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Abstract

Network flow classification allows to distinguish normal flows from
deviant behaviors. However, given the diversity of the approaches pro-
posed for intrusion detection via IDS probes, an adequate fundamental
solution is required. Indeed, most of existing solutions address a specific
context which does not allow to assess the efficiency of the proposed mod-
els on a different context. Therefore, we propose in this paper an approach
for malicious flow detection based on One Dimensional Convolutional
Neural Networks (1D-CNN). Our solution extracts features based on the
definition of network flows. Thus, it can be common to any network flow
classification model. This feature engineering phase is coupled to CNN’s
feature detector in order to provide an efficient classification approach.
To evaluate its performance, our solution has been evaluated on two dif-
ferent datasets (a recent dataset extracted from a real IBM industrial
context and the NSL-KDD dataset that is widely used in the literature).
Moreover, a comparison with existing solutions has been provided to
NSL-KDD dataset. Attacks in both datasets have been defined using the
globally-accessible knowledge base of adversary tactics and techniques
MITRE framework. The evaluation results have shown that our proposed
solution allows an efficient and accurate classification in both datasets
(with an accuracy rate of 94% at least). Moreover, it outperforms existing
solutions in terms of classification metrics and execution time as well.

Keywords: Intrusion Detection System, Deep Learning, MITRE ATT&CK,
Features Engineering, Cyber attack.
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1 Introduction

Every day, new applications are connected to the Internet which increas-
ingly complicates the management of the network in an information system
traffic. Indeed, this growing number of applications diversifies the attack tech-
niques targeting information systems [1]. Collecting and analyzing network
flows facilitates traffic management, ensures better network trending and helps
to identify known intrusions and new ones [2]. Intrusion detection via IDS
probes are mainly based on static correlation rules that are manually updated.
Moreover, it usually does not take into account neither recent attack scenarios
nor the detection of zero-day vulnerability exploitation attempts [3]. Conse-
quently, organizations must now rely on dynamic security solutions to adapt
to the changing nature of current attacks. The diversity of applications used
and obfuscation techniques also limits the detection capabilities of IDS probes.

Although, the use of dynamic attack detection approaches with Machine
Learning (ML) and Deep Learning (DL) algorithms has allowed to improve
the identification and classification on these attacks [4]. However, the proposed
solutions are not generalized because of the engineering of the features manner
used for the detection and classification of attacks. Indeed, it is clearly noted
in the literature that these characteristics vary from one solution to another
and therefore unlikely to be reproduced elsewhere. In addition, the datasets
used for the testing phases do not have a benchmark to better evaluate the
accuracy of the proposed solutions.

In view of the mentioned improvement axes and weaknesses observed in
the state of the art, in this paper we present as part of the improvement of
an existing IDS solution at IBM, a new solution for malicious network flows
detection and classification in which:

• we propose a standard and producible engineering of relevant and necessary
feature classes that can be extracted and used in any network flow classifier,

• we propose a deep learning model that combines our feature extractor and
the CNN’s feature detector to achieve an efficient classification model,

• we perform an evaluation of our model on two datasets from different
contexts while validating their content using MITRE ATT&CK framework,

• we propose a comparison between our model, machine learning approaches
and deep learning solutions defined in the state of the art.

The rest of the paper is organized as follows. In section 2, we discuss
the recent intrusion detection works in the literature. We describe our pro-
posed solution in Section 3 and present its performance evaluation results in
Section 4. Finally, we conclude in Section 5.

2 Related Work

Intrusion Detection Systems (IDS) aim to detect malicious activities that could
compromise a Host (HIDS) or a Network (NIDS) [5]. Obfuscation techniques
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such as encryption, steganography, tunneling, anonymization, mutation, mor-
phing, physical obfuscation allow for better data protection of information
system and harden the traditional methods of incident detection via net-
work flow collectors [6]. Thus, the application of automatic and deep learning
techniques allows better detection of intrusions.

Different research works have considered the use of ML techniques for
intrusion detection including, e.g., Decision Trees [7] , Random Forest [8] ,
Naives Bayes (NB) [9] and Hidden Näıve Bayes (HNB) [10]. These different
approaches aim to detect intrusions, by classifying network flows by scenario,
via ML algorithms.

Deep Learning extends ML principles, relies on hidden layers to learn in
depth and process information and allows to process large volumes of data. In
[11], a sequential classifier for decreasing the false positive rate in this large
amount of data to process is proposed. They used Artificial Neural Network
(ANN) to reduce false positives and negatives. The accuracy was measured
over the KDD99 dataset and varies according to the number of ANN classifiers
chosen. In [12], an approach using several layers with hierarchy for complex
feature extraction is defined to improve the effectiveness of Artificial Neural
Networks (ANN) in NIDS. The solution can be evaluated by comparing tradi-
tional supervised ML classifiers and ANN techniques. However, the measured
accuracy of the model varies highly upon application to two distinct datasets
(KDDCup 99 and UNSW-NB15), hence the need to investigate more generic
solutions able to homogeneously perform on a large variety of datasets.

Other approaches focus on the use of Recurrent Neural Networks (RNN),
models adapted to sequential data. In [4], they propose an RNN model that
aims to improve both the accuracy of intrusion detection and the ability
to recognize the type of intrusion. The reduction of the learning time and
the decrease of the overlearning, the optimization of the search for hyper-
parameters can be posed as axes of improvement of the proposed approach, in
order to improve the proposed algorithm and the accuracy rate.

Binary classification and multiclass classification, allow to outperform other
deep learning (ANN) and ML approaches (J48, Random Forest, SVM), by
reducing the learning time and the overlearning. Using such approach imposes
to finely determine hyper-parameters in order to reach a good accuracy.

Deep neural networks based on a Bidirectional Long Short-Term Memory
(BLSTM) can increase this accuracy by circulating the input data in both
directions. In [13], the most optimal hyper-parameters are identified and tested
on the CICIDS2017 dataset, while Random Forest and Principal Component
Analysis (PCA) algorithms allow to select features. Feature selection is indeed
a matter of prime importance. In [14], a two-layer approach achieves both
a spatial and temporal feature extraction from raw data with Convolutional
Neural Networks (CNN) and LSTM respectively. However, the accuracy rate
decreases for unbalanced data.

A similar combination of CNN and LSTM model has been used to serial-
ize TCP/IP packets in a predetermined time range as a traffic model in [15].
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Normal and abnormal network traffic is categorized and labeled for super-
vised learning in 1D-CNN and applied to the UNSW-NB15 IDS dataset, using
CUDA GPU acceleration to reduce time consumption. Combinations of meth-
ods can be effective, in the classification.Deep Learning has also been combined
with binary algorithms (e.g., Binary Algorithm, Binary Genetic Algorithm,
Binary Gravitational Search Algorithm, Binary Bat Algorithm) as optimizers
in order to increase the accuracy of detection and reduce the error rate [16].
Although inputs of the proposed hybrid IDS anomaly classification method
are defined with eighty flow features from the CICIDS2017 dataset, the choice
of these features remains specific to each situation.

Overall, our literature review emphasizes the lack of generic solutions to
perform classification. Existing approaches remain specific to each dataset and
so do the accuracy rate and the rate of false positives. The extraction and
definition of features (feature extraction algorithms, extraction of spatial, tem-
poral or vector features by deep learning) used by the proposed algorithms
also highly depend on the targeted application case.

However, as observed, the solutions designed for a given dataset can hardly
be transposed to others, especially given the constantly increasing diversity
and complexity of cyber attacks. The MITRE framework allows to categorize
the attack according to the Technical Tactics and Procedures (TTPs) their
use [17]. This globally recognized knowledge base provides broad visibility into
the detection perimeter. It also allows the evaluation of the dataset used and
provides guidance for future research based on expanding IDS coverage. For
all these reasons, we propose to use this framework to enhance the network
flows we collected for further classification, thus easing the application of our
approach in other situations.

3 Our Proposed Approach

In this section, we present our supervised learning approach for network intru-
sion detection. Network events in our approach are classified based on the
features of network flows. Our approach uses CNN to achieve a fast and efficient
classification and can be applied in any network context.

Thus, as we can see in the Fig.1 the proposed approach can be broken
down into three steps: the first part will deal with feature engineering which
will be developed in 3.1 and will focus on the operation of convolution neural
networks, in particular the feature detector and feature map proposed in this
algorithm; the last step will highlight the classification phase of the flows for
the identification of the adequate classes to which the flows are associated.

3.1 Our Feature Engineering

As shown in Fig. 2, a flow represents a communication session between two
assets during a given time interval. Flow characteristics (e.g., IP addresses,
ports, communication protocols) can be found in any network activity. We
propose feature engineering based on the definition of a network flow. This
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Fig. 1 Our proposed model.

aims at extracting from the raw data, relevant features useful for any network
flow classification activity, reducing the processing time of a model to feed a
network activity classification algorithm.

Our feature engineering aims at finding a set of universal minimalist fea-
tures and facilitating several network flow analysis tasks. Thus, we believe it
can be used to classify network activity. As shown in table 1, the features of
any flow can be ranged in three main categories, namely:

• Asset characteristics that gather features related to Network, Transport
and Application layers of the OSI model;

• Flow characteristics regroup features related to layer 5 (session) of the
OSI model, including the type of session established, the direction and
duration of the communication;

• Exchanged data and rate characteristics in which we find features
related to exchanged contents (e.g., amount of communicating data).

Fig. 2 Flow definition.

3.2 Our Model

Once the features are selected, the data of these features are injected into
a classification algorithm. For this purpose, there are different ML and DL
approaches and methodologies, as we have seen in the state of the art, most of
which aim to improve the accuracy of the model. We have a part of the attack
categories with similar feature va* lues, which may decrease the models based
on the ML algorithm and target an application of our model to an industrial
context with high data volumes. Therefore, we propose a classification based
on deep learning where some features are learned during the learning phase.
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We choose CNN among other DL approaches because of its unique fea-
ture detector on the convolutional layer. The feature detector detects the
features that will match the highest values of the input data in the feature
map. A convolution operation is performed between the input data (dataset)
and the feature detector in order to determine this feature map that is fairly
representative of the relevant data.

Our model aims at coupling this feature map formation process with the
feature engineering proposed in 3.1 in order to define a robust method for
classifying the network flows.

Flow Characteristics

Flow-ID Flow Type

Flow-Aggregation-Count Flow Direction

Flow-Bias Flow Duration

Asset Characteristics

Source-IP Source-Port

Destination-IP Destination-Port

Protocol Category

Application Application-Group

Data and Speed Characteristics

Source-Bytes Destination-Bytes

Bit-Per-Second Total Bytes

Table 1 Features family.

Thus, we propose a One-Dimensional CNN (1D-CNN) approach with
parameters of 64 filters to extract 64 different features on the first convolution
layer of the network and a kernel-size of 3 (3x3 matrix). This size corresponds
to the size of the feature detector that allows to determine the number of fea-
ture maps created in our convolution layer. In this layer, we use the ReLu
function to add non-linearity in our model. The max-pooling ensures a spa-
tial invariance property and decreases the risk of overlearning by removing the
unimportant information and keeping only the most relevant ones to gener-
alize the model. Thus, we have chosen a value of two for the pool-size [18].
And, we add a pooling layer with two pool-size, followed by a flattening phase
applied in all previously defined pool features maps. The fully connecter layer
is added with 128 units corresponding to the average number of neurons in the
input and output layers, while maintaining the ReLu function. For the output
layer, we give as value to the parameters eight output neurons that correspond
to the classes of attacks present in our model. We rely on the cross-entropy
cost function for this network flow classification problem, with an Adam opti-
mizer, and accuracy to measure the performance of our model. The activation
function Softmax evaluates the output probabilities of each class.

Parameter Value

Convolution Layer / Max-pooling 3 layers / 2 layers

Dropout 0.3

Fully Connected 2 layers

Output Layer / Optimizer Softmax / Adam

Activation Function ReLu and Softmax

Epoch / Batch Size 200 / 3

Table 2 Our CNN parameters.
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In order to optimize the model, we will make it deeper while taking into
account that the complexity of the model increases the computation time.
Thus, we can add layers at the convolution layer or the fully connected layer
or both layers. We define a loop that adds three convolution layers, and do
max-pooling on these new layers while maintaining the same parameters as
in the first convolution layer. However, to minimize the over-training, we will
use dropout to disable some neurons. Thus, a probability of 0.3 is considered
in our model to disable the neurons. Table 2 summarizes the different settings
of our proposed convolution neural network model.

4 Evaluation - Results

In this section, we will evaluate the accuracy of our model in network flow
classification. To do so, we first apply our feature engineering coupled with our
CNN-based model on an IBM dataset extracted from a real industrial context.
We compare then our solution to ML algorithms in terms of binary and multi-
class classification. Since we aim to propose a general solution for network flow
classification, we show, in the second part of this section, the effectiveness of
our solution against existing solutions while considering, this time, the well
known NSL-KDD dataset that is widely used in the literature.

4.1 IBM Dataset

IBM QRadar is a security appliance that is built on Linux. QRadar allows
to collect, store and correlate logs for the detection of security incidents. To
prove the effectiveness of our approach, we extracted raw data from a real-
time industrial context, with an IBM proprietary IDS probe (QRadar Network
Insight, QNI), which extends QRadar by providing a detailed view of real-time
network communications [19].

Our dataset includes data collected in 2021, and thus recent attack chains
(e.g., exploit log4Shell vulnerability). The flows used in our classification have
been extracted during an interval of one week. This extraction contains legit-
imate flows and non-legitimate ones that we categorize using the framework
MITRE ATT&CK [20]. This content is presented in table 3.

Flow-class Target-ID Tactics Techniques Size (#rows)

Normal 0 - - 10.000

Large-Leakage 2 TA0010 T1567 10.000

Stealthy-leakage 1 TA0010 T1030 10.000

Web-Exploit 7 TA0002 T1204 5.000

DOS-Attack 3 TA0040 T1498 150

Indicator of Compromise Inbound 4 TA0001 T1189 500

Indicator of Compromise Outbound 5 TA0011 T1102 300

Malicious-Website 6 TA0011 T1102 15

Table 3 IBM Dataset content validated with MITRE ATT&CK.

4.2 Preprocessing

In this phase, we make transformations on our raw data to allow its processing
by the learning algorithms that we used. The raw data has an average of 150
features by default. However, using all these features for classification is not an
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optimal approach. Therefore, in our solution, we reduce the number of features
to 14 (at most) according to our feature engineering approach (Section 3.1) in
addition to one target that describes the flow class.

After this extraction, all decimal entries (e.g., rate, amount of data,
source/destination port numbers) remain unchanged. On the other hand, each
byte in a field related to an IP address is converted to its hexadecimal value
(excluding the dots that separate the bytes). After that, these values are con-
catenated which gives us a unique value that will be converted to decimal. The
fields related to ”flow direction” has at most four possible values in the raw
data. Therefore, these values are mapped into integers in the set {1, .., 4}. The
fields related to ”flow bias” has at most five possible values in the raw data.
Therefore, these values are mapped into integers in the set {1, .., 5}. Finally,
the type of the communication protocol used is replaced by its corresponding
number assigned by the Internet Assigned Numbers Authority (IANA) (i.e., 6
and 17 for TCP and UDP respectively).

4.3 Results

To determine the quality of our classification model and to evaluate its per-
formance against various existing learning algorithms, we used the following
four popular evaluation metrics:

Accuracy = (TP+TN)
(FP+FN+TP+TN) , Precision = TP

TP+FP , Recall = TP
TP+FN ,

ScoreF1 = 2 ∗ (Precision∗Recall)
(Precision+Recall)

Where, for a given flow class C: True Positive (TP) represents the number of
flows correctly classified in the given class C; True Negative (TN) represents
the number of flows correctly classified outside the class C; False Positive (FP)
represents the number of flows wrongly classified in the class C; and finally
False Negative (FN) represents the number of flows wrongly classified outside
the class C.

4.3.1 The evaluation of binary and multi-class classification
using two-feature families

As a first step to validate our approach, we started with a binary classification
which should allow us to distinguish legitimate flows from illegitimate ones. To
do so, we first assign all legitimate flows (Normal flows in table 3) to the target
0 while all illegitimate flows will be assigned to the target 1. After that, we
select ten features in each entry in our dataset. These features correspond to
two features families among the three highlighted in section 3.1, namely, Flow
features (the number of records in a flow, the type of flow, the direction of the
asset that initiated the communication, the duration of the communication, the
data transfer bias) and Asset features (the source IP address, the destination
IP address, the source and destination ports, and the protocol used). This data
has then been injected into our model and the results have been compared in
table 4 with those of four ML algorithms (K-Nearest Neighbors (KNN), Naive
Bayesian (NB), Random Forest (RF), Decision Tree (DT)).
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T KNN NB DT RF Our model

P R F1 P R F1 P R F1 P R F1 P R F1

0 1 1 1 1 0.99 0.99 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Acc 100% 99% 100% 100% 100%

Table 4 A comparison table in terms of binary classification using 2 families of features.

As we can see in the results of table 4, our solution can indeed distinguish
legitimate network traffic from an abnormal one, where we notice of a 100%
accuracy rate for our model. The other ML algorithms also achieve good results
except for Naive Bayesian that has 99% accuracy and which is more likely
due to its probabilistic nature. However, in a real industrial context, it is also
important to distinguish the nature of the attack flows in order to take proper
counter-measurements. Therefore, we present in table 5 a comparison of the
results of a multi-class classification of illegitimate flows between our model
and the above ML algorithms.

T KNN NB DT RF Our model

P R F1 P R F1 P R F1 P R F1 P R F1

1 0.74 0.76 0.75 0.94 0.15 0.26 0.70 0.69 0.69 0.71 0.75 0.73 1 0.96 0.97

2 0.75 0.74 0.75 0.55 0.79 0.71 0.68 0.69 0.68 0.72 0.68 0.70 1 0.92 0.94

3 1 1 1 1 1 1 1 1 1 1 1 1 1 0.95 0.92

4 0.83 0.31 0.45 0.40 0.67 0.50 0.93 1 0.96 0.93 1 0.96 0.91 0.91 0.94

5 1 1 1 1 0.45 0.62 1 0.86 0.93 1 0.91 0.94 1 0.96 0.96

6 1 1 1 1 1 1 1 1 1 1 1 1 0.85 0.89 0.92

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Acc 88% 79% 85% 86% 92%

Table 5 Multiclassification with 2 families of features.

As shown in table 5, we notice that our solution offers a better accuracy
and a very good precision, recall and F1 scores in all attack targets. As a
reminder, the F1 score is an arithmetic average between precision and recall,
so it will allow us to measure the ability of the learning algorithms to better
associate flows with legitimate traffic classes or corresponding target attacks.

The first general observation is a confusion between targets 1 and 2 in
almost all ML algorithms and a better classification for targets 3, 6 and 7
compared to the remaining targets. We note that targets 1 and 2 correspond
to data leak flows including data leaks in short time intervals, and data leaks
in much longer ones. For these flow types, the same IP address can be spotted
in both scenarios, which may cause the confusion between the data in these
two classes in ML algorithms. In KNN, the F1 score is 0.75 for target 1 and
2, and quite low, especially for target 4. In the NB, we notice the lowest
accuracy among all ML algorithms that we tested, which strongly impacts the
F1 score which is 0.26 for target 1. A significant confusion was also found in
the NB between targets 4 and 5 (corresponding to the inbound and outbound
compromise indicator data) with F1 scores of 0.5 and 0.62 respectively. This
is explained by the fact that the flow duration in these two attack classes is
relatively close, due to the probabilistic operation of NB. The DT and RF
improve these F1 scores at target 4 and 5 since when an attribute has the
same approximate value for two given classes in an internal node, these two
algorithms dissociate the given targets in the following nodes by comparing
other attributes.
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Our solution, which combines our feature extraction approach with the
feature detector proposed in CNN, solves the confusion observed in ML algo-
rithms. Indeed, a neural layer overlay, including the layer filtering principle,
is well adapted to our context of multi-class classification of confused output
layers. Convolutional neural networks learn the values of the weights in the
same way that they learn the filters of the convolution layer, which can allow
it to distinguish between confused classes 1 and 2, and other classes (like tar-
get 4 and 5) with medium or low F1 scores which explains the improvement
of accuracy highlighted in Table 5.

4.3.2 The evaluation of multi-class classification using
three-feature families

In order to investigate the impact of the third family of features (highlighted
in section 3.1) on the accuracy of our model, we select the minimalist fea-
tures mentioned above, the characteristics related to ”Data and Speed” in each
entry considered in our dataset (e.g., the number of bytes sent by the source,
the number of bytes received, etc.). Therefore, the number of characteristics
increases from 10 to 14 features that we use in both our model and ML algo-
rithms to classify malicious network flows. The results of this evaluation are
presented in Table 6.

As we can observe in table 6, an improvement of the F1 score of all targets
is noticed compared to the table5 in both our model and ML algorithms, with
an exception for NB. In this model, the F1 scores are more or less the same as
the ones in table 5 for all targets, except for target 4 (incoming traffic related
to indicators of compromise) where a sharp decline is observed. This decreases
the accuracy of this model from 79% to 73%.

Overall, we can clearly deduce that the additional information provided by
the third family of features gives much more context and allows us to dissociate
certain types of attacks. Our solution appears as the best approach with an
average F1-score of 0.96 and an overall accuracy of 94.84% which is better
than the ones presented in table 5.

T KNN NB DT RF Our model

P R F1 P R F1 P R F1 P R F1 P R F1

1 0.80 0.78 0.79 0.93 0.17 0.28 0.86 0.85 0.85 0.86 0.91 0.88 1 0.95 0.96

2 0.78 0.81 0.80 0.48 0.74 0.58 0.84 0.85 0.85 0.90 0.94 0.87 0.98 0.98 0.95

3 1 1 1 1 1 1 1 1 1 1 1 1 1 0.91 0.97

4 1 0.60 0.75 0.02 0.82 0.03 1 0.95 0.97 96 0.95 0.96 0.95 0.90 0.89

5 1 1 1 1 0.44 0.62 1 0.73 0.84 0.95 0.82 0.88 1 1 1

6 1 0.67 0.80 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Acc 90% 73% 91% 92% 94.84%

Table 6 Multiclassification with of all families of features.

4.3.3 The evaluation of Epochs according to accuracy and
loss values

The convergence of a model is determined by the analysis of the error rate
and accuracy curves. Thus, we will focus on determining the optimal number
of epochs in order to find a trade-off between the execution time of our CNN
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Fig. 3 Number of epoch with accuracy and loss

model and its overall accuracy because one of the drawbacks of deep learning
based solutions is the execution time. In table 2, we have initially defined a
baseline value of two-hundred epochs which we believe is more than enough
for our model to converge. However, we went through the earlyStopping

technique to explore the possibility of stopping the learning, as soon as the
model starts to overlearn and thus to reduce the execution time. To do so, we
present in Fig. 3, the accuracy and loss in the training data (blue curve) and
in the test data (orange curve) according to the number of epochs used in our
model.

As we can see in Fig. 3, from the first to the fiftieth epoch, the accuracy
increases with the number of epochs and the loss decreases accordingly, which
indicates that the model is still continuing to learn and converges. Between
the fiftieth and seventieth epochs, both metrics start to stagnate. This stagna-
tion continues until the 200th epoch, with some fluctuations observed in some
epochs due to confusions between some neurons.

4.4 A comparative analysis using the benchmmarking
dataset NSL-KDD

There have been many intrusion detection approaches proposed in the litera-
ture. However, these approaches are evaluated in different datasets. Therefore,
we tested our model on the NSL-KDD dataset (that has been used in sev-
eral works of the literature) in order to check its efficiency and establish a fair
comparison with existing solutions that adopted the same dataset.

The NSL-KDD dataset [21] is an enhanced version of the KDDCup99
dataset [22] which is a standard dataset consisting of a wide variety of simu-
lated intrusions in a military network environment, defined in 1998 by ”MIT
Lincoln Labs” of the U.S. DARPA agency. NSL KDD has a KDDTrain+ set
(125,973 records) divided into 22 types of attacks and normal traffic and a
KDDTest+ test set (22,544 records) which contains 14 additional attacks not
included in the KDDTrain+. The set of attack classes is divided into four
main families: Denial of Service (DOS), Remote To Local (R2L), User To Root
(U2R), Probe. The content of NSL-KDD is presented in the Table 7.

NSL-KDD dataset provides 41 features grouped into 3 families: basic
features, traffic features to the same host and traffic features to the same
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Flow-class Tactics Techniques Train(#rows) Test(#rows)

Normal - - 67 343 9 711

DOS TA0040 T1498 45 927 7 458

R2L TA0001 T1133/T1199 995 2 754

U2R TA0004 T1548 52 200

Probe TA0043 T1589/T1590 11 656 2 421

Table 7 The NSL-KDD dataset content.

service. However, the application of our feature engineering (proposed in
section 3.1) will allow us to reduce the number of features used for train-
ing to the following 12 features (excluding labels): duration, protocol-type,
service, land, src-bytes, dst-bytes, count, srv-count, same-srv-rate,
srv-diff-host-rate, wrong-fragment and flag.
Moreover, to reduce the impact of inconsistencies between the training and
test data in terms of targets, we chose to concatenate the two by keeping only
22 targets common to both sets, then splitting this concatenated set at 80% for
the training sets and 20% for the test data. Then, we proceeded to a prepro-
cessing and normalization of the extracted data, in which all numerical values
are kept unchanged while attributes with categorical values like services and
protocol-type have been mapped to decimal values, as it has been done with
IBM dataset. Finally, targets have been labeled as follows: normal:0, DOS:1,
Probe:2, R2L:3, U2R:4; and the resulting data is injected into our model. The
results of the tests of our model on the NSL-KDD are presented in the Table 8.

Target Our model (NSL-KDD)

Precision Recall F1-score

Normal 0.99 0.99 0.99

DOS 0.99 0.99 0.99

Probe 0.97 0.97 0.97

R2L 0.94 0.79 0.86

U2R 0.50 0.13 0.21

Accuracy 98, 7%

Table 8 The evaluation results of our Model on NSL-KDD dataset

Overall, as we can see in Table 8, our model achieves a global accuracy
of 98%. We also notice a high precision and a good F1-Score for the targets
”Normal”, ”Probe” as well as ”DOS” and to a lesser extent ”R2L”. However,
the target ”U2R” has a low score compared to the remaining targets. Actually,
the ”U2R” target relates to an attempt to elevate privileges which does not
correspond to the definition of network stream. Thus, its classification cannot
rely solely on the characteristics of a network flow, which explains in addition
to the low number of inputs of that target the gap with the other targets that
are in fact network flows and have many more entries in the dataset.

Moreover, based on the NSL-KDD dataset, we compare in Table 9 our
model with other solutions proposed in the state of the art according to the
confusion matrix (precision, recall, F1-score and accuracy). Note that the cho-
sen solutions use the following algorithms on NSL-KDD dataset: ANN ([12]),
Deep learning with ANN (Auto-encoder) ([23]) and RNN+LSTM, CNN ([24]).

As we can see in Table 9, our solution significantly enhances the results
of the existing solutions especially in terms of classification accuracy. In addi-
tion, it reduces the preprocessing time applied to the raw data compared to
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Model Accuracy Precision Recall F1-score

Our model 0.98 0.88 0.78 0.80

R. Vinayakumar et al. (2019) [12] 0.785 0.810 0.785 0.765

C. Zhang et al. (2019) [23] 0,7974 0,8222 0,97974 0,7647

Z. Tauscher et al. (2021) [25] 0,8047 N/A N/A 0,7839

L. Liu et al. (2020) [24] 0,7824 0,7838 0,7823 0,7503

Table 9 Comparison with the state of art based on NSL-KDD dataset

some existing solutions. For instance, in [23], the authors run a deep learn-
ing algorithm to extract the most relevant features for classification, which is
a time consuming task compared to our preprocessing phase that yet allows
to achieve better classification results. Moreover, our solution also reduces the
model execution time compared to the remaining solutions, since it uses less
features for the training (12 in ours, 122 in [23], 41 in [12], [24] and [25]).

5 Conclusion

In this paper, we propose an intrusion detection solution for network flow col-
lectors using 1D Convolutional Neural Networks. First, our solution presents a
feature engineering for the extraction of data features according to the defini-
tion of a network flow. The proposed engineering can be used in any network
flow classification, since it is based on criteria that can be identified in any
network event. Our feature extraction is then associated with a feature detec-
tor functionality defined in CNN, which guarantees an accurate determination
of normal network flows and a robust multi-class classification of malicious
ones. Our model has been evaluated on two datasets, the first one has been
extracted from a real IBM industrial context while the second one is the pub-
lic dataset NSL-KDD. Both sets were validated using the MITRE ATT&CK
framework, and the results have proved that our model distinguishes nor-
mal behaviors from deviant ones, and efficiently identifies the attack classes.
Moreover, our model significantly improves the accuracy of the classification
process when it is compared to other existing solutions of the state of the art.
It also reduces the number of extracted features and thus the execution time
of the global model compared to existing solutions. In the future, we intend to
focus on zero-day vulnerability exploitation attacks. We also plan to work on
a data generator composed of recent attack families, classified by the MITRE
ATT&CK framework, given the obsolescence of some data sets.
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