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Abstract. There are few articles that mention fractal dimension in grain growth mechanism. 
Some authors build a simplified analytic model showing that initial fractal dimension of grain 
boundary has an influence on interface modification velocity. Nevertheless they postulate the relation 

∆−= 1scL  where L is the grain length, c is a constant, s is grain size and ∆  the fractal dimension. The 
aims of this paper is to experimentally analyze by image analysis the fractal dimension of A5 
aluminum sheet grain boundaries during heating and to simulate their evolution by a Monte Carlo 
method to validate experimental data.. It is shown by Monte-Carlo simulation and confirmed 
experimentally that the grain growth process decreases the fractal dimension of grain border. It can be 
concluded that it is very hazardous to build a model of grain growth without including the effect of 
grain’s morphology. The macroscopic fractal morphology of the grain structure could then be used to 
validate microscopic relation between Monte Carlo Steps time and real time. 

Introduction 

There are few articles that mention fractal dimension in grain growth mechanism; we noticed 
Rubio et al. [1], Tanaka [2-4] and Streitenberg et al. [5]. These authors build a simplified analytic 
model showing that initial grain boundariy fractal dimension has an influence on the interface 

modification velocity. Nevertheless they postulate the relation ∆−= 1scL  where L is length of profile, 

c is a constant, s is the grain size and ∆  the fractal dimension. The aims of this paper are to 
experimentally analyse the grain boundary fractal dimension of aluminum sheet during annealing and 
to simulate the heating process by a Monte-Carlo method to validate experimental data. 

Analysis of aluminum during grain growth 

Nine samples of aluminum (99.99 %) were annealed at C3550 °± in ambient atmosphere after a 
plastic deformation of 3,0±0.2% (uniaxial traction rate of v = 1 mm.mn-1) for different heating times 
(1, 2, 4, 8, 16, 32, 64, 128 and 256 hours). To reveal microstructure, the samples were pickled with 
boiling soda then they were attacked with a solution containing nitric acid (45 %), fluoridric acid 
(15 %) and ethanol (40 %). 

The grain boundaries are first digitalized with a 1024x1024 resolution CCD camera (Fig1.a). 
Eight measures were performed on different grains for the whole samples. Then the CCD images are 
transformed into a binary one thanks to a maximal entropy filter that leads to have one grain in white 
and the other grain in black (fig. 1.b). One has then to detect the grain boundary (fig.1.c). However, 
some isolated islands appear that must be suppressed. They are firstly isolated (fig.1d) and thanks to a 
subtraction with fig.1c, the final grain boundary is obtained on figure 1.e. Then evaluation of the 
fractal dimension of this interface is performed by the Minkowski method. This method consists in 
covering the grain boundary by a circle of radius, r  (in image analyses this operation is called a 
"dilatation") and to measure the area, )(rA  of the dilated shape called the “Minkowski’s sausage” 

(fig 1.f).  
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Figure 1: Protocol of Fractal image analyses of the aluminium grain boundary. a) Image sampling 
(1024x1024) with 256 grey levels. b) Entropy treatment of image a (binary image). c) contours 
detection of image b. d) Non border shapes suppression of image c. e) Image c minus image d with 
skeleton transformation. f) Dilatation of image e (10 dilatations). 

 

By covering the grain boundary by disks with radius r whose centers lie on the curve and varying 
the circle radius, one obtains different pair of ( ))(, rAr  area-radius and the fractal dimension ∆  is 
estimated by the slope α of  )(ln rA  versus rln  by the relation α−=∆ 2 . This ln A(r) vs ln r 

correlation relation for 2 h and 255 h heating times is shown on the included images of fig. 2. For 
every regression line, the slope standard deviation calculated with the Student theory is estimated to 
be 0.02. Thanks to the representation of the evolution of the fractal dimension with the annealing time 
(fig. 2) where every point is the mean of eight calculated fractal dimension we can say that the 95 % 

precision of every point is given by 015.0802.02 ≈× .  

The very fast diminution of the fractal dimension with the annealing time has a logarithmic shape. 
The initial grain fractal dimension is 1.4 and becomes 1.12 after a 250 hour long annealing time and 
seems always decreasing after this time as a consequence of surface energy minimisation.  
Nevertheless the measure inaccuracy does not allow us to statistically assess this hypothesis. The 
fractal increment α  with α−=∆ 2  was twice after 8 hours. To experimentally validate this 
hypothesis, 7 plastic deformations were performed varying from 6% to 16% and followed by a 550°C 
annealing during 45 hours. The grains size varies from 5.5 mm (6%) to 0.7 mm (13%). It is shown 
that the fractal dimension is nearly constant (see fig.3, right) and equals to 1.22.  
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Figure 2: Evolution of aluminium grain limit fractal dimension with annealing time. The curve is a 
logarithm regression with equation 

htlog116.0401.1 −=∆ . Each point is the mean of eight measures. 

The insert represents the variation g of the sausage area with the dilatation increment for two 
annealing times. 
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Figure 3. Left: Size of grains versus the plastic deformation (in %) for an annealing time of 45 hours 
at heating temperature of 550°C. Right: Evolution of fractal dimension of aluminum grain boundary 

versus plastic deformation for the same annealing time of 45 hours at 550°C. 

 

As a consequence, the grain boundary fractal dimension does not depend on the recrystallization 
mechanism introduced by plastic strain (and as a consequence, the initial grain sizes) and is only due 
to the diffusion process at the grain interfaces during grain growth. 

Monte-Carlo simulation of fractal morphology grains interface during heating 

A Monte Carlo simulation is used to check if the grain boundary fractal dimension evolves with 
the annealing time. In order to validate this hypothesis, we created a paving with mathematical Von 
Koch curve which a 1.5 fractal dimension (initial picture of Fig.4).  
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Figure 4: Monte Carlo Simulation of grain boudary diffusion created with a Von Koch curve (1.5 
fractal dimension, after 100, 550, 1000, 7000 and 20000 MCS. 

A first “flake” curve is centred on the matrix, the other “flakes” curves are pinned in the image 
boundaries. This configuration allows us to only analyse the boundary fractal behaviour. The 
Monte-Carlo algorithm was proposed by Anderson et al. [6]. The grain structure is modelled in two 
dimensions. Each element of simulation box is a number zi called spin or orientation which value lies 
between 1 and Q. Q represents the number of possible crystallographic orientations of a grain (in this 
simulation Q=4). Two adjacent numbers whith different spins constitute the grain boundary. We use 
a microscopic approach to quantify the real time of a Monte-Carlo elementary process applied to a 
FCC grid. We suppose that diffusion involving the grain growth is principally based on the 
self-diffusion while the interstitial diffusion is considered absent because of the high energy it needs 
in a compact structure. In a FCC structure with a mesh parameter called a, there are 12 possible jumps: 
4 jumps with a 2a−  long projection, 4 jumps with a null projection and 4 jumps with and a long 

projection. The self-diffusion coefficient is given by the Einstein’s equation:    
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During a Monte-Carlo simulation, in a triangular structure with a mesh parameter called a', 
there are 6 possible jumps: 2 jumps with a a' long projection and 4 jumps with a 2'a  long projection. 

The diffusion coefficient is: 
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And then       4'2' aD SMCS Γ=      (3) 

As we suppose that the Monte-Carlo simulation is based on self-diffusion FCCMCS DD = . 

Moreover the number of spins has to be considered. In fact the jump probability also depends on Q. 
At the average, a jump happens at every MCS with the probability 1/Q. Thus Monte-Carlo iteration is 

given by: FCC

2 QD4'aMCS1 =          (4) 
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Saito [7, 8] found a similar expression (
QD

a
MCS

6

'
1

2

= ). However he did not take into account the 

crystallographic structure. Moreover he did not explain the signification of D and did not 
experimentally validate his expression.  

From the initial Von Koch curve (fig. 4) Monte-Carlo simulation we can notice the following 
conclusions: 

 

1- The grain becomes less and less fractal as the Monte-Carlo steps increase. The diffusion 
process inverses the Von Koch curve building one. 

2- The grain reaches a equilibrium structure that is the hexagonal shape, which is the basic one 
to build a Von Koch curve. 

3- The grain area remains unchanged during Monte-Carlo steps. 
 

In order to calculate the relation between real time and MCS time with equation (4), we have 
to impose a measure on a'. The mean size of the Von Koch curve we used was measured and its area 
remains constant during the MCS iterations. This curve mean size is 621 pixels and Q = 4. We 
statistically showed that the grain size is independent on the annealing time. Thus we used a 5 mm 
grain diameter. The aluminum mesh parameter is 4.04 Å and there are 12376237 meshes in a grain 
diameter. Consequently 1 pixel corresponds to 20000 meshes. The aluminum self-diffusion 

coefficient is given by Brebec [9] and reported by Philibert [10] (CGS)
28750
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Comparison Experimental data - Monte-Carlo simulation 

Figure 5 represents the fractal dimensions obtained by the Monte-Carlo method with real 
times and experimental ones.  

As we are not able to experimentally determine the grain fractal dimension when grain growth 
starts, it is not possible to simulate the initial Von Koch curve. To estimate the initial Von Koch curve 
fractal dimension, an inverse method is proposed to obtain the real grain fractal dimension after a one 
hour long simulation. A very good correlation between the modelled values and the measured ones 
are found. Simulated curve only presents an horizontal shift of 0.05. The following observations can 
be made: 

* The initial recrystallised grain fractal dimension before grain growth is unknown because only  
fractal dimension after one hour annealing is known. We supposed that the initial fractal dimension 
was 1.5. A higher initial fractal dimension would lead to a better correlation. 

* There is a high uncertainty on the diffusion coefficient and the activation energy that we used. In 
fact, if we use the Stoebe’s et al. [11] value, the aluminum self-diffusion coefficient at 550°C would 
be 7.43 10-10 cm2.s-1 and the MCS time would be 54 seconds. If we use the Lundy’s and Murdock’s 
[12] value, the self-diffusion coefficient would be 15.97 10-10 cm2.s-1 and the MCS time would be 25 
seconds. These self-diffusion coefficients are for very pure metal ones. If the structure would be 
heterogeneous, the diffusion coefficient would be modified. Poulsen et al. show that the activation 
energy for a single grain may shove substantial deviations from the grain-averaged activation energy 
for impurity-controlled recrystalisation of aluminium [13]. If we would use 200 seconds as the MCS 
time unit, the Monte-Carlo simulation representation would the same as the experimental data         
(fig. 5). 
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Figure 5: Evolution of Aluminum grain boundary fractal dimension annealed at  550°C achieved by :  
Simulation of diffusion mechanism on a Von Koch curve (dimension 1,5) with two different jump 
frequency (1MCS=200 seconds and 1 MCS=50 seconds) and measured experimentally with image 

analyses. 
 

Conclusion 
In this study we have shown by Monte-Carlo simulation and experimentally confirmed that the 

grain growth process decreases the fractal dimension of the grain boundary. We can conclude that it’s 
very hazardous to build a model of grain growth without including the effect of grain’s morphology. 
The macroscopic fractal morphology of the grain structure could then be used to validate microscopic 
relation with the between MCS time and real time. 
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