du ⊆ Rnu is
the known input, dk ∈ Rnd is the unknown input, yk ∈ Rny
is the output vector, and ξk ∈ Rnξ is the vector measured
premise variables. The nonlinear functions f : Dx × Du →
Rnx and φ : Dx × Du → Rnφ are differentiable with respect
to the state xk. The elements of function f(·) are measurable
whereas those of φ(·) cannot be measured from the output.
The state-space matrices of system (12) are given by[

A(h) G(h)
]

=

N∑
i=1

hi(ξk)
[
Ai Gi

]
.

Note that the MFs satisfy the following convex sum property:
N∑
i=1

hi(ξk) = 1, 0 ≤ hi(ξk) ≤ 1, ∀i ∈ IN . (13)

Let H be the set of membership functions satisfying (13),
i.e., h =

[
h1(ξk), h2(ξk), . . . , hr(ξk)

]> ∈ H . The following
assumptions are considered for the TS fuzzy system (12).

Assumption 1. The differentiable function φ(xk, uk) satisfies
the following boundedness condition:

ρ
ij
≤ ∂φi
∂xj

(x, u) ≤ ρij , (14)

with ρ
ij

= min
ρ∈Dx×Du

(
∂φi
∂xj

(ρ)
)

, ρij = max
ρ∈Dx×Du

(
∂φi
∂xj

(ρ)
)

, for

∀(i, j) ∈ Inφ × Inx .

Note that the state xk and the input uk of engineering systems
are always physically bounded, i.e., xk ∈ Dx and uk ∈ Du.
Then, the bounds ρ

ij
and ρij in (14) can be easily computed.



Assumption 2. We assume that

rank(CD) = rank(D), (15a)

rank

[
I D
C 0

]
= nx + nd. (15b)

The rank conditions in (15) are standard in UIO design
framework for unknown input decoupling [10], [34], [39],
[40]. Note that the vehicle nonlinear system (10) verifies these
rank conditions.

For estimation purposes, we consider the following UI
observer structure:

ζk+1 = T Φ̂k + L (h)(yk − ŷk), (16a)
x̂k = ζk + N yk, (16b)

d̂k = (CD)†(yk+1 − CΦ̂k), (16c)

with Φ̂k = A(h)x̂k + f(ξk, uk) + G(h)φ(x̂k, uk). The exis-
tence of the Moore–Penrose pseudo-inverse matrix (CD)† is
guaranteed by condition (15a). The matrices T ∈ Rnx×nx ,
N ∈ Rnx×ny and L (h) ∈ Rnx×ny are to be designed with

T + N C = I. (17)

Remark 2. Note that selecting T = I and N = 0, the UI
observer structure (16) reduces to the well-known Luenberger
observer [41], widely used in the literature.

From the matrix constraint (17), it follows that

xk+1 = T xk+1 + N Cxk+1 = T xk+1 + N yk+1. (18)

Then, from (12) and (18), the dynamics of the TS fuzzy system
can be rewritten as

xk+1 = T A(h)xk + T Ddk + T f(ξk, uk)

+ T G(h)φ(xk, uk) + N yk+1. (19)

Let us define the state estimation error as ek = xk − x̂k. To
achieve an asymptotic state estimation, we impose

T D = 0. (20)

Then, the estimation error dynamics can be defined from (16a),
(16b), (19) and (20) as

ek+1 = xk+1 − x̂k+1

= xk+1 − ζk+1 −N yk+1

= T A(h)ek + T G(h)δφ −L (h)Cek, (21)

where δφ = φ(xk, uk)−φ(x̂k, uk). The mismatching nonlinear
term δφ caused by the unmeasured premise variables leads to
technical difficulties in designing TS fuzzy observers [35]. To
effectively deal with this term and achieve an asymptotic error
convergence, the following lemma is useful to rewrite δφ as a
function of ek.

Lemma 1 (Differential Mean Value Theorem [37]). Let
g(x) : Rnx → Rq and a, b ∈ Rnx . If g(x) is differentiable
on co(a, b), then there exist constant vectors ci ∈ co(a, b),
ci 6= a, ci 6= b, for ∀i ∈ Iq , such that

g(a)− g(b) =

 q∑
i=1

nx∑
j=1

σq(i)σ
>
nx(j)

∂gi
∂xj

(ci)

 (a− b).

Applying Lemma 1 to function φ(xk, uk), then there exist
ϑi ∈ co(xk, x̂k), for i ∈ Inφ , such that

δφ =

 nφ∑
i=1

nx∑
j=1

σnφ(i)σ>nx(j)
∂φi
∂xj

(ϑi, u)

 (x− x̂). (22)

We denote θij = ∂φi
∂xj

(ϑi, u), for ∀(i, j) ∈ Inφ × Inx , and

θ =
[
θ11, . . . , θ1nx , . . . , θnφnx

]
.

Due to the boundedness condition (14), the unknown parame-
ter θ belongs to a bounded convex set Sφ, whose set of 2nφnx

vertices is given by

Vφ = {θ =
[
θ11, . . . , θ1nx , . . . , θnφnx

]
: θij ∈ {ρij , ρij}},

where the bounds ρ
ij

and ρij are given in (14). From (21) and
(22), the state estimation error dynamics can be rewritten as

ek+1 = (T A (h, θ)−L (h)C) ek, (23)

where

A (h, θ) =

N∑
i=1

hi(ξk)Ai(θ),

Ai(θ) = Ai +

nφ∑
l=1

nx∑
j=1

σnφ(l)σ>nx(j)θljGi.

(24)

We are now ready to formulate the UIO design problem.

Problem 2. Consider the TS fuzzy system (12). Determine
matrices of appropriate dimensions T , N and L (h) of the
TS fuzzy UI observer (16) such that both the state estimate x̂k
and the UI estimate d̂k asymptotically converge to the state
xk and the UI dk, respectively.

The following technical lemmas are useful for the design
of TS fuzzy UI observers.

Lemma 2 ([42]). Given matrices of appropriate dimensions A
and B. There exists a matrix X such that XA = B if and only
if BA†A = B. Moreover, the general solution to XA = B is
given by

X = BA† + Y(I −AA†),

where Y is an arbitrary matrix of appropriate dimension.

Lemma 3 ([43]). Consider the MF-dependent inequality

Υhhh+
=

N∑
i=1

N∑
j=1

N∑
l=1

hi(ξk)hj(ξk)hl(ξk+1)Υijl � 0, (25)

where h+ =
[
h1(ξk+1), h2(ξk+1), . . . , hN (ξk+1)

]>
, and

h, h+ ∈ H . The symmetric matrices of appropriate dimen-
sions Υijl, with i, j, l ∈ IN , are linearly dependent on the
unknown decision variables. Inequality (25) holds if

Υiil � 0, i, l ∈ IN
2

N − 1
Υiil + Υijl + Υjil � 0, i, j, l ∈ IN , i 6= j.

(26)

Note that Lemma 3 allows to convert the infinite LMI-based
condition (25) in to a finite set of LMI constraints (26), which
is numerically tractable.



B. LMI-Based Unknown Input Observer Design

The following theorem provides a numerical tractable solu-
tion for the UIO design in Problem 2.

Theorem 1. Consider the TS fuzzy system (12), there is an
asymptotic UI observer in the form (16) if there exist matrices
T and N satisfying conditions (17) and (20), and if there
exist positive definite matrices Pi ∈ Rnx×nx , matrices Mi ∈
Rnx×nx , Li ∈ Rnx×ny , for i ∈ IN , such that

Φiil(θp) � 0 (27a)
2

N − 1
Φiil(θp) + Φijl(θp) + Φjil(θp) � 0 (27b)

for i, j, l ∈ IN , i 6= j, and θp ∈ Vφ, p ∈ I2nφnx . The quantity
Φijl(θp) is given by

Φijl(θp) =

[
Pj ?

MjT Ai(θp)− LjC Mj +M>j − Pl

]
,

with Ai(θp) defined in (24). Moreover, the matrix L (h) in
(16a) is defined as L (h) = M−1(h)L(h) with

[
M(h) L(h)

]
=

N∑
i=1

hi(ξk)
[
Mi Li

]
. (28)

Proof. Note that if matrices T and N satisfy conditions (17)
and (20), then the TS fuzzy UI observer (16) leads to the state
estimation error dynamics (23). Moreover, conditions (17) and
(20) can be rewritten in the compact form[

T N
] [ I D
C 0

]
=
[
I 0

]
. (29)

Due to the rank condition (15b), the solution of the algebraic
matrix equation (29) exists. Applying Lemma 2 with

A =

[
I D
C 0

]
, B =

[
I 0

]
, X =

[
T N

]
,

we can compute matrices T and N as[
T N

]
=
[
I 0

] [ I D
C 0

]†
+ Y

(
I −

[
I D
C 0

] [
I D
C 0

]†)
, (30)

where Y is an arbitrary matrix of appropriate dimension.
For stability analysis, we consider the following MF-

dependent Lyapunov function candidate:

V(ek) = e>k P (h)ek, P (h) =

N∑
i=1

hi(ξk)Pi. (31)

By Lemma 3, it follows from (27a) and (27b) that[
P (h) ?

M(h)T A (h, θ)− L(h)C M (h, h+)

]
� 0, (32)

for h, h+ ∈H , θ ∈ Sφ, with

M (h, h+) = M(h) +M(h)> − P (h+),

and P (h+) =
∑N
i=1 hi(ξk+1)Pi. Since P (h+) � 0, condition

(32) implies M(h) + M(h)> � 0. This guarantees the exis-
tence of M(h)−1, thus the validity of the expression of L (h).

Let us denote A(h, θ) = T A (h, θ)−L (h)C = T A (h, θ)−
M(h)−1L(h)C. Premultiplying (32) with

[
I −A(h, θ)>

]
on

the left and its transpose on the right, we obtain

A(h, θ)>P (h+)A(h, θ)− P (h) ≺ 0. (33)

Note that inequality (33) guarantees a negative variation of the
fuzzy Lyapunov function (31) along the trajectory of the error
dynamics (23), i.e.,

δVk = V(ek+1)− V(ek)

= e>k+1P (h+)ek+1 − e>k P (h)ek < 0, ∀k ∈ Z+. (34)

Using Lyapunov-based argument, it is clear that condition (34)
guarantees the asymptotic stability of the error dynamics (23).

Hereafter, we show that the estimate d̂k defined in (16c)
converges asymptotically to the of the unknown input dk. To
this end, note from (12) that

dk = (CD)† (yk+1 − CΦk) , (35)

with Φk = A(h)xk + f(ξk, uk) + G(h)φ(xk, uk). The UI
estimation error εk = dk − d̂k can be computed from (16c)
and (35) as

εk = (CD)†C (A(h)ek +G(h)δφ) . (36)

Exploiting again expression (22), the UI estimation error εk
in (36) can be rewritten in the form

εk = (CD)†CA (h, θ)ek. (37)

Since h and θ belong to bounded convex sets, i.e., h ∈ H
and θ ∈ Sφ, remark from the algebraic equation (37) that if
ek → 0, then εk → 0. This concludes the proof.

Remark 3. The observer design in Theorem 1 is recast as a
convex optimization problem under strict LMI constraints (27).
Hence, the decision matrices Mi, Li, for i ∈ IN , constituting
the observer gain L (h) as in (28), can be efficiently solved
with available numerical toolboxes, for instance YALMIP
package with SDPT3 solver [44].

The UI observer design is summarized in Algorithm 1.
The proposed UI observer design can be now applied to the
TS fuzzy model (10) for the estimation of vehicle nonlinear
dynamics as described in Problem 1.

Algorithm 1: Observer Design Procedure
Input: Nonlinear system in the TS fuzzy form (12)
Output: Unknown input observer (16) such that

x̂k → xk and d̂k → dk, when k →∞
1 Check the matrix rank conditions in Assumption 2
• If YES, then go to Step 2
• If NO, then unapplicable algorithm

2 Compute matrices T and N from (30)
3 Solve LMI conditions (27) to get Mi, Li, for i ∈ IN
4 Construct matrices M(h) and L(h) from (28)
5 Construct TS fuzzy unknown input observer (16)



IV. HARDWARE-IN-THE-LOOP EXPERIMENTS

This section presents real-time results obtained with HiL
experiments to demonstrate the effectiveness of the proposed
fuzzy UI observer design. Three test scenarios, representing
different normal driving situations, are performed on a high-
fidelity vehicle model to show the robustness of the new
observer with respect to unmodeled vehicle dynamics.

A. Hardware-in-the-Loop Simulation Platform Setup

1) Full Vehicle Model: The real-time verification of the
proposed nonlinear UI observer is performed with a 15-DOF
multibody vehicle model [45], developed in LMS Imagine.Lab
AMESim environment. This full vehicle model consists of a
powertrain-chassis subsystem, a tire-road subsystem, a vehicle
dynamics sensing subsystem and a vehicle control unit as
depicted in Fig. 2. The key vehicle parameters are given in
Table I while others are initialized by AMESim [45] to create
a challenging simulation environment. The vehicle control unit
is constructed in Simulink and embedded in AMESim via a
co-simulation interface. Without further precision on the test
scenarios, it is assumed that the vehicle drives on a flat ground
with an ideal or a time-varying road adherence.

Fig. 2. AMESim full vehicle model running on HiL platform.

2) Hardware-in-the-Loop Platform Setup: To evaluate the
practical estimation performance, a HiL platform has been
setup as shown in Fig. 3(a). This platform consists of two
real-time (RT) machines: a MicroAutoboxII (MABII) and a
Vector System (VTS), and a personal computer to monitor
and download programmes into the RT machines via their

application tools: ControlDesk and CANoe/Pro. For the RT
code generation, the MABII has been selected as the platform
to run the full vehicle model while the VTS has been selected
as the platform to function as the vehicle sensing system as
well as to implement the designed fuzzy UI observer. All
the programs have been implemented in Simulink, allowing
RT code generation with RT interfaces from the dSPACE
and the VTS, see Figs. 3(b) and (c), respectively. At each
operation step, to mimic the practical automotive application,
pulse-width modulation (PWM) output channels of the MABII
are used to send the virtual sensor signals from the AMESim
full vehicle model to the VTS. The VTS receives the MABII
signals via its PWM input channels and converts them to
physical signals.

(a) Configuration of the HiL platform.

(b) Simulink design of the MABII.

(c) Simulink design of the VTS.

Fig. 3. Hardware-in-the-loop platform setup.

B. Scenario 1: Driving with a Random Vehicle Trajectory
For this test scenario, the autonomous vehicle performs a

driving task with a random trajectory and an increased accel-
eration after 14 [s] as shown in Figs. 4(a) and (b). Observe
from Figs. 4(b), (c) and (d) that the estimated vehicle states
quickly converge to their measured values. Moreover, Fig. 5
shows that both the unknown steering angle and the effective
engine torque are accurately estimated with the proposed TS
fuzzy observer.



Fig. 4. Estimation performance in Scenario 1. (a) Vehicle trajectory. (b)
Longitudinal speed vx. (c) Lateral speed vy . (d) Yaw rate r.

Fig. 5. Estimation performance in Scenario 1. (a) Steering angle δ. (b)
Effective engine torque Teng .

C. Scenario 2: Driving with a Circular Vehicle Trajectory

For this driving scenario, the estimation performance is
tested with a circular trajectory as depicted in Fig. 6(a). The
corresponding vehicle speed is given in Fig. 6(b). We can
see that the unmeasured lateral speed and unknown vehicle
inputs can be accurately reconstructed with the proposed fuzzy
UI observer as shown in Fig. 6(c) and Fig. 7, respectively.
Moreover, as in the previous driving scenario, the estimation
convergence is very quick for all estimated vehicle variables.

Fig. 6. Estimation performance in Scenario 2. (a) Vehicle trajectory. (b)
Longitudinal speed vx. (c) Lateral speed vy . (d) Yaw rate r.

Fig. 7. Estimation performance in Scenario 2. (a) Steering angle δ. (b)
Effective engine torque Teng .

D. Scenario 3: Driving with a Time-Varying Road Adherence

This test is performed with a time-varying adherence condi-
tion to emphasize the robustness performance of the proposed
UI observer. For this scenario, we assume that the autonomous
vehicle performs a contour trajectory with radius varied from
45 [m] to 55 [m] and an increasing vehicle speed profile as
shown in Figs. 8(a) and (b), respectively. To design a chal-
lenging driving situation, the interaction between the ground
and the tires is now simulated by a road grip model as shown
in Fig. 2, which is driven by the vehicle movement as

Roadgrip = µgrip

(
1 + sin

(
π
√
X2 + Y 2

lr

))
,

where µgrip = 0.6 is the grip coefficient, X and Y are the
vehicle positions. We can observe in Fig. 8 that the estimation
of the vehicle states is also highly accurate in this situation. In
particular, the proposed UI observer allows capturing precisely
the high-frequency chattering behaviors of vehicle variables
related to the lateral motion. The estimates of the steering
angle and the effective engine torque also converges quickly
to their respective measured signals as depicted in Fig. 9.

Fig. 8. Estimation performance in Scenario 3. (a) Vehicle trajectory. (b)
Longitudinal speed vx. (c) Lateral speed vy . (d) Yaw rate r.

For a quantitative performance analysis, the mean absolute
errors (respectively root mean square deviations) of the unmea-
sured lateral speed vyMAE , steering angle δMAE and effective
engine torque TengMAE (respectively vyRMSD, δRMSD and
TengRMSD) obtained with the proposed UI observer are com-
puted. These performance indices are summarized in Table II
for the three driving scenarios. The analysis results confirm
that the proposed fuzzy UI observer can provide accurate



Fig. 9. Estimation performance in Scenario 3. (a) Steering angle δ. (b)
Effective engine torque Teng .

estimates of both vehicle state variables and unknown inputs
under all considered test scenarios.

TABLE II
QUANTITATIVE ANALYSIS OF ESTIMATION PERFORMANCE.

Error index Scenario 1 Scenario 2 Scenario 3
vyMAE [m/s] 0.0025 5.66e-4 3.81e-4
δMAE [rad] 0.0018 9.71e-5 0.0023
TengMAE [Nm] 0.9002 0.7329 0.7553
vyRMSD [m/s] 3.81e-4 2.19e-4 2.96e-6
δRMSD [rad] 2.53e-4 2.91e-6 2.14e-4
TengRMSD [Nm] 5.164 5.212 5.319

V. CONCLUDING REMARKS

A new nonlinear UI observer design method has been
proposed to simultaneously estimate the vehicle state, the
lateral speed as well as the effective engine torque of au-
tonomous ground vehicles. TS fuzzy modeling with nonlinear
consequents is exploited for observer design to deal with
the unmeasured nonlinearities of the combined longitudinal-
lateral vehicle dynamics. The proposed generalized Luen-
berger observer structure permits an effective UI decoupling
to guarantee an asymptotic convergence of both the vehicle
state and the UI estimation errors. LMI-based observer de-
sign conditions are derived using Lyapunov arguments. The
practical performance of the new fuzzy UI observer is real-
time tested with a high-fidelity AMESim vehicle model. The
results of HiL experiments show that the proposed nonlinear
UI observer can provide accurate estimates of both vehicle
state variables and UIs. Future works focus on the extension
of the proposed estimation method to deal with limit driving
situations, e.g., by taking into account a nonlinear tire model or
parametric uncertainties of the cornering stiffness parameters
in the observer design. Moreover, exploiting the proposed UI
observer structure for an effective fault-tolerant control scheme
of autonomous vehicles is another promising research topic.
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