

Leveraging Efficient Models for Recognizing Drivers' Facial Expressions

Ibtissam Saadi, Douglas W Cunningham, Abdelmalik Taleb-Ahmed, Abdenour Hadid, Yassin El Hillali

▶ To cite this version:

Ibtissam Saadi, Douglas W Cunningham, Abdelmalik Taleb-Ahmed, Abdenour Hadid, Yassin El Hillali. Leveraging Efficient Models for Recognizing Drivers' Facial Expressions. Mardi des chercheurs 2024, Mar 2024, mons, Belgium. hal-04546700

HAL Id: hal-04546700 https://uphf.hal.science/hal-04546700

Submitted on 15 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Leveraging Efficient Models for Recognizing Drivers' Facial Expressions

Ibtissam saadi^{1,2}, Douglas Cunningham¹, Yassin El Hillali², Abdenour Hadid³, Abdelmalik Taleb Ahmed²

Brandenburg University of Technology Germany¹, Laboratory of IEMN, CNRS Univ of polytechnique-Hauts-de-France ², Sorbonne University Abu Dhabi³.

1. Introduction

- The number of road traffic accidents has been progressively rising, reaching 1.35 million.
- The emotional state of a driver is strongly associated with traffic accidents and significantly impacts their driving performance.
- The emergence of facial expression recognition (FER) technology provides a method to assess a driver's emotional state, which in turn enhances road safety.

2. Research Objective

- Develop an accurate, efficient, and real-time DFER system.
- System should be robust enough to withstand the challenges exist on the road environment.

Improve road safety by mitigating the potential risks caused by human errors.

4. Experiment Analysis and results

Datasets:

Results:

(b) KDEF

Confusion Matrix (Accuracy: 97.273%) 0.00 0.01 8.0 0.00 0.08 0.6 0.99 0.01 0.00 0.01 0.00 0.4 0.00 0.2 0.00 0.00

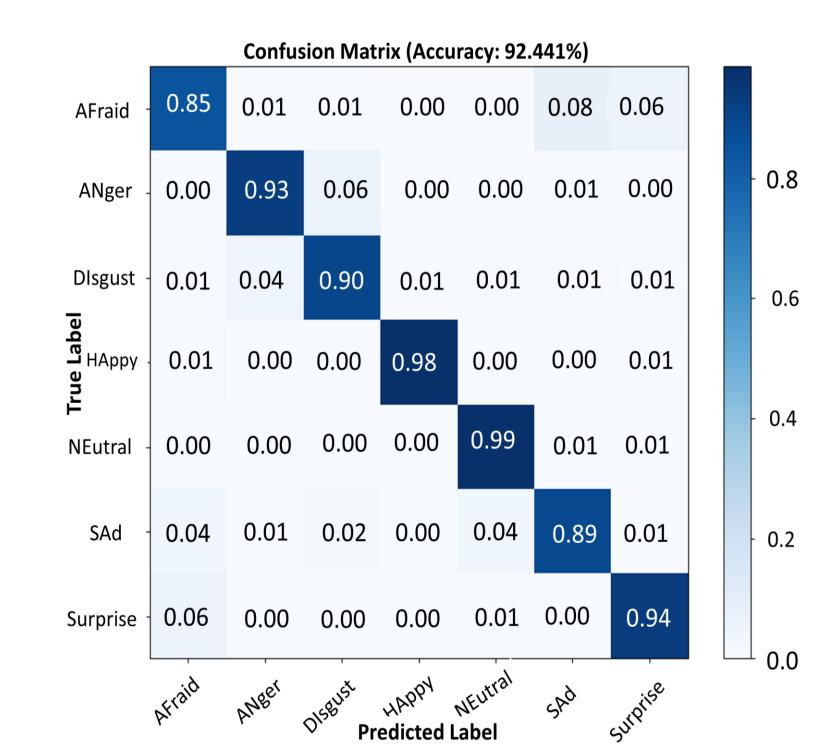


Fig. 3 Confusion Matrixes for KMU-FED and KDEF datasets

TABLE I
RESULTS OF THE ABLATION STUDY ON KMU-FED DATASET. "W" DENOTES "WITH"; "W/O" DENOTES WITHOUT; AND "C" DENOTES OUR DESIGNED
CLASSIFIER

Methods	Params(M)	Processing Time(ms)	Accuracy	Precision	Recall	F1-score
ShuffleNet V2 w/o C	2.3M	1.03 ms	93.455%	0.94	0.93	0.93
ShuffleNet V2 w C	2.0M	1.11 ms	90.455%	0.90	0.91	0.90
EfficientViT-M2 w/o C	4.2M	2.80 ms	86.273%	0.86	0.86	0.86
EfficientViT-M2 w C	4.7M	2.70 ms	95.727%	0.96	0.96	0.96
ShuffViT-DFER (Ours)	5.9M	3.30 ms	97.273%	0.97	0.97	0.97

• The model balances a slight increase in parameters and processing time with low computational cost, achieving a best performance.

TABLE II

COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-THE-ART AND EXISTING METHODS ON THE KMU-FED DATASET

Methods	Accuracy (10 Fold)	Accuracy (5 Fold)	Accuracy (80:20)
Hierarchical WRF 2018	94.7%	NAN	NAN
CCNN 2019	97.3%	NAN	NAN
LMRF 2020	NAN	95.1%	NAN
d-RFs 2020	NAN	91.2%	NAN
FTDRF 2020	NAN	93.6%	NAN
DF 2020	NAN	90.5%	NAN
SqueezeNet 2022	83.4%	82.7%	95.83%
CNN+SVM 2022	NAN	NAN	98.64%
ShuffViT-DFER (Our method)	97.3%	95.6%	100.00%

• Our approach showed a comparable results and consistently outperforming all other approaches across different data splits on the KMU-FED dataset.

3. Proposed Methodology

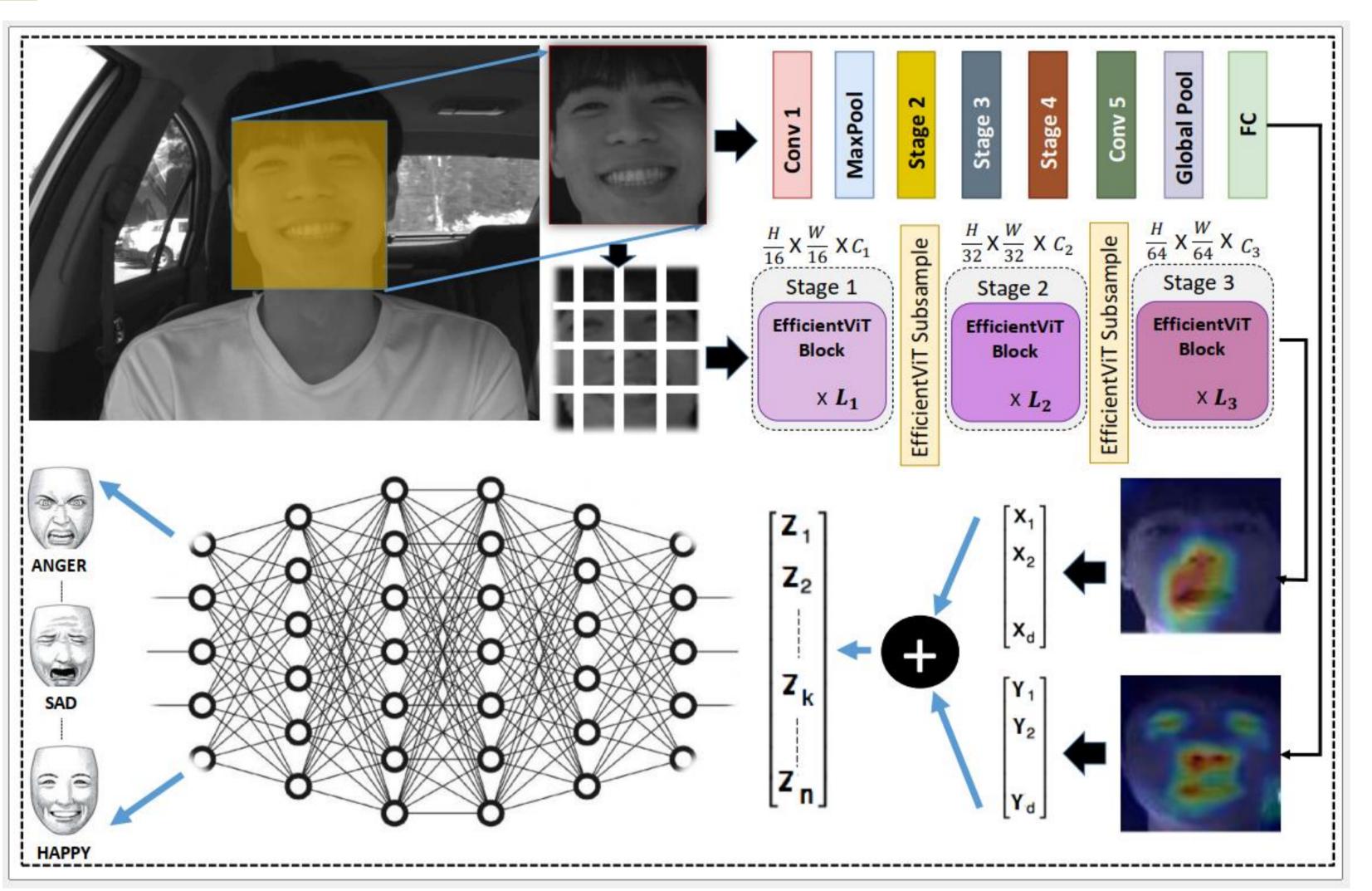


Fig. 2 Our proposed method ShuffViT-DFER Architecture.

TABLE III

COMPARISON BETWEEN THE PROPOSED METHOD AND STATE-OF-THE-ART
AND EXISTING METHODS ON THE KDEF DATASET

Methods	Accuracy
MPCNN 2018	86.90%
SquezeeNet 2022	86.86%
RBFNN 2022	88.80%
Efficient-swishNet DCNN 2022	85.50%
EfficientNet_FER 2023	88.17%
ShuffViT-DFER (Our method)	92.44%

• The proposed method outperformed all other methods on the KDEF dataset.

5. Conclusion

- We introduced ShuffViT-DFER, an efficient and fast method for recognizing driver's facial expressions.
- The obtained results demonstrated the effectiveness of the proposed approach.

6. Future Works

- Focus on incorporating multi-modal information by merging facial expression data with audio cues.
- Improve facial expression recognition by using multiple cameras to address the challenge of multi-view face angles

Publications:

- **1. Saadi, I**., Cunningham, D. W., Taleb-Ahmed, A., Hadid, A., & El Hillali, Y. (2024). Driver's facial expression recognition: A comprehensive survey. Expert Systems with Applications, 242, 122784.
- **2. Saadi, I**., Cunningham, D. W., Taleb-Ahmed, A., Hadid, A., & El Hillali, Y. "Driver's Facial Expression Recognition using Global Context Vision Transformer," Proceedings of IEEE international conference on computer vision and machine intelligence(CVMI). 2023.
- **3. Saadi, I**., Cunningham, D. W., Taleb-Ahmed, A., Hadid, A., & El Hillali, Y." Driver's Facial Expression Recognition using Global Context Vision Transformer," Proceedings of IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). 2024.

