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Abstract— The identification of human joint impedance is
necessary for various applications, such as improving reha-
bilitation efficiency or monitoring the human operator’s state
(fatigue, stress). To this end, in this paper we combine robot’s
payload identification methods with sliding window recursive
least squares algorithm allowing a continuous identification of
the varying human joint model without the need for external
sensors. We also propose a threshold for detecting fake changes
in the identified model parameters due to numerical issues. The
presented approach is validated by simulations and experiments
using elastic rubber bands representing a simplified passive
human joint model attached to a one degree of freedom robotic
system. Comparison with simple recursive least squares shows
that the proposed method is promising, as it converges to the
new parameter in a single window length, whereas the other
method takes much longer. In addition, it distinguishes real
from fake changes depending on the validity of the used model.

I. INTRODUCTION
Human passive joint properties are commonly utilized in

various fields such as rehabilitation and collaborative robotics
to achieve high performance model-based control or in the
clinical field to assess neuro-muscular disorders [1]. The
identification of human joint impedance dynamic parameters
has been widely studied in the literature. Many studies
such as [2]–[6] consider an easy to identify spring-damper-
mass/inertia (KBM/KBI) model to represent the human joint
impedance, while others consider more complex models,
such as a double exponential expression [7]–[9], which are
nonlinear in the parameters and hence require more complex
identification algorithms.

One method for identifying human joint impedance during
physical human-robot interaction (pHRI) is to directly use
human joint torques and displacements measured with exter-
nal sensors such as motion capture systems and force/torque
sensors as in [4]. Another method is to use only the torque
estimated from the motors currents and the angles measured
by the encoders at the motors shafts as in [5] and [7]. This
last method requires an accurate modeling and knowledge of
the robot parameters in order to obtain good identification
of the human parameters. Although [5] used a second order
model to represent the behavior of the robotic system, it
can be better represented using the inverse dynamic model
(IDM) that can be obtained using the Newton-Euler or the
Lagrangian equations presented in [10]. Authors in [11] and
[12] have reviewed the entire process for identifying the
robot dynamic parameters as well as various identification
algorithms such as ordinary least squares (OLS) and max-
imum likelihood estimators. Furthermore, in [13] and [14],

OLS was used to identify a payload attached to an industrial
robot’s end-effector, using two experiments with and without
the payload.

Human joint impedance depends on the state of the subject
(fatigue, stress). Results in [5] and [6] showed that the ankle
mechanical impedance varies during locomotion. Despite the
use of time-varying identification methods in [5], the goal
was to identify a system that undergoes the same time-
varying behavior across each realization which is not suitable
for the detection of the changes in human behavior such
as fatigue. In addition, [4] and [6] identified human joint
impedance in specific timing points during a task, which does
not allow the detection of sudden changes in human behavior
(stress, spasticity) between two timing points. Online iden-
tification methods may be a good alternative to solve this
problem. Recursive least squares (RLS) algorithm [15], [16]
is a commonly used one due to its simple implementation.
Although the addition of a forgetting factor (or exponential
window), gives RLS the ability to exponentially forget past
data, the sliding window RLS (SW-RLS) algorithm performs
better when processing data with sharp changes, by radically
forgetting past data outside the chosen window [17]–[19].

In this paper, we propose a method combining the payload
identification methods presented in [13] and the SW-RLS
identification algorithm, in order to identify time-varying
human joint dynamic model parameters. This method allows
a continuous monitoring of the state of the human operator
during pHRI using only robot joint torques and kinematic
measurements without the need for external sensors. In
addition, we propose a threshold-based method to allow the
detection of fake changes in the identified model parame-
ters typically arising when the trajectory does not provide
sufficient excitation in the data. The proposed method is
first tested in simulation to allow a comparison between
estimates and ground-truth (GT) values under different noise
conditions. Experimental validation is then carried out by
identifying elastic rubber bands (ERBs) of known stiffness
providing GT values for comparison, and simulating a simple
model of a passive human operator.

This paper is organized as follows: existing and adopted
human and robot models are recalled in Section II. Then
identification methods are presented in Section III. Sections
IV and V show simulation and experimental setups, respec-
tively, with results and discussions for the validation of the
used model and identification methods. Finally, Section VI
includes the conclusion and future work.



II. SYSTEM MODELING

A. Robot Model

The inverse dynamic model (IDM) of a rigid robot with n
degrees of freedom (DOF) gives the joint forces and torques
τr ∈ Rn as a function of joint positions, velocities and
accelerations q, q̇, q̈ ∈ Rn. It can be obtained from the
Newton-Euler or the Lagrangian equations [10] as follows:

τr = M(q) · q̈ + C(q, q̇) · q̇ + g(q) + f(q̇), (1)

where M(q) ∈ Rn×n is the robot inertia matrix, C(q, q̇) ∈
Rn×n is the Coriolis and centrifugal matrix, g(q) ∈ Rn is the
gravitational term, and f ∈ Rn is the friction term. Several
friction models exist [20] such as the following common one:

fj = Fvj · q̇j + Fcj · sign(q̇j), (2)

with Fvj
and Fcj the viscous and Coulomb’s friction coef-

ficients of the jth joint, respectively. The IDM in (1) can
be expressed as a linear function of the standard dynamic
parameters χr =

[
χr

T
1 χr

T
2 · · · χr

T
n

]T ∈ Rp as follows:

τr = IDMχr
(q, q̇, q̈) · χr, (3)

where IDMχr

(
q, q̇, q̈

)
∈ Rn×p is the model regressor and

χrj contains inertia parameters, first moment, mass, inertia
of the actuator and friction parameters of the jth link.

The IDM (3) can be further reduced to depend only on the
minimal set of base inertial parameters βr ∈ Rbr [21], also
known as identifiable parameters [22], such that the measured
torque τrm can be represented as follows:

τrm = IDMβr
(q, q̇, q̈) · βr + e, (4)

where IDMβr
(q, q̇, q̈) ∈ Rn×br is the reduced model regres-

sor and e ∈ Rn is the error due to measurement noises and
modeling uncertainties present in practice.

When the robot is controlled to follow an exciting tra-
jectory of N samples with a sampling time Ts, an over-
determined linear system with r = n · N equations and br
unknowns is obtained, such that

Yr = Wr(q, q̇, q̈) · βr + ϵ, (5)

where Yr and ϵ ∈ Rr are the sampled vectors of τrm and e,
respectively, and Wr(q, q̇, q̈) ∈ Rr×br is the sampled matrix
of IDMβr

(q, q̇, q̈), referred to as the observation matrix.

B. Human Model

Linear models provide a good approximation for describ-
ing joint dynamics when experimental conditions such as
muscle activation level are kept relatively constant [1]. Joint
dynamics have frequently been modeled using a spring-
damper-inertia (KBI) model of the form

τh = Jh · θ̈h +Bh · θ̇h +Kh · θh, (6)

where τh is the torque applied by the robot on the human,
θh is the human joint angular position and {Jh, Bh,Kh}
are the human inertia, angular damping and angular stiffness
parameters, respectively.

Because the human elastic equilibrium angular position
θh0

is not always the constant, a better model that takes this
into account can be defined as follows:

τh = Jh · θ̈h +Bh · θ̇h +Kh · (θh − θh0) . (7)

Both models in (6) and (7) are linear in function of human
joint parameters, and can be written similarly to (5) as
an over-determined linear system of N equations and bhi
unknowns with i = {1, 2}1, such that

Yh = Whi(θh, θ̇h, θ̈h) · βhi + ϵ, (8)

where Yh and ϵ ∈ RN are the sampled vectors of τh and
e, respectively; Whi(θh, θ̇h, θ̈h) ∈ RN×bhi is the obser-
vation matrix; βh1 = [Jh, Bh,Kh]

T ∈ Rbh1 and βh2 =
[Jh, Bh,Kh,Γ0]

T ∈ Rbh2 , with Γ0 = Kh · θh0, are the
human joint parameter vectors corresponding to models (6)
and (7), respectively.

C. Human-Robot Model
In a pHRI system where the human operator is assumed

to be rigidly connected to the robot’s end-effector the motor
torque can be expressed as follows:

τr = M(q) · q̈+C(q, q̇) · q̇+ g(q) + f(q̇) + J(q)T · τh, (9)

with J(q) the Jacobian of the robot such that θ̇ = J(q) · q̇.
Thereafter, we set θ = q/N1 as would be the case for a 1-
DOF system or a n-DOF wearable robot (i.e. an exoskeleton)
such that J(q) = diag(1/Nj), with Nj being the reduction
ratio of the joint j. The sampled motor torque Ym ∈ Rr can
be expressed as a function of both the robot and the human
dynamics, and of only the robot joint kinematics as follows:

Ym = Wr(q, q̇, q̈) · βr +Whi(q, q̇, q̈) · βhi + ϵ, (10)

where Whi(q, q̇, q̈) is the human joint observation matrix.
Furthermore, by combining human and robot dynamic pa-
rameters βr and βhi into one vector of separately identifiable
parameters βrhi, equation (10) can be rewritten as

Ym = Wrhi(q, q̇, q̈) · βrhi + ϵ, (11)

where Wrhi(q, q̇, q̈) is the observation matrix of the consid-
ered human-robot interaction system.

III. PROPOSED IDENTIFICATION METHODS
We propose to combine the SW-RLS algorithm with the

payload identification methods presented in [13] in order to
identify the joint impedance parameters of the human user
attached to the robot’s end-effector.

A. Optimal Exciting Trajectory
A common way to design a persistently periodic exciting

reference trajectory for the identification procedure has been
proposed in [23]. It consists in optimally parameterizing a
finite Fourier series function by optimizing the condition
number of the corresponding observation matrix W of the
model. Using the chosen Fourier series order NFS and the
signal time period Tp, the largest frequency fmax of the
exciting signal can be easily calculated as fmax = NFS/Tp.

1In the rest of the paper, index i = {1, 2} will refer to the desired human
model in equations (6) and (7) respectively.



B. SW-RLS Algorithm

In our proposed approach, the SW-RLS algorithm applies
at time step k ∈ [Swin, N ] the OLS algorithm on filtered data
in the interval [k − Swin + 1, k], where Swin is the window
size corresponding to a window time Twin = Swin × Ts.
Data filtering is done following the rules described in [24],
where position data qwin over the window is filtered with a
non-causal zero-phase low-pass Butterworth filter of cutoff
frequency fc > 10×f0, with f0 the natural frequency of the
system. Then, the derivatives ˙̂qwin and ¨̂qwin are calculated
using a central difference algorithm of the low-pass filtered
position data. In addition, a parallel decimation procedure
low-pass filters in parallel the torque Y win sampled over
the desired window and each column of the corresponding
observation matrix Wwin using a filter of cutoff frequency
fcd > 2× f0 resulting in filtered Ŷ win and Ŵwin.

C. Identification Methods

In order to estimate human joint dynamic parameters, we
propose to compare the integration of the SW-RLS algorithm
within the four identification methods presented in [13]
which were used to estimate the parameters of a payload
attached to the robot’s end-effector. Each of these methods
requires two separate sets of experiments, one with and one
without the human interacting with the robot, which will be
referred to in the remainder of the paper as trajectories RH
(robot-human) and R (robot alone), respectively. Correspond-
ingly, the data obtained during each experiment is labeled
RH and R, respectively. In the following a description of the
modified methods is provided.

Method 1: First, estimates β̂r of the robot parameters βr

are obtained from data R by applying OLS algorithm to the
filtered equation (5). Then, the human torque Ỹ win

h over a
window is computed from data RH according to

Ỹ win
h = Y win

m − W̃win
r (q̂win, ˙̂qwin, ¨̂qwin) · β̂r, (12)

where W̃win
r (q̂win, ˙̂qwin, ¨̂qwin) is the robot observation

matrix over a window of size Swin calculated from
data RH. Then, estimates β̂hi

of the human parameters
are obtained using the SW-RLS algorithm with the fil-

tered human torque ˆ̃
Y

win

h and human observation matrix
ˆ̃
W

win

hi
(q̂win, ˙̂qwin, ¨̂qwin) computed from filtered data RH.

With this method, no constraints have to be imposed to the
reference trajectories with and without the human.

Method 2: First, estimates β̂r of the robot parameters βr

are obtained in the same way as Method 1. Then, estimates
β̂rhi

of the human-robot system are identified using SW-
RLS algorithm with filtered data RH. Then, estimates β̂hi

of
the human model are determined by subtracting the values
of the corresponding robot estimates β̂r from those of the
corresponding estimates β̂rhi of the human-robot system.
Nonetheless, attention must be paid that the full observation
matrix Wrhi(q, q̇, q̈) remains well conditioned.

Method 3: It is assumed that the controller is strong
enough to closely follow the reference trajectory in both
R and RH trajectories. Therefore, the human torque over

a window Ỹ win
h is computed from motor torques Y win

mr
and

Y win
mrh

in data R and RH, respectively, according to

Ỹ win
h = Y win

mrh
− Y win

mr
. (13)

Then, the human parameter estimates β̂hi are di-
rectly identified using SW-RLS algorithm with the fil-

tered human torque ˆ̃
Y

win

h and human observation matrix
ˆ̃
W

win

hi
(q̂win, ˙̂qwin, ¨̂qwin) computed from filtered data RH.

Method 4: An augmented system of torque Y aug
win and

observation matrix W aug
win (q̂

win, ˙̂qwin, ¨̂qwin) over a win-
dow of size Swin is built from the filtered motor torque
measurements Ŷ win

mr
and Ŷ win

mrh
of data R and RH, re-

spectively, as well as the filtered observation matrices: a)
Ŵwin

r (q̂win, ˙̂qwin, ¨̂qwin) of the robot computed from fil-

tered data R, b) ˆ̃
W

win

r (q̂win, ˙̂qwin, ¨̂qwin) of the robot and
ˆ̃
W

win

hi
(q̂win, ˙̂qwin, ¨̂qwin) of the human, both computed from

filtered data RH. The augmented system is then written as

Y win
aug =

[
Ŷ win
mr

Ŷ win
mrh

]
, (14)

Wwin
aug =

Ŵrwin
0(Swin×bhi

)

ˆ̃
W

win

r
ˆ̃
W

win

hi

 . (15)

Then estimates β̂r and β̂hi
of robot and human parameters,

respectively, are identified simultaneously using SW-RLS
algorithm and augmented matrices Y win

aug and Wwin
aug .

D. Threshold for fake changes detection

Since the excitation trajectory is optimized taking a full
period Tp into account (see Section III-A), it is not guar-
anteed that the trajectory remains sufficiently exciting inside
the sliding windows. In order to check the validity of changes
in parameters during identification with sliding windows, we
define a threshold TH as follows:

TH = Cond(Wref )× wratio, (16)

where Cond(Wref ) is the condition number of the cor-
responding observation matrix constructed using reference
trajectory signals and wratio = Np/Swin is the ratio between
the number of data samples in one period Np = Tp/Ts and
the chosen window size Swin. During identification using
SW-RLS algorithm, results at step k are considered valid as
long as the following applies:

Cond(Wwin
k ) < TH (17)

where Cond(Wwin
k ) is the condition number of the obser-

vation matrix constructed using data in [k − Swin + 1, k].

IV. SIMULATION

A. System Description

The actual system depicted in Fig. 1 is a cable-driven robot
joint, controlled using a PID controller implemented in a
Beckhoff EL7411 driver running via TwinCAT. It is made
up of a handle with a lever arm R = 7.4 cm and a mass



y

x

Removal of 2/4 ERBs at t= 10s

Fig. 1: System used for validation and simulation’s reference.

linked by a cable (reduction ratio N1 = 15) to a Maxon
motor (EC-max 40mm, brushless 120W) with a HEDL 5540
encoder that measures the angular position of the motor shaft
with a resolution of 500 counts per turn, corresponding to a
quantization step δquant = 2π/(500× 4) = 0.0031416 rad.
Measurements are acquired at a sampling period Ts = 1 ms.
See [25] for more details. To simulate a KBI human joint
behavior, we consider ERBs interacting with the system
through its handle, as illustrated in Fig. 1. In such a case,
equation (1) may be expressed as follows:

τr = Jr q̈ + Fvr q̇ + Fcr sign(q̇) +Mxr
g sin

(
q

N1

)
+Myr g cos

(
q

N1

)
= Wr(q, q̇, q̈) · βr, (18)

where βr = [Mxr
,Myr

, Fvr , Fcr , Jr]
T with Mxr

and Myr

the robot first moments along x and y axis, respectively, Jr
the equivalent inertia of the handle and motor shaft, Fvr and
Fcr the robot friction coefficients defined in (2) and g the
gravitational acceleration. Equations (6) and (7) then become

τ̃h =J̃hq̈ + B̃hq̇ + K̃hq = Wh1
(q, q̇, q̈) · β̃h1

, (19)

τ̃h =J̃hq̈ + B̃hq̇ + K̃hq − Γ̃0 = Wh2
(q, q̇, q̈) · β̃h2

, (20)

where β̃h1
=

[
J̃h, B̃h, K̃h

]T
and β̃h2

=
[
J̃h, B̃h, K̃h, Γ̃0

]T
with β̃hi

= βhi
/N2

1 . τ̃h, J̃h, B̃h and K̃h denote the human
torque, inertia, angular damping and angular stiffness at the
motor side, respectively, and Γ̃0 = K̃h ·N1θh0

.
Initial estimates of the robot dynamic parameters, con-

sidered as ground-truth values in the simulation, were com-
puted using parameters previously identified in [25] and the
geometric characteristics of the system, leading to βrGT

=
[1.518× 10−3, 0, 1.45× 10−4, 2.479× 10−3, 1.9× 10−5]T .
An approximation of the natural frequency f0 = 0.97 Hz of
the robotic system can be obtained from βrGT

. Thus, cutoff
frequencies fc = 10 Hz > 10×f0 and fcd = 5 Hz > 2×f0
are chosen for the position and decimation filters.

B. Simulation Setup
To compare the proposed identification methods detailed

in section III-C, the robot model (18) and human model
(19) were implemented in simulation in Matlab/Simulink
using the values βrGT

and β̃h1GT
= [0, 0, 1 × 10−3]T .

Next, these equations were used to generate the simulation
data R and RH, where K̃h doubles its value at half the
period Tp/2, leading to β̃new

h1GT
= [0, 0, 2 × 10−3]T . The

reference trajectory was taken as a Fourier series function
of order NFS = 5 and period Tp = 10 s, optimized so that
the corresponding observation matrix W is well-conditioned
[23]. During data generation, the position measurements
were quantized using δquant of the real system, and a zero
mean white Gaussian noise was added to the torque output
as a measurement error. Then the simulated data R and RH
were processed, using an 8th order Butterworth lowpass filter
of cutoff frequency fc = 10 Hz and a 4th order Butterworth
decimation filter of cutoff frequency fcd = 5 Hz. Finally,
the processed data R and RH are used to identify robot
and human model parameters with the different Methods 1-
4. The data samples when velocities |q̇| < 0.1 rad/s are
removed form the identification procedure to avoid numerical
issues due to the discontinuity in the dry friction model.
Several window sizes Swin = {1000, 2000, 4000} corre-
sponding to window times Twin = {1, 2, 4}s were tested to
examine the effect of window size Swin. Results were also
compared to those of RLS with different forgetting factors
λ = {0.995, 0.999, 0.9995, 1}.

C. Simulation Results and Discussion

From Fig. 2a, showing the identification of K̃h using
model 1 and Method 1, it can be observed that after changing
the value of K̃h to K̃new

h at t = 5 s the RLS estimates of K̃h

move further away from K̃new
h as λ approaches 1. The delay

to reach the new value also increases and the variations of

(a)

(b)

Fig. 2: Comparison of identification results of the varying
stiffness K̃h in simulation using: a) Method 1 and RLS with
different values of Swin and λ, respectively, b) Method 1 to
4 using Swin = 2000.



the estimated parameter decreases as λ approaches 1. On the
other hand, the estimates of the SW-RLS seem to converge to
the value of K̃new

h after Twin seconds, with noisy variations
that increase when Twin decreases. It can be seen that these
variations becomes significant for Twin < 2 s, which can be
explained by the fact that this value of Twin corresponds to
the period of the largest frequency fmax of the excitation
signal. Thus, both methods require a good choice of the
values of λ or Twin to avoid the variations of the parameter
when it is not supposed to change. However the SW-RLS
method always converges to the value K̃new

h within Twin

seconds, while the RLS converge to a value quite far from
K̃new

h if λ is not well chosen. A trade-off choice of Twin is
to take it larger than but close to the minimum window time
Tmin
win = 1/fmax. The estimates of the other parameters B̃h

and Ĩh with both methods remain around zero with noisy
variations that depend on the choice of λ and Swin but were
not illustrated for lack of space.

Results in Fig. 2b shows that Methods 1, 3 and 4 behave
approximately in the same way, while Method 2 does not
work at all. The poor performance of Method 2 is related to
the use of a trajectory with small position amplitudes, which
makes the corresponding observation matrix Wrh1

(q, q̇, q̈)
ill-conditioned because of the linear relationship that appears
between the columns corresponding to parameters Mxr

and
Kh. Method 3 gives good results in this case, since the
R and RH trajectories are the same, and the robot follows
them well. We can also notice that the different methods
give parameters that are poorly estimated in some parts of
the trajectory. This might be due to inaccurate modeling of
the system’s dynamics in these parts of the trajectory, or to
the fact that the effect of some parameters on the system’s
dynamics vanishes in these parts due to a lack of excitation.

V. EXPERIMENTAL VALIDATION
A. Experimental Setup

To experimentally validate the proposed identification
methods, ERBs were used instead of a human operator
since their stiffness can be measured and used as ground-
truth for validation. The linear stiffness KL of 4 ERBs
was determined experimentally by measuring with a digital
dynamometer (SAUTER FC100) the forces provided by
each ERB at known displacements in their linear region of
operation. KL was computed by linear fitting, yielding a
mean value of KL = 11.61±0.69 N/m. The mean stiffness
value is then considered the ground-truth value. Two ERBs
are attached on each side of the system in order to have
an elastic equilibrium angular position θh0

≈ 0 rad. KL

was then approximately converted into the equivalent angular
stiffness at the motor side K̃A = 4 × KL × R2/N2

1 =
1.13 × 10−3 N.m/rad. However, exactly reaching θh0

=
0 rad is not possible because of the slight asymmetry of the
used ERBs. The same is likely to apply for the human since
θh0

is not well defined in this case. Therefore, both human
models in equations (19) and (20) were compared. Next,
experimental data generation was carried out by controlling
the robot to follow reference exciting trajectories, consisting
of Fourier series functions of order NFS = 7 and period

Tp = 10 s leading to Tmin
win = 1.43 s, optimized so that

the corresponding observation matrix W is well-conditioned
[23]. The quantized version of the signals were included in
the optimization to take into account the large quantization
step of our system. In order to have a variable parameter
K̃h, 2 ERBs are suddenly removed at time t while the
experiment is running. Finally, the experimental R and RH
data were processed, with the same filters as in Section IV-
B, and used to identify the parameters of the robot and both
human models using only Method 1 as it gave good results in

(a) Estimated stiffness K̃h of ERBs

(b) Detection of fake changes using threshold TH in eq. (17)

(c) Measured versus Reconstructed Torque using identified parameters.

Fig. 3: Experimental identification results of ERBs with
variation of stiffness K̃A at t = 10 s using Method 1 with
Swin = 2000, and RLS with several λ comparing the human
models 1 and 2 in equations (19) and (20).



simulation and a window size Swin = 2000 corresponding to
Twin = 2 s > Tmin

win in this case. Results were also compared
to those of RLS with λ = {0.995, 0.999, 0.9995}. Variance
accounted for (VAF) was used to compare the torque esti-
mated from the identified parameters to the measured one.
B. Experimental Results and Discussion

Fig. 3a shows that K̃h is always underestimated, mainly
because the ERBs’ lever arm is not kept at its maximum
value, reducing the resulting torque. Hence, the efficiency of
the identification algorithms will be evaluated by comparing
their rate of convergence to half the average value prior to
the removal of 2/4 of the ERBs at 10 s. Fig. 3a shows that
SW-RLS with model 2 outperforms RLS by converging in
Twin ≈ 2 s against 5.3 s (λ = 0.999) and 5.7 s (λ =
0.9995). In contrast, both SW-RLS with model 1 and RLS
with λ = 0.995 converge after 2 s, but with significant noisy
variations. Fig. 3b shows the detection of ill-conditioning of
the observation matrix according to the threshold TH defined
in (16). It can be seen that when using model 2 this threshold
allows the detection of fake changes in the estimates in
intervals t = {3, 4.5} s and t = {13, 14.5} s. On the
other hand, the parameters estimated with model 1 present
large variations that are not detected as fake changes using
TH . This is certainly due to the fact that model 2 gives a
better representation of the system. So the proposed threshold
TH allows a detection of fake changes of the estimated
parameters as long as modeling errors are small enough.
Finally, we can observe in Fig. 3c that the measured torque
is better reconstructed using SW-RLS estimates with model
2 (VAF= 77.02%) than with model 1 (VAF= 60.697%) or
using RLS with λ = 0.999 (VAF= 61.023%).

VI. CONCLUSION AND FUTURE WORKS
This paper combines robot’s payload identification meth-

ods with sliding window recursive least squares algorithm to
continuously identify the dynamic parameters of a human-
robot interaction system. A threshold for detecting fake
changes in the identified parameters in case of insufficient ex-
citation is also proposed. The proposed approach is compared
with recursive least squares algorithm, both in simulation
and on a one degree of freedom robotic system using elastic
rubber bands to imitate the human part. Results show that
the proposed approach can overcome recursive least squares
in terms of convergence rate and precision and can enable
distinguishing real from fake changes in the parameters, with
varying performance depending on the accuracy of the used
model. Future works include: 1) the improvement of the op-
timal exciting trajectory allowing the use of smaller window
sizes to achieve faster convergence, 2) the use of adaptive
window sizes to ensure good conditioning, 3) the test of the
proposed methods with a real human interacting with the
robotic system to study the inter/intra-subject variation of
human parameters.
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