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EXTRINSICALLY HOMOGENEOUS LAGRANGIAN SUBMANIFOLDS OF

THE PSEUDO-NEARLY KÄHLER SL(2,R)× SL(2,R)

MATEO ANARELLA

Abstract. We consider the pseudo-nearly Kähler SL(2,R)×SL(2,R) and we study its Lagrangian
submanifolds. We provide examples of Lagrangian submanifolds which do not have an analogue in
S
3
×S

3. We also provide an expression for the isometry group of SL(2,R)×SL(2,R) with the pseudo-
Riemannian nearly Kähler metric. The main result is a complete classification of extrinsically
homogeneous Lagrangian submanifolds in this space.

1. Introduction

Kähler geometry can be seen as the intersection of three areas of differential geometry: symplec-
tic, Riemannian and complex geometry. That is, a Kähler manifold carries a Riemannian metric
g, a symplectic form ω and a complex structure J such that

g(JX, JY ) = g(X,Y ), ω(X,Y ) = g(JX, Y ).

Equivalently, an almost Hermitian manifold (M,g, J) is Kähler if and only if ∇J ≡ 0, where ∇ is
the Levi-Civita connection associated to g.

There are only two spheres admiting an almost complex structure: S
2 and S

6. Surprisingly,
the unit six-sphere S

6 with its canonical almost complex structure, inherited from the octonion
product, is not Kähler. Instead, it is what is known as a nearly Kähler manifold.

A nearly Kähler manifold is an almost Hermitian manifold (M,J, g) such that ∇J is a skew
symmetric (2, 1)-tensor. If moreover, ∇XJ 6≡ 0 for all X ∈ X(M), then we say that M is strict
nearly Kähler. In six dimensions, this is equivalent to being nearly Kähler but not Kähler. In
general, we can think of strict nearly Kähler manifolds as nearly Kähler manifolds from which we
cannot extract Kähler factors. Indeed, Gray [9] showed that any complete, simply connected nearly
Kähler manifold can be written as M1 ×M2 where M1 is strict nearly Kähler and M2 is Kähler.

Strict nearly Kähler manifolds turned out to be quite rare. For instance, in [9] Gray also showed
that there are no eight-dimensional strict nearly Kähler manifolds. Also, it can be easily proved that
two- and four-dimensional nearly Kähler manifolds are automatically Kähler. Later on, Nagy [16]
showed that any complete 10-dimensional nearly Kähler manifold is either the product of a six-
dimensional nearly Kähler manifold and a Kähler surface, or the twistor space over an eight-
dimensional quaternionic Kähler manifold with positive Einstein constant (or positive quaternionic
Kähler, for short). All eight-dimensional positive quaternionic Kähler manifolds are classified,
being the symmetric spaces HP 2, Gr2(C

4) and G2/SO(4). Therefore, all 10-dimensional strict
nearly Kähler manifolds are classified, as described in [12].
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Six-dimensional strict nearly Kähler manifolds are of particular interest, since they are the lowest-
dimensional non-Kähler examples we encounter. In fact, Nagy [15] showed that any nearly Kähler
manifold is a Riemannian product whose factors are six-dimensional nearly Kähler manifolds, cer-
tain homogeneous nearly Kähler manifolds or twistor spaces over positive quaternionic Kähler
manifolds.

All six-dimensional Riemannian homogeneous strict nearly Kähler manifolds were classified by
Butruille in [4], these being

• S
6 = G2/SU(3),

• S
3 × S

3 = (SU(2) × SU(2) × SU(2))/∆SU(2),

• CP 3 = Sp(2)/(U(1)× SU(2)),

• F (C3) = SU(3)/(U(1) ×U(1)).

Recently, Foscolo and Haskins [7] showed the existence of six-dimensional strict nearly Kähler
manifolds which are not homogeneous.

By means of a T -dual construction, Kath [10] and Schäfer [18] provided six pseudo-Riemannian
analogues of the spaces in the list above. However, this list does not provide a full classification
of six-dimensional homogeneous pseudo-Riemannian nearly Kähler manifolds (or pseudo-nearly
Kähler for short). In fact, Alekseevsky et al. constructed in [1] an example of a homogeneous
pseudo-nearly Kähler six-manifold which is not a T -dual of a Riemannian one.

In this article, we focus on the analogue of S3×S
3, which is the pseudo-nearly Kähler SL(2,R)×

SL(2,R). In [2], the authors studied Lagrangian submanifolds of SL(2,R) × SL(2,R) and gave a
classification up to congruence of all totally geodesic Lagrangian submanifolds. There, the authors
divided Lagrangian submanifolds into four types, which depend on their behavior with respect to
a specific almost product structure.

In this paper, we provide an expression of the isometry group of SL(2,R) × SL(2,R) which, to
the knowledge of the author, cannot be found in the literature.

Theorem 1. The isometry group of the pseudo-nearly Kähler SL(2,R) × SL(2,R) is
(
SL(2,R) ×

SL(2,R) × SL(2,R)
)
⋊
(
Z2 × S3

)
, where S3 is the symmetric group of order 6.

Moreover, we study extrinsically homogeneous Lagrangian submanifolds of SL(2,R)× SL(2,R).
That is, those Lagrangian submanifolds f : M → SL(2,R) × SL(2,R) such that there exist a Lie
group H acting transitively by isometries on f(M). To simplify things we take H to be a Lie
subgroup of the connected component of the identity of the isometry group, i.e.

Isoo(SL(2,R)× SL(2,R)) = SL(2,R)× SL(2,R) × SL(2,R).

Orbits of Lie subgroups of the isometry group are among the most natural submanifolds of
homogeneous spaces. They are tightly linked to submanifolds with constant sectional curvature,
totally geodesic submanifolds and submanifolds with parallel second fundamental form (see for
instance [5, 6]). In particular, Lagrangian submanifolds of six-dimensional (pseudo-)nearly Kähler
manifolds are automatically minimal.

In Theorem 2 we provide a full classification of extrinsically Lagrangian homogeneous subman-
ifolds of SL(2,R) × SL(2,R). Among the submanifolds in the classification, we can find the three
totally geodesic examples of [2] and two submanifolds with constant sectional curvature. These
five submanifolds have analogues in the classification of extrinsically homogeneous Lagrangian sub-
manifolds of S3 × S

3, found in [3].
In addition, we obtain three more Lagrangian submanifolds without an analogue in the Rie-

mannian case. The first two are immersions of a space form with constant sectional curvature −3
2 .
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Moreover, the second example is actually an infinite family of Lagrangian immersions. Finally, the
last example does not seem to have any intrinsic or extrinsic invariant besides of being Lagrangian
and minimal.

Theorem 2. Let f : (M,g) → SL(2,R) × SL(2,R) be an extrinsically homogeneous Lagrangian

immersion into the pseudo-nearly Kähler SL(2,R) × SL(2,R). Then f(M) is congruent to an

open subset of the image of one of the following embeddings, whose image is the orbit of (Id2, Id2)
by H ⊂ Isoo(SL(2,R)× SL(2,R)):

(M,g) f H Isotropy Remarks

(SL(2,R), 23〈, 〉) u 7→ (u, u) SL(2,R) 0
Totally geodesic

K = −3
2

(SL(2,R), g+κ,τ ) u 7→ (u, iui) SL(2,R) 0 Totally geodesic

(SL(2,R), g−κ,τ ) u 7→ (u,−kuk) SL(2,R) 0 Totally geodesic

(PSL(2,R), 83〈, 〉) [u] 7→ (iuiu−1, juju−1) SL(2,R) Z2 K = −3
8

R
3
1/Z (u, v, w) 7→ (evie−uk, ewje−uk) R

2 × S
1 0 K = 0

(R3, ĝ) ι R⋉ϕo R
2 0 K = −3

2

(R3/Hλ, gλ) fλ (R ⋉ϕ1
R
2)/Hλ 0 K = −3

2

(R3, g̃)  R⋉ϕ2
R
2 0

Here K is the sectional curvature of f(M) and i, j, k are the matrices

i =

(
1 0
0 −1

)
, j =

(
0 1
1 0

)
, k =

(
0 1
−1 0

)
.

Furthermore, 〈, 〉 is the metric given in (1), g+κ,τ and g−κ,τ are Berger-like metrics stretched in a

spacelike and timelike direction, respectively; ĝ, ι and ϕo are given in Example 25; gλ, fλ, Hλ and

ϕ1 are given in Example 26; g̃,  and ϕ2 are given in Example 29.

Conversely, the maps listed in the table above are extrinsically homogeneous Lagrangian subman-

ifolds of SL(2,R)× SL(2,R). Moreover, all immersions are not congruent to each other, including

the different immersions of the family fλ.

As the definition indicates, classifications of extrinsically homogeneous submanifolds usually fol-
low from classifications of Lie subgroups of the isometry group. However, as opposed to the compact
case, an isometry group with non-compact semi-simple Lie algebra might present many difficulties
when looking for subgroups, as maximal Lie subalgebras might not be reductive (see [14]). The
condition of being reductive simplifies the process considerably, as we can obtain its maximal Lie
subalgebras in a simple way (see Theorem 2.1 in [11]). Moreover, when we increase the codimension
of the submanifold, the process gets more difficult, as we may have to repeat it several times.

Therefore, in this paper we classify extrinsically homogeneous Lagrangian submanifolds by using
the properties of Lagrangian submanifolds of nearly Kähler spaces, and how the Lie subgroup acting
on them preserves their structure.

The paper is organized as follows. In Section 2 we give a brief introduction to the pseudo-nearly
Kähler structure of SL(2,R) × SL(2,R) and we prove Theorem 1. In Section 3 we state some
properties of Lagrangian submanifolds of SL(2,R)× SL(2,R). In Section 4 we provide examples of
extrinsically homogeneous Lagrangian submanifolds of SL(2,R) × SL(2,R). Finally, in Section 5
we prove Theorem 2.
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2. The pseudo-nearly Kähler SL(2,R) × SL(2,R)

The nearly Kähler structure of SL(2,R)×SL(2,R) is given in detail in [2] and [8]. Here we recall
some of the structure necessary for this article.

2.1. The manifold SL(2,R). Consider the real vector space of 2× 2 real matrices M(2,R) with
the indefinite inner product 〈, 〉 given by

〈a, b〉 = −1

2
Trace(adj(a)b). (1)

The real special linear group SL(2,R) can be defined as

SL(2,R) = {a ∈M(2,R) : 〈a, a〉 = −1}. (2)

Identifying (M(2,R), 〈, 〉) with R
4
2 we obtain that SL(2,R) is isometric to the three-dimensional

anti-de Sitter space H3
1 (−1), defined as

H3
1 (−1) =

{
x ∈ R

4
2 : −x20 − x21 + x22 + x23 = −1

}
.

Hence, (SL(2,R), 〈, 〉) is a Lorentzian manifold with constant sectional curvature −1. From (2) it
follows that the tangent space of SL(2,R) at a matrix a is the orthogonal space a⊥, which can be
written as

TaSL(2,R) = a⊥ = {aα : α ∈ sl(2,R)}.
Here sl(2,R) is the Lie algebra of SL(2,R), consisting of all the matrices in M(2,R) with vanishing
trace.

Similar to the tangent space of the three-sphere S
3, the tangent space of SL(2,R) at Id2 is

spanned by the split-quaternions i, j and k , given by

i =

(
1 0
0 −1

)
, j =

(
0 1
1 0

)
, k =

(
0 1
−1 0

)
. (3)

We define the frame {Xi}i on SL(2,R) by

X1(a) = ai, X2(a) = aj , X3(a) = ak . (4)

This is an orthogonal frame on SL(2,R) with

〈X1,X1〉 = 〈X2,X2〉 = 1, 〈X3,X3〉 = −1.

Given α and β in sl(2,R), we have

αβ = α× β + 〈α, β〉 Id2, (5)

where α× β = 1
2(αβ − βα).

2.2. The homogeneous nearly Kähler structure on SL(2,R) × SL(2,R). Consider the triple
product SL(2,R) × SL(2,R) × SL(2,R) with the product metric arising from 〈, 〉 given in (1). Let
π : SL(2,R)× SL(2,R)× SL(2,R) → SL(2,R) × SL(2,R) be the submersion given by

π(a, b, c) = (ac−1, bc−1).

Let g be the metric on SL(2,R)× SL(2,R) such that π is a pseudo-Riemannian submersion. Then,
(SL(2,R)× SL(2,R), g) is a pseudo-Riemannian homogeneous manifold, expressed as

SL(2,R)× SL(2,R) =
SL(2,R)× SL(2,R)× SL(2,R)

∆SL(2,R)
,

where ∆SL(2,R) = {(a, a, a) : a ∈ SL(2,R)}.
We define an almost complex structure J on SL(2,R)× SL(2,R) by
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J(aα, bβ) =
1√
3
(a(α − 2β), b(2α − β)), (6)

for α, β ∈ sl(2,R). This almost complex structure satisfies

J2 = − Id, g(X,Y ) = 〈X,Y 〉+ 〈JX, JY 〉, (7)

where 〈, 〉 the product metric of SL(2,R)× SL(2,R) associated to the metric given in (1). The last
equality implies that J is compatible with g. Hence we may say that (SL(2,R) × SL(2,R), g, J) is
an almost Hermitian manifold. Using (7), we get the following explicit expression for g:

g((aα, bβ), (aγ, bδ)) =
2

3
〈(aα, bβ), (aγ, bδ)〉 − 1

3
〈(aβ, bα), (aγ, bδ)〉,

with α, β, γ, δ ∈ sl(2,R).

We denote by ∇̃ the Levi-Civita connection on SL(2,R) × SL(2,R) associated with the pseudo-
nearly Kähler metric g. We denote the covariant derivative of J by G, which turns out to be
skew symmetric. Hence, (SL(2,R) × SL(2,R), g, J) is a pseudo-nearly Kähler manifold. As such,
G satisfies

g(G(X,Y ), Z) + g(G(X,Z), Y ) = 0, G(X,JY ) + JG(X,Y ) = 0, (8)

where X, Y and Z are vector fields on SL(2,R)× SL(2,R). These equations imply that

g(G(X,Y ), JZ) + g(G(X,Z), JY ) = 0. (9)

Consider now the almost product structure P on SL(2,R)× SL(2,R) given by

P (aα, bβ) = (aβ, bα). (10)

The tensor P has the following properties:

P 2 = Id, g(PX,PY ) = g(X,Y ),

PJ = −JP, g(PX, Y ) = g(X,PY ),

PG(X,Y ) +G(PX,PY ) = 0.

(11)

for any pair of vector fields X,Y on SL(2,R) × SL(2,R). The covariant derivative of P can be
expressed in terms of P , J and G in the following way:

(∇̃XP )Y =
1

2
(JG(X,PY ) + JPG(X,Y )). (12)

Six-dimensional nearly Kähler manifolds carry a distinguished constant, known as the type. In
particular, (SL(2,R)× SL(2,R), g, J) has type −2

3 . Namely, G satisfies the formula

g(G(X,Y ), G(Z,W )) = −2
3

(
g(X,Z)g(Y,W ) − g(X,W )g(Y,Z)

+ g(JX,Z)g(Y, JW ) − g(JX,W )g(Y, JZ)
)
.

(13)

The curvature tensor R̃ of SL(2,R)× SL(2,R) associated to the Levi-Civita connection ∇̃ of the
pseudo-nearly Kähler metric g is given by

R̃(U, V )W = −5
6

(
g(V,W )U − g(U,W )V

)

−1
6

(
g(JV,W )JU − g(JU,W )JV − 2g(JU, V )JW

)

−2
3

(
g(PV,W )PU − g(PU,W )PV

+ g(JPV,W )JPU − g(JPU,W )JPV
)
.

(14)
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2.3. The manifold SL(2,R) × SL(2,R) as a pseudo-Riemannian product. Take the prod-
uct metric 〈, 〉 on SL(2,R) × SL(2,R) arising from the Lorentzian metric on SL(2,R) given in (1).
The nearly Kähler metric g and 〈, 〉 are related by

〈X,Y 〉 = 2g(X,Y ) + g(X,PY ), (15)

Products of (pseudo-)Riemannian manifolds carry a canonical almost product structure Q compat-
ible with the product metric, given by

Q(X1,X2) = (−X1,X2).

Similar to the relation between the product metric and the nearly Kähler metric, P and Q are
related by

QX = − 1√
3
(2PJX − JX). (16)

Consider the immersion of SL(2,R) × SL(2,R) with the product metric 〈, 〉 into M(2,R) ×
M(2,R) ∼= R

8
4. Let D be the Euclidean connection of R8

4. The Gauss formula splits D into tangent
and normal parts:

DXY = ∇E
XY + hE(X,Y ),

with X,Y vector fields on SL(2,R) × SL(2,R). The connection ∇E is the Levi-Civita connection
associated to the product metric 〈, 〉 and hE is the so-called second fundamental form. We have an

expression for ∇E in terms of the connection ∇̃ associated to g, J, P and G:

∇E
XY = ∇̃XY +

1

2
(JG(X,PY ) + JG(Y, PX)). (17)

For (a, b) ∈ SL(2,R)× SL(2,R) we have

hE(X,Y )(a,b) =
1

2
〈X,Y 〉(a, b) + 1

2
〈Y,QX〉(−a, b).

Hence,

DXY = ∇E
XY +

1

2
〈X,Y 〉(a, b) + 1

2
〈Y,QX〉(−a, b). (18)

2.4. The isometry group. The connected component of the identity of the isometry group of
SL(2,R) × SL(2,R) is

Isoo(SL(2,R)× SL(2,R)) = SL(2,R)× SL(2,R) × SL(2,R),

where an element φ(a,b,c) acts on a point (p, q) by φ(a,b,c)(p, q) = (apc−1, bqc−1).
The isometries φ(a,b,c) preserve P and J , in the sense that dφ(a,b,c) ◦J = J ◦dφ(a,b,c) and dφ(a,b,c) ◦

P = P ◦ dφ(a,b,c). These isometries are not the only ones that satisfy these properties. Given three

matrices a, b and c with determinant −1, the map (p, q) 7→ (apc−1, bqc−1) is also an isometry that
preserves J and P .

Denote by SL±(2,R) the group of all matrices in M(2,R) with determinant ±1. We can write

any matrix of SL±(2,R) as ika, where i is the matrix given in (3), k ∈ {0, 1} and a ∈ SL(2,R).
Thus, we have (SL(2,R)× SL(2,R) × SL(2,R)) ⋊ Z2 ⊂ Iso(SL(2,R)× SL(2,R)).

Permutations of elements of SL(2,R) × SL(2,R) × SL(2,R) also give rise to isometries of the
pseudo-nearly Kähler SL(2,R)× SL(2,R):

Ψ0,0(p, q) = (p, q), Ψ1,0(p, q) = (q, p),

Ψ0,2π/3(p, q) = (pq−1, q−1), Ψ1,2π/3(p, q) = (q−1, pq−1),

Ψ0,4π/3(p, q) = (qp−1, p−1), Ψ1,4π/3(p, q) = (p−1, qp−1).

(19)
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These isometries are not included in SL(2,R)× SL(2,R)× SL(2,R). Moreover, each one of these is
in a different connected component of Iso(SL(2,R)× SL(2,R)) and satisfies

J ◦ dΨκ,τ = (−1)κdΨκ,τ ◦ J, P ◦ dΨκ,τ = dΨκ,τ ◦ (cos τP + sin τJP ).

Later on, we prove that these are all the isometries of the nearly Kähler SL(2,R)× SL(2,R).
A key result in the classification of Riemannian homogeneous nearly Kähler manifolds by Butru-

ille [4] is the existence of a unique nearly Kähler structure on S
3 × S

3. Consequently, the almost
complex structure on S3 × S3 is unique up to sign.

However, in [18] it is shown that SL(2,R) × SL(2,R) has a unique left invariant nearly Kähler
structure, which does not necessarily imply that J is unique up to sign. Therefore, by isometry
group of the pseudo-nearly Kähler SL(2,R) × SL(2,R) we mean the set of all diffeomorphisms
preserving the almost Hermitian strucuture. That is, those isometries F of (SL(2,R)× SL(2,R), g)
that preserve J , i.e. F∗J = ±JF∗.

Lemma 3. Any almost product structure P̃ on SL(2,R) × SL(2,R) that satisfies all properties in

(11) and (14) is given by

P̃ = cos ηP + sin ηJP, (20)

where η is equal to 2π
3 or 4π

3 and P is given in (10). Conversely, if P̃ is given by (20), then it

satisfies (11) and (14). Moreover, it also satisfies (12).

Proof. A similar result was proven for the Riemannian analogue S
3 × S

3 in [13]. We can follow the
same proof for SL(2,R)× SL(2,R). �

The following lemma is a well known result.

Lemma 4. Let {α1, α2, α3} and {β1, β2, β3} be bases of sl(2,R). If 〈αi, αj〉 = 〈βi, βj〉 for all i,
j ∈ {1, 2, 3}, then there exists a matrix c in SL±(2,R) such that cαic

−1 = βi. In other words,

SL±(2,R)/Z2 is isomorphic to SO(2, 1).

With these lemmas we prove the following statement.

Theorem 1. The isometry group of the pseudo-nearly Kähler SL(2,R)×SL(2,R) is the semi-direct

product
(
SL(2,R) × SL(2,R) × SL(2,R)

)
⋊
(
Z2 × S3

)
, where S3 is the symmetric group of order 6

generated by {Ψ1,0,Ψ1,4π/3}

Remark 5. An element (a, b, c,Ψ, k) acts on a point (p, q) by

(a, b, c,Ψ, k) · (p, q) = Ψ ◦ φik(a,b,c)(p, q).

Proof of Theorem 1. We already know that the given group is included in Iso(SL(2,R)×SL(2,R)).
Here we show the oposite inclusion.

Let F be an isometry of the pseudo-nearly Kähler SL(2,R) × SL(2,R). Thus, there exist κ0 ∈
{0, 1} satisfying

F∗J = (−1)κ0JF∗.

As F∗P (F−1)∗ is an almost product structure satisfying (11) and (14), Lemma 3 implies that

F∗P (F−1)∗ = cos τ0P + sin τ0JP,

for some τ0 ∈ {0, 2π3 , 4π3 }. By taking the composition F ◦ Ψκ0,(−1)κ0τ0 we may assume that F
preserves P and J . Let (po, qo) ∈ SL(2,R) × SL(2,R) such that F(Id2, Id2) = (po, qo). Then by
taking the composition F ◦ φ(p−1

o ,q−1
o ,Id2)

we may also assume that F(Id2, Id2) = (Id2, Id2).
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Let α ∈ sl(2,R). Then we write F∗(Id2,Id2)(α, 0) = (β, γ). Since F preserves P we know that
F∗(Id2,Id2)(0, α) = (γ, β). We compute

F∗(Id2,Id2)J(α, 0) =
1√
3
F∗(Id2,Id2)(α, 2α)

=
1√
3
F∗(Id2,Id2)(α, 0) +

1√
3
F∗(Id2,Id2)(0, 2α)

=
1√
3
(β, γ) +

2√
3
(γ, β)

=
1√
3
(β + 2γ, 2β + γ).

On the other hand, as F preserves J , we have that F∗(Id2,Id2)J(α, 0) equals

JF∗(Id2,Id2)(α, 0) = J(β, γ)

=
1√
3
(β − 2γ, 2β − γ).

Therefore, we obtain that γ = 0. Moreover, since F is an isometry, we deduce that F∗ maps a set
{(α1, 0), (α2, 0), (α3, 0)} to a set {(β1, 0), (β2, 0), (β3, 0)} such that 〈αi, αj〉 = 〈βi, βj〉.

Now, using Lemma 4, we may compose F with an isometry of SL(2,R)×SL(2,R)×SL(2,R)⋊Z2

to assume that F∗(Id2,Id2)(α, 0) = (α, 0) for all α ∈ sl(2,R). Since F preserves P , we have that

F∗(Id2,Id2)(α, β) = F∗(Id2,Id2)(α, 0) + F∗(Id2,Id2)(0, β)

= (α, 0) + P (β, 0)

= (α, β).

Since isometries are determined by a point and the differential at that point, the argument above
shows that F−1 is in

(
SL(2,R) × SL(2,R) × SL(2,R)

)
⋊
(
Z2 × S3

)
, hence F also belongs to this

group. �

3. Lagrangian submanifolds of SL(2,R) × SL(2,R)

Let f :M → SL(2,R)×SL(2,R) be a non-degenerate pseudo-Riemannian immersion. The Gauss

formula relates the Levi-Civita connection on M and the nearly Kähler connection ∇̃ by

∇̃XY = ∇XY + h(X,Y ), (21)

where X,Y are vector fields on M and h is a symmetric bilinear normal form called the second
fundamental form. On the other hand, the Weingarten formula gives a relation between ∇̃ and the
normal connection:

∇̃Xξ = −SξX +∇⊥
Xξ,

where X and ξ are tangent and normal vector fields on M , respectively. Given ξ a normal vector
field to M , the tensor Sξ is called the shape operator. It is linear at ξ and X and symmetric (with
respect to g), related to h by g(SξX,Y ) = g(h(X,Y ), ξ).

A totally geodesic submanifold is a submanifold whose geodesics are also geodesics of SL(2,R)×
SL(2,R). This is equivalent to a vanishing second fundamental form.

The most fundamental equations of submanifold theory are the Gauss and Codazzi equations,
which give expressions for the tangent and normal parts of the curvature tensor, respectively.



HOMOGENEOUS LAGRANGIAN SUBMANIFOLDS OF SL(2,R) × SL(2,R) 9

Namely,

(
R̃(X,Y )Z

)⊤
= R(X,Y )Z + Sh(X,Z)Y − Sh(Y,Z)X,

(
R̃(X,Y )Z

)⊥
= (∇Xh)(Y,Z) − (∇Y h)(X,Z),

where (∇Xh)(Y,Z) = ∇⊥
Xh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ) and R̃,R are the curvature tensors of

SL(2,R) × SL(2,R) and M , respectively.
Assume now that M is a Lagrangian submanifold. That is, a non-degenerate three-dimensional

submanifold such that J maps tangent spaces of M into normal spaces, and vice versa.
In [18] we find properties of the tensor G of a pseudo-nearly Kähler manifold and the second

fundamental form of a Lagrangian submanifold:

g(G(X,Y ), Z) = 0,

g(h(X,Y ), JZ) = g(h(X,Z), JY ).

SJXY = Jh(X,Y )

(22)

Lagrangian submanifolds are particularly interesting, since their behavior with respect to the almost
Hermitian structure, and because of the following property, also found in [18]:

Proposition 6. Any Lagrangian submanifold of a six-dimensional strictly pseudo-nearly Kähler

manifold is orientable and minimal.

The tangent bundle of SL(2,R) × SL(2,R) splits into the tangent and normal bundles of a
submanifold M . Moreover, if M is Lagrangian, we have that TSL(2,R)× SL(2,R) = TM ⊕ JTM .
Hence, there exist two endomorphisms A,B : TM → TM such that P |M = A + JB, where P
is the almost product structure given in (10). From Equation (11) we deduce that A and B are
symmetric with respect to g, commute with each other and A2 + B2 = Id. Then, the Gauss and
Codazzi equations follow from (14) as:

R(X,Y )Z = −5
6

(
g(Y,Z)X − g(X,Z)Y

)

− 2
3

(
g(AY,Z)AX − g(AX,Z)AY + g(BY,Z)BX

− g(BX,Z)BY
)
− Sh(X,Z)Y + Sh(Y,Z)X,

(23)

(∇Xh)(Y,Z) − (∇Y h)(X,Z) = −2
3

(
g(AY,Z)JBX − g(AX,Z)JBY

− g(BY,Z)JAX + g(BX,Z)JAY
)
.

(24)

A ∆i-orthonormal basis of R3
1 is a basis {e1, e2, e3} such that the matrix of inner products is

given by ∆i, where

∆1 =



−1 0 0
0 1 0
0 0 1


 , ∆2 =



0 1 0
1 0 0
0 0 1


 , ∆3 =



1 0 0
0 −1 0
0 0 1


 .

Given a ∆i-orthonormal basis of TpM we can extend this concept to what we call a ∆i-orthonormal
frame.

Given a ∆i-orthonormal frame {E1, E2, E3} on a Lagrangian submanifold M of SL(2,R) ×
SL(2,R), by (22) we have that G(Ei, Ej) is a normal vector field. Moreover, by (9) and (13)
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we have that JG(Ej , Ek) = αEl where α depends on ∆i, as indicated in the following table.

∆1 ∆2 ∆3

JG(E1, E2)
√

2
3E3

√
2
3E3

√
2
3E3

JG(E1, E3) −
√

2
3E2 −

√
2
3E1

√
2
3E2

JG(E2, E3) −
√

2
3E1

√
2
3E2

√
2
3E1

(25)

Lemma 7 ([2]). LetM be a Lagrangian submanifold of the pseudo-nearly Kähler SL(2,R)×SL(2,R)
and P the almost product structure given in (10). Then there exists a Lagrangian submanifold N
congruent to M such that the restriction of P to N can be written as P |N = A + JB, where

A,B : TN → TN must have one of the following forms, with respect to a ∆i-orthonormal frame

{E1, E2, E3}:

Type I. A =



cos 2θ1 0 0

0 cos 2θ2 0
0 0 cos 2θ3


, B =



sin 2θ1 0 0

0 sin 2θ2 0
0 0 sin 2θ3


,

with ∆i = ∆1 and θ1 + θ2 + θ3 = 0 modulo π,

Type II. A =



cos 2θ1 1 0

0 cos 2θ1 0
0 0 cos 2θ2


, B =



sin 2θ1 − cot 2θ1 0

0 sin 2θ1 0
0 0 sin 2θ2


,

with ∆i = ∆2, 2θ1 + θ2 = 0 modulo π and θ1 6= 0, π/2,

Type III. A =



−1

2 0 1
0 −1

2 0
0 1 −1

2


, B = ±




√
3
2

−4
3
√
3

1√
3

0
√
3
2 0

0 1√
3

√
3
2


,

with ∆i = ∆2,

Type IV. A =



coshψ cos 2θ1 sinhψ sin θ2 0
− sinhψ sin θ2 coshψ cos 2θ1 0

0 0 cos 2θ2


,

B =




coshψ sin 2θ1 sinhψ cos θ2 0
− sinhψ cos θ2 coshψ sin 2θ1 0

0 0 sin 2θ2


,

with ∆i = ∆3, 2θ1 + θ2 = 0 modulo π, θ2 6= 0, π and ψ 6= 0.

The functions θi and ψ are called the angle functions. Given the extrinsically invariant nature
of the type, we say that a Lagrangian submanifold M is of type I, II, III or IV. Likewise, if M is
of type i we say that A and B take type i form on M .

SupposeM and N are congruent Lagrangian submanifolds of SL(2,R)×SL(2,R). Namely, there
exists F ∈ Iso(SL(2,R)× SL(2,R)) such that F(M) = N . The following lemma provides us a way
to see how P projects to A and B on N in terms of A and B on M .
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Lemma 8. Let M be a Lagrangian submanifold of SL(2,R) × SL(2,R) and P the almost product

structure given in (10). Assume that A and B are such that P |M = A+ JB. Let F be an isometry

of the pseudo-nearly Kähler SL(2,R)× SL(2,R). Then P |F(M) = Ã+ JB̃ with

Ã = F∗(cos τA+ (−1)κ sin τB)F−1
∗

B̃ = F∗(− sin τA+ (−1)κ cos τB)F−1
∗

where τ and κ are such that F∗P = (cos τP + sin τJP )F∗ and F∗J = (−1)κF∗.

Let M be a Lagrangian submanifold of SL(2,R) × SL(2,R) and let {E1, E2, E3} be a ∆i-
orthonormal frame such that A and B take type I, II, III or IV form. We define the functions
ωk
ij and hkij by

∇EiEj =

3∑

k=1

ωk
ijEk, h(Ei, Ej) =

3∑

k=1

hkijJEk,

where ∇ is the Levi-Civita connection of the submanifold and h the second fundamental form. The
symmetry of h, the second equation of (22) and the compatibility of the connection with the metric
yield many symmetries on ωk

ij and hkij , depending on ∆l.

First, for ∆1- and ∆3-orthonormal frames {Ei} we have

δkω
k
ij = −δjωj

ik, hkij = hkji = δjδkh
j
ik,

where

δi = g(Ei, Ei).

This implies that ωj
ij = 0 for all i, j = 1, 2, 3.

For ∆2-orthonormal frames we obtain

ωk
ij = −ωĵ

ik̂
, hkij = hkji = hĵ

ik̂

where 2̂ = 1, 1̂ = 2 and 3̂ = 3. As before, we have that ω3
i3 = 0. Also, if j = 1, k = 2 or j = 2,

k = 1 then ωk
ij = 0.

Now, the frame {E1, E2, E3} is chosen in terms of P . Thus, Equation (12) will impose conditions
on the functions ωk

ij and hkij . We divide between types I, II, III and IV.

3.1. Lagrangian submanifolds of type I. Equation (12) for Type I Lagrangian submanifolds
yields the following lemma, which was proven in [2].

Lemma 9. Let M be a Lagrangian submanifold of the pseudo-nearly Kähler SL(2,R) × SL(2,R).
Suppose that A and B take type I form in Lemma 7 with respect to a ∆1-orthonormal frame

{E1, E2, E3}. Except for h312, all the components of the second fundamental form are given by the

derivatives of the angle functions θ1, θ2 and θ3:

Ei(θj) = −δiδjhijj, (26)

where δi = g(Ei, Ei). Also

hkij cos(θj − θk) = ( 1√
6
δkε

k
ij − ωk

ij) sin(θj − θk), (27)

for j 6= k.
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3.2. Lagrangian submanifolds of type II. The covariant derivative of P in Equation (12) yields
the following lemma for type II Lagrangian submanifolds.

Lemma 10. Let M be a Lagrangian submanifold of the pseudo-nearly Kähler SL(2,R)× SL(2,R).
Suppose that A and B are of type II in Lemma 7 with respect to a∆2-orthonormal frame {E1, E2, E3}.
Then h(E1, E1) = 0. Moreover, the derivatives of the angles are given by

E1(θ1) = −h111 = 0, E2(θ1) = −h222, E3(θ1) = −h312
E1(θ2) = −h233, E2(θ2) = −h133, E3(θ2) = −h333.

(28)

Furthermore,

h133 = −2h222, h233 = −2h111 = 0, h333 = −2h312. (29)

Proof. Computing Equation (12) with X = E2, Y = E1 and looking on the components of E2 and
JE2 we obtain

h111 sin 2θ1 = 0, h111 cos 2θ1 = 0.

Since sine and cosine never vanish at the same time we get that h111 = 0. Same can be done
computing Equation (12) with X = E1, Y = E1 and X = E3, Y = E1 and looking in the directions
of E2 and JE2 , obtaining h211 = h311 = 0. Looking in the direction of E1 and JE1 on the same
equations, we obtain the derivatives of the function θ1. We derive Ei(θ2) by computing Equation
(12) with X = Ei and Y = E3.

We obtain the last statement either from Proposition 6, or from (28) and the fact that 2θ1+θ2 =
0. �

3.3. Lagrangian submanifolds of type III. For Lagrangian submanifolds of type III, Equa-
tion (12) gives expressions for all functions ωk

ij, given in the following lemma.

Lemma 11. Let M be a Lagrangian submanifold of the pseudo-nearly Kähler SL(2,R)× SL(2,R).
Suppose that A and B take type III form in Lemma 7 with respect to a ∆2-orthonormal frame

{E1, E2, E3}. Then we have h(E1, E1) = 0 and

h312 = ω1
11 = ω3

11 = ω2
33 = 0,

ω3
12 =

√
2 + (−1)k+13h222

2
√
3

,

ω1
31 =

√
2 + (−1)k+112h222

2
√
3

,

ω3
21 = −

√
2 + (−1)k6h222

2
√
3

,

ω2
22 =

(−1)k(h222 − 3h322)√
3

,

ω1
33 =

(−1)k+1(4h222 − 3h322)

2
√
3

,

ω3
22 =

(−1)k+1(9h122 − 8h222 + 6h322)

6
√
3

.

(30)

where (−1)k with k ∈ {0, 1} is the sign of B in Lemma 7.
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Proof. From computing Equation (12) with X = Ei, Y = E1, i = 1, 2, 3 and looking at the
components in the direction of JE2 it follows h(E1, E1) = 0. Now, if we compute Equation (12)
with X = Ei, Y = E1, X = E2 Y = E3 in the direction on E1 and JE2 respectively we get
h312 = ω3

11 = 0. The rest of the equations are obtained in the same way. �

3.4. Lagrangian submanifolds of type IV. From Lemma 7 we know that 2θ1 + θ2 = 0 modulo
π. Thus, we write θ2 = kπ − 2θ1 where k = 0, 1. Contrarily to type II Lagrangian submanifolds,
here it is necessary to distinguish between k = 0 and k = 1, since both θ2 and 2θ2 appear in the
expressions for A and B.

From Proposition 6 we may assume that

hi33 = hi22 − hi11

for i = 1, 2, 3. Now, from Equation (12) we obtain the next lemma.

Lemma 12. Given a Lagrangian submanifold of SL(2,R) × SL(2,R) of type IV we have that

E1(θ1) =
h122 − h111

2
, E2(θ1) =

h211 − h222
2

, E3(θ1) =
h322 − h311

2
,

E1(ψ) = (−1)k2h211, E2(ψ) = (−1)k+12h122, E3(ψ) = (−1)k+12h312.

(31)

Moreover, we produce the following expressions for the functions ωk
ij .

ω2
11 =

(−1)k

2
(h111 + h122) cothψ,

ω1
22 =

(−1)k+1

2
(h211 + h222) cothψ,

ω1
32 =

(−1)k

2
(h311 + h322) cothψ − 1√

6
.

(32)

Also,

ω3
11 =

h311 sin 6θ1 + (−1)kh312 sinhψ

cos 6θ1 − coshψ
,

ω3
12 =

h312 sin 6θ1 + (−1)k+1h311 sinhψ

cos(6θ1)− coshψ
+

1√
6
,

ω3
22 =

h322 sin 6θ1 + (−1)k+1h312 sinhψ

cos 6θ1 − coshψ
,

ω3
21 =

h312 sin 6θ1 + (−1)kh322 sinhψ

cos 6θ1 − coshψ
− 1√

6
,

ω1
33 =

(h111 − h122) sin 6θ1 + (−1)k(h222 − h111) sinhψ

cos 6θ1 − coshψ
,

ω2
33 =

(h211 − h222) sin 6θ1 + (−1)k+1(h122 − h111) sinhψ

cos 6θ1 − coshψ
.

(33)

Proof. From computing (∇E1
P )E1 and looking at the components in the direction of E2 and JE2

we get the equation
(

cos 2θ1 sin 2θ1
− sin 2θ1 cos 2θ1

)(
coshψ

(
E1(ψ) − (−1)k2h211

)

− sinhψ
(
2E1(θ1) + h111 − h122

)
)

= 0.
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From (∇E2
P )E2 and (∇E3

P )E3 we derive the rest of the equations in Equation (31) in a similar
way.

Having Equation (31) we look at the rest of the components of (∇EiP )Ei and we furnish the
expressions in (32).

By computing (∇EiP )Ej with i 6= j we come to linear equations which yield (33). �

4. Extrinsically homogeneous Lagrangian submanifolds

In this section we first prove that for each case of Lemma 7 there is a unique frame {Ei}i with
respect to which P takes that particular shape. Consequently, the associated angle functions, hkij
and ωk

ij are constant. Afterwards, we describe the examples given in Theorem 2 and provide a
classification for each type of Lagrangian submanifold.

4.1. The uniqueness of the frames. We consider each case of Lemma 7 separately.

4.1.1. Lagrangian submanifolds of type I. It is straightforward to check that for type I Lagrangian
submanifolds the frame {E1, E2, E3} is unique if and only if the functions θi are all different modulo
π. Later on, we will see that if two of them are equal, the submanifold is totally geodesic. Hence,
now we focus on the case where all angles are different modulo π.

Proposition 13. Let M be an extrinsically homogeneous Lagrangian submanifold of the pseudo-

nearly Kähler SL(2,R)× SL(2,R). Suppose that {E1, E2, E3} is the unique ∆1-orthonormal frame

such that A and B take type I form in Lemma 7. Then the functions θi, h
k
ij and ωk

ij are constant.

Proof. We have to show that θip = θiq for any two points p and q in M . By hypothesis there is a
Lie subgroup H of SL(2,R) × SL(2,R) × SL(2,R) such that H acts transitively on M . Therefore,
there exists an isometry φ ∈ H such that φ(p) = q. We have that

PpEip = cos 2θipEip + sin 2θipJpEip

In subsection 2.4 we saw that isometries in SL(2,R)×SL(2,R)×SL(2,R) preserve P and J . Thus,
we apply φ to both sides:

Pqφ∗Eip = φ∗PpEip = φ∗(cos 2θipEip + sin 2θipJpEip)

= cos 2θipφ∗Eip + sin 2θipφ∗JpEip

= cos 2θipφ∗Eip + sin 2θipJqφ∗Eip

Since {Ei}i is the unique frame with respect to which A and B are diagonal, we have φ∗Eip = Eiq

and θiq = θip.
It follows from φ(M) =M that φ preserves ∇ and h. Thus using a similar argument we get that

ωk
ij and hkij are constant. �

4.1.2. Lagrangian submanifolds of type II.

Proposition 14. Let M be an extrinsically homogeneous Lagrangian submanifold of the pseudo-

nearly Kähler SL(2,R) × SL(2,R). Suppose that A and B take the type II form in Lemma 7 with

respect to a ∆2-orthonormal frame {E1, E2, E3}. If θ1 6= θ2 modulo π then the frame is unique up to

signs. If instead θ1 = θ2 there is a unique frame, up to signs, such that h122 = g(h(E2, E2), JE2) = 0.
In both cases, the functions θi, h

k
ij and ωk

ij are constant.

Proof. The last statement follows from the uniqueness (even if it is up to sign) of the frame as in
the proof of Proposition 13.
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Suppose that θ1 6= θ2 and that {Ẽ1, Ẽ2, Ẽ3} is a frame on M such that

PẼ1 = cos 2θ̃1Ẽ1 + sin 2θ̃1JẼ1,

P Ẽ2 = Ẽ1 + cos 2θ̃1Ẽ2 − cot 2θ̃1JẼ1 + sin 2θ̃1JẼ2

PẼ3 = cos 2θ̃2Ẽ3 + sin 2θ̃2JẼ3.

Hence, at any point of M the eigenvalues of A and B are {cos 2θ1, cos 2θ2} and {sin 2θ1, sin 2θ2},
respectively. Moreover, the associated eigenvectors are the same. The eigenspace associated to
cos 2θ1 and sin 2θ1 is lightlike and the one associated to cos 2θ2 and sin 2θ2 is spacelike, therefore
θ̃1 = θ1 and θ̃2 = θ2 modulo π. As the eigenvectors E3 and Ẽ3 are both unit length, we derive that
Ẽ3 = ±E3. Similarly, we get Ẽ1 = cE1 for c ∈ R and therefore Ẽ2 = c−1E2. Computing AẼ2 we
produce

AẼ2 =
1

c
(E1 + cos 2θ1E2) =

1

c2
Ẽ1 + cos 2θ1Ẽ2

thus c2 = 1. Since {Ẽi} also has to satisfy the relations in (25) we obtain Ẽ3 = E3.
Suppose now that θ2 = θ1 modulo π. This means that the eigenspace associated to cos 2θ1 is

two-dimensional. Therefore any linear isometry that preserves the eigenspace preserves the form of
A and B. Let T be the linear isometry defined by TEi = Ẽi. After some computations we obtain
that T has the form

T =



ε −ε t22 t
0 ε 0
0 −εt 1


 ,

for ε = ±1 and some t ∈ R.
Computing h(Ẽ2, Ẽ2) and using Lemma 10 yields h̃122 = h122 − 2th322 and h̃322 = h322. Suppose

that h322 = 0, then the Gauss equation (23) with X = E2, Y = E3, Z = E3 implies 1/6 = 3/2, a

contradiction. Then we can choose t = h122/(2h
3
22), thus h̃

1
22 = 0. In the same way, we can obtain

that it is the unique (up to sign) frame with this condition. As before, we conclude that ωk
ij and

hkij are constant for this frame. �

4.1.3. Lagrangian submanifolds of type III.

Proposition 15. Let M be an extrinsically homogeneous Lagrangian submanifold of the pseudo-

nearly Kähler SL(2,R) × SL(2,R). Suppose that A and B take type III form in Lemma 7 with

respect to a ∆2-orthogonal frame {E1, E2, E3}. Then the frame is unique and the functions θi, h
k
ij

and ωk
ij are constant.

Proof. Suppose that {Ẽi}i is another ∆2-orthonormal frame wiht respect to which A and B take

type III form in Lemma 7. We denote by T the linear isometry given by TEi = Ẽi. We write

T =



t11 t12 t13
t21 t22 t23
t31 t32 t33


 .

First notice that E1 spans the unique eigenspace of A and B, thus t21 = t31 = 0. Computing
g(TE1, TE2) we furnish t22t11 = 1. In the same way, computing g(TE1, TE3) and g(TE3, TE3)
we come to t23 = 0 and t33 = ε = ±1. Computing ATE2 = −1

2TE2 + TE3 we get that t13 = t32
and t11 = ε. Computing g(E2, E3) and g(E2, E2) we obtain t13 = 0 and t12 = 0. By asking

JG(TE1, TE2) =
√

2
3TE3 we see that ε = 1.

As in the previous propositions, the last statement follows from the uniqueness of the frame. �
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4.1.4. Lagrangian submanifolds of type IV.

Proposition 16. Let M be an extrinsically homogeneous Lagrangian submanifold of the pseudo-

nearly Kähler SL(2,R) × SL(2,R). Suppose that A and B take type IV form in Lemma 7 with

respect to ∆3-orthonormal frame {E1, E2, E3}. Then the frame is unique and the functions θi, ψ,
hkij and ωk

ij are constant.

Proof. In order to simplify the proof we write A and B as

A =



α β 0
−β α 0
0 0 cos 2θ2


 , B =



γ δ 0
−δ γ 0
0 0 sin 2θ2


 ,

with respect to {Ei}i.
Suppose there exists a ∆3-orthonormal frame {Ẽ1, Ẽ2, Ẽ3} and functions α̃, β̃, γ̃, δ̃ and θ̃2 such

that A and B take the form

A =



α̃ β̃ 0

−β̃ α̃ 0

0 0 cos 2θ̃2


 , B =



γ̃ δ̃ 0

−δ̃ γ̃ 0

0 0 sin 2θ̃2


 ,

with respect to {Ẽi}i.
Since cos 2θ2 and sin 2θ2 are the only eigenvalues of A and B, θ̃2 = θ2 modulo π and Ẽ3 = εE3

with ε = ±1. We denote by T the linear isometry defined by TEi = Ẽi. Given that {Ẽi} is an

∆3-orthonormal frame, we may assume that Ẽ1 and Ẽ2 do not have components in the direction
of E3. Hence, we can write T as

T =



cosh t sinh t 0
sinh t cosh t 0
0 0 ε


 .

with t ∈ R. Requiring ATE1 = (α̃TE1 − β̃TE2) and ATE2 = (β̃TE1 + α̃TE2) we obtain

α cosh t+ β sinh t = α̃ cosh t− β̃ sinh t,

−β cosh t+ α sinh t = −β̃ cosh t+ α̃ sinh t,

β cosh t+ α sinh t = β̃ cosh t+ α̃ sinh t,

α cosh t− β sinh t = α̃ cosh t+ β̃ sinh t.

Combining these equations we get

(α− α̃) cosh t = 0

(β − β̃) cosh t = 0

therefore α̃ = α and β̃ = β. We may use the same argument to deduce that δ̃ = δ and γ̃ = γ. We

compute again ATE1 = (α̃TE1− β̃TE2) and we derive t = 0. From JG(Ẽ1, Ẽ2) =
√

2
3Ẽ3 it follows

that ε = 1.
In a similar way as in the proofs of propositions 13-15 we obtain that α, β, γ and δ are constant.

Computing α
δ and α

β we obtain that ψ, θ1 and θ2 are constant as well. Finally using the uniqueness

of the frame we get that hkij and ωk
ij are constant.

�
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4.2. Extrinsically homogeneous Lagrangian submanifolds of type I. The following propo-
sition proven in [2] gives us a characterization of totally geodesic Lagrangian submanifolds of type I:

Proposition 17. Let M be a Lagrangian submanifold of SL(2,R) × SL(2,R) of type I in Lemma

7. If two angles are equal modulo π, then M is totally geodesic.

Moreover, in the same paper all the totally geodesic Lagrangian submanifolds are classified up
to congruence by the following theorem, which we rewrite to fit better in this article.

Theorem 18. Let f : (M,g) → SL(2,R) × SL(2,R) be a totally geodesic Lagrangian submanifold

of the pseudo-nearly Kähler SL(2,R)× SL(2,R). Then f(M) is congruent to an open subset of the

following extrinsically homogeneous Lagrangian embeddings:

(M,g) f H

(SL(2,R), 23 〈, 〉) u 7→ (u, u) {(u, u, Id2) : u ∈ SL(2,R)}
(SL(2,R), g+κ,τ ) u 7→ (u, iui) {(u, iui, Id2) : u ∈ SL(2,R)}
(SL(2,R), g−κ,τ ) u 7→ (u,−kuk) {(u,−kuk, Id2) : u ∈ SL(2,R)}

where H acts transitively on M with null isotropy, and g+κ,τ , g
−
κ,τ are Berger-like metrics on SL(2,R)

stretched in spacelike and timelike directions, respectively.

This theorem implies that any Lagrangian submanifold of type I with two equal angle functions
modulo π is extrinsically homogeneous. Therefore, to complete the classification of extrinsically
homogeneous Lagrangian submanifolds we assume that the submanifold is not totally geodesic and
that all angle functions are different modulo π.

Proposition 19. Let M be a non-totally geodesic extrinsically homogeneous Lagrangian submani-

fold of the pseudo-nearly Kähler SL(2,R)× SL(2,R) of type I. Let θi, i = 1, 2, 3 be the angle func-

tions associated to the ∆1-orthonormal frame with respect ot which A and B are diagonal. Then

(θ1, θ2, θ3) is a permutation of (0, π/3, 2π/3) and the manifold M has constant sectional curvature.

Moreover, the sectional curvature is either equal to 0 or to −3
8 .

Proof. Lagrangian submanifolds of type I are essentially an analogue of Lagrangian submanifolds
of S3 × S

3. In [3] the authors proved for S
3 × S

3 that the angle functions of non-totally geodesic
Lagrangian submanifolds are constant and a permutation of (0, π3 ,

2π
3 ). The same argument works

for SL(2,R) × SL(2,R).
By Lemma 8 we may assume that (θ1, θ2, θ3) = (0, π/3, 2π/3). From Lemma 9 we know that all

the functions hkij are equal to zero, except for h312, which from Proposition 13 we know is constant.

Then the Codazzi equation (24) with X = E1, Y = E2, Z = E2 yields that h312 is either equal to
1

2
√
2
or to − 1√

2
. Both cases imply that the sectional curvature is constant. In the former case the

sectional curvature is equal to −3
8 and in the latter case the sectional curvature is equal to 0. �

Example 20. Let f : SL(2,R) → SL(2,R) × SL(2,R) be the isometric immersion given by u 7→
(iuiu−1, j uj u−1) and let {X1,X2,X3} be the frame on SL(2,R) given in (4). We may compute

f∗(X1) = (0, j uju−1(−2uiu−1)),

f∗(X2) = (iuiu−1(−2uj u−1), 0),

f∗(X3) = (iuiu−1(−2uku−1), j uj u−1(−2uku−1)).
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It follows from the definition of J in (6) that

Jf∗(X1) =
1√
3
(iuiu−1(4uiu−1), j uj u−1(2uiu−1)),

Jf∗(X2) =
1√
3
(iuiu−1(−2uj u−1), j uj u−1(−4uj u−1)),

Jf∗(X3) =
1√
3
(iuiu−1(2uku−1), j uju−1(−2uku−1)).

We can easily check that f is a Lagrangian immersion by computing g(Jf∗(Xi), f∗(Xj)) = 0 for
i, j = 1, 2, 3. Moreover, we have

Pf∗(X1) = (iuiu−1(−2uiu−1), 0) = −1

2
f∗(X1)−

√
3

2
Jf∗(X1),

Pf∗(X2) = (0, j uju−1(−2uj u−1)) = −1

2
f∗(X2) +

√
3

2
Jf∗(X2),

Pf∗(X3) = (iuiu−1(−2uku−1), j uj u−1(−2uku−1)) = f∗(X3).

Let H be the subgroup of Isoo(SL(2,R) × SL(2,R)) given by {(iui, j uj , u) : u ∈ SL(2,R)} ∼=
SL(2,R). Then f(SL(2,R)) = H · (Id2, Id2). Notice that H acts on f(SL(2,R)) with isotropy Z2.
Hence, the embedding PSL(2,R) → SL(2,R)×SL(2,R) : [u] 7→ (iuiu−1, j uju−1) is congruent to f .

Proposition 21. Any extrinsically homogeneous non-totally geodesic Lagrangian submanifold of

the pseudo-nearly Kähler SL(2,R) × SL(2,R) of type I with h312 = 1
2
√
2
is congruent to an open

subset of the image of PSL(2,R) → SL(2,R) × SL(2,R) : [u] 7→ (iuiu−1, juju−1).

Proof. Let f : M → SL(2,R) × SL(2,R) be a non-totally geodesic extrinsically homogeneous La-
grangian immersion of type I. Let {E1, E2, E3} be the frame on M such that JG(E1, E2) =√

2
3E3 with angle functions given by (θ1, θ2, θ3) = (0, π/3, 2π/3). Moreover, assume that h312 =

g(h(E1, E2), E3) =
1

2
√
2
. We have

PE1 = E1, PE2 = −1
2E2 +

√
3
2 JE2, PE3 = −1

2E3 −
√
3
2 JE3.

Hence, according to Equation (16), we have

QE1 =
√
3JE1, QE2 = −E2, QE3 = E3. (34)

From Proposition 19 it follows that M has constant sectional curvature −3
8 . Thus M is locally

isometric to (SL(2,R), 83〈, 〉) (see [17]), where 〈, 〉 is the metric given in (1). Then we may identify

E1 =
√

3
8X3, E2 =

√
3
8X2, E3 =

√
3
8X1.

where {X1,X2,X3} is the frame on SL(2,R) given in (4). Now we write the immersion f(u) =
(p(u), q(u)) and f∗(Ei)u = (DEif)u = (p(u)αi(u), q(u)βi(u)) where αi(u), βi(u) ∈ sl(2,R). By
Equation (34) we have α1 = β1, β2 = 0 and α3 = 0. We know from (17) that ∇E

E1
E1 = ∇E

E2
E2 =
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∇E
E3
E3 = 0 and

∇E
E1
E2 = ∇E

E1
E3 = 0,

∇E
E2
E1 = −

√
3
2E3 = −

√
3
2(0, qβ3),

∇E
E2
E3 = −1

2

√
3
2(E1 +QE1) = −

√
3
2(0, qα1),

∇E
E3
E1 =

√
3
2E2 =

√
3
2(pα2, 0),

∇E
E3
E2 =

1
2

√
3
2(E1 −QE1) =

√
3
2(pα1, 0).

(35)

Throughout this proof, we will denote by 〈, 〉× the product metric associated to the metric 〈, 〉 on
SL(2,R) given in (1). By Equation 15 E1, E2, E3 are orthogonal with respect to the product metric
〈, 〉× and their lengths are

〈E1, E1〉× = −3, 〈E2, E2〉× = 〈E3, E3〉× = 3
2 .

This implies that
〈α1, α1〉 = −3

2 , 〈α2, α2〉 = 〈β3, β3〉 = 3
2 (36)

On the one hand, Equation (18) yields

DEiDEjf = ∇E
Ei
Ej +

1
2〈Ei, Ej〉(p, q) + 1

2 〈Ei, QEj〉(−p, q),
and on the other hand, by Equation (5), we furnsih

DEiDEjf = (pαiαj + pEi(αj), qβiβj + qEi(βj))

= (p(αi × αj) + 〈αi, αj〉p+ pEi(αj), q(βi × βj) + 〈βi, βj〉q + qEi(βj)).

Therefore
∇E

Ei
Ej = (pαi × αj + pEi(αj), qβi × βj + qEi(βj)),

where Ei(α) = dα(Ei) thinking of α as a map from SL(2,R) into sl(2,R). Hence, using (35) we
obtain

α1 × α2 = −
√

3
2β3

and also

E1(α1) = 0, E2(α1) = −
√

3
2β3, E3(α1) =

√
3
2α2,

E1(α2) =
√

3
2β3, E2(α2) = 0, E3(α2) =

√
3
2α1,

E1(β3) = −
√

3
2α2, E2(β3) = −

√
3
2α1, E3(β3) = 0.

In terms of the vector fields Xi this translates into the following differential equations:

X1(α1) = 2α2, X2(α1) = −2β3, X3(α1) = 0,

X1(α2) = 2α1, X2(α2) = 0, X3(α2) = 2β3,

X1(β3) = 0, X2(β3) = −2α1, X3(β3) = −2α2.

(37)

From (36) and Lemma 4 we know that there exists c ∈ SL±(2,R) such that

α1(Id2) = −
√

3
2ckc

−1, α2(Id2) = −
√

3
2cj c

−1, β3(Id2) = −
√

3
2cic

−1. (38)

Therefore, as the solution of the system (37) with initial conditions (38) is unique, we have that

α1(u) = −
√

3
2cuku

−1c−1, α2(u) = −
√

3
2uj u

−1c−1, β3(u) = −
√

3
2cuiu

−1c−1.
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We can check easily that they satisfy the equations in (37). By the homogeneity of SL(2,R) ×
SL(2,R) we can take initial conditions f(Id2) = (Id2, Id2). Applying the isometry of SL(2,R) ×
SL(2,R) given by (p, q) 7→ (cpc−1, cqc−1) we may assume that

α1(u) = −
√

3
2uku

−1, α2(u) = −
√

3
2uj u

−1, β3(u) = −
√

3
2cuiu

−1.

Then, the immersion f = (p, q) given by p = iuiu−1, q = j uju−1 is the unique solution of the
differential equation DEip = pαi, DEiq = qβi, with i = 1, 2, 3. �

Example 22. Let H be the Lie subgroup of SL(2,R)× SL(2,R) × SL(2,R) given by

H = {(evi, ewj , euk ) : v,w ∈ R, u ∈ [0, 2π)} ∼= R
2 × S

1.

The subgroup H acts transitively on the submanifold f : R3
1/Z → SL(2,R) × SL(2,R) given by

f(u, v, w) = (evie−uk , ewj e−uk ).

Moreover, the isotropy of H is trivial.
The derivatives of f are given by

fu = (−evie−ukk ,−ewj e−ukk ), fv = (evie−ukeuk ie−uk , 0), fw = (0, ewj e−ukeuk j e−uk ).

Applying the almost complex structure yields the following expressions:

Jfu =
1√
3
(evie−ukk ,−ewj e−ukk),

Jfv =
1√
3
(evie−ukeuk ie−uk , 2evie−ukeuk ie−uk ),

Jfw =
1√
3
(−2ewj e−ukeuk j e−uk ,−ewj e−ukeuk j e−uk ).

We can easily check that

g(Jfu, fv) = g(Jfu, fw) = g(Jfv , fw) = 0,

which shows that this submanifold is Lagrangian. After applying the tensor P we obtain

Pfu = (−evie−ukk ,−ewj e−ukk) = fu,

Pfv = (0, ewj e−ukeuk ie−uk ) = −1

2
fv +

√
3

2
Jfv,

Pfw = (ewj e−ukeuk j e−uk , 0) = −1

2
fw −

√
3

2
Jfw.

Thus, f is a flat, extrinsically homogeneous Lagrangian submanifold of SL(2,R)×SL(2,R) of type I
with constant angles (θ1, θ2, θ3) = (0, π3 ,

2π
3 ).

Proposition 23. Any extrinsically homogeneous non-totally geodesic Lagrangian submanifold of

type I of the nearly Kähler SL(2,R) × SL(2,R) with h312 = − 1√
2
is congruent to an open subset of

the image of the Lagrangian embedding f : R3
1/Z → SL(2,R) × SL(2,R) given by

f(u, v, w) =
(
evie−uk, ewje−uk

)
.
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Proof. Notice first that all the coefficients of the connection and second fundamental form vanish
except for h312 = g(h(E1, E2), JE3) = − 1√

2
. We also know that the angle functions are given by

(2θ1, 2θ2, 2θ3) = (0, 2π3 ,
4π
3 ). So we can find a local frame such that JG(E1, E3) =

√
2
3E3 and

PE1 = E1, PE2 = −1
2E2 +

√
3
2 JE2, PE3 = −1

2E3 −
√
3
2 JE3.

From the relation between Q and P in (16) it follows that

QE1 =
√
3JE1, QE2 = −E2, QE3 = E3. (39)

Using that hjii = 0, h312 = − 1√
2
and Equation (27), we deduce that [Ei, Ej ] = 0 for i, j = 1, 2, 3.

Then we write E1 = fu, E2 = fv, E3 = fw for u, v, w local coordinates. Thus, Equation (39) implies
that

pw = 0, qv = 0, qu = pu. (40)

Moreover, we have ∇E
fu
fu = ∇E

fv
fv = ∇E

fw
fw = 0 and

∇E
fufv = ∇E

fvfu = −1
2

√
3
2fw − 3

2
√
2
Jfw,

∇E
fufw = ∇E

fwfu = 1
2

√
3
2fv − 3

2
√
2
Jfv,

∇E
fvfw = ∇E

fwfv = 0.

From the relation between the Euclidean metric with the nearly Kähler metric in (15) we know that
fu, fv, fw are also orthogonal with respect to the induced Euclidean product metric. Furthermore,
their inner products are given by

〈fu, fu〉 = −3, 〈fv, fv〉 = 〈fw, fw〉 = 3
2 .

Furthermore,
〈fu, Qfu〉 = 0, 〈fu, Qfv〉 = 0, 〈fu, Qfw〉 = 0,

〈fv, Qfw〉 = 0, 〈fv, Qfv〉 = −3
2 , 〈fw, Qfw〉 = 3

2 .

Thus, using (40) we get that pu, pv and qw are orthogonal and

〈pu, pu〉 = −3
2 , 〈pv, pv〉 = 〈pw, pw〉 = 3

2 . (41)

From the expression for the Euclidean connection D of R8
4 given in Equation (18) we obtain

fuu = −3
2f, fuv = −1

2

√
3
2fw − 3

2
√
2
Jfw,

fuw = 1
2

√
3
2fv − 3

2
√
2
Jfv, fvv = 3

4f − 3
4Qf,

fvw = 0, fww = 3
4f + 3

4Qf.

Hence we produce differential equations for p and q:

puu = −3
2p, pvv = 3

2p, puv =
√

3
2pq

−1qw,

quu = −3
2q, qww = 3

2q, quw = −
√

3
2qp

−1pv.
(42)

By applying an isometry of the type (p, q) 7→ (ap, bq) we may assume that p(0) = Id2, q(0) = Id2.
Now, because of Equation (41), there exists a matrix c ∈ SL±(2,R) such that

pu(0) =
√

3
2ckc

−1, pv(0) =
√

3
2cic

−1, qu(0) =
√

3
2ckc

−1, qw(0) =
√

3
2cj c

−1.
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Applying the isometry (p, q) 7→ (cpc−1, cqc−1) we obtain that any solution of the system (42) is

congruent to the map f(u, v, w) = (e

√
3
2vie−

√
3
2uk , e

√
3
2wj e−

√
3
2uk ). Then, changing the coordinates

by u→
√

2
3u, v →

√
2
3v and w →

√
2
3w, we get the map (u, v, w) 7→ (evie−uk , ewj e−uk ). �

4.3. Extrinsically homogeneous Lagrangian submanifolds of type II.

Proposition 24. Let M be an extrinsically homogeneous Lagrangian submanifold of the pseudo-

nearly Kähler SL(2,R)×SL(2,R). Suppose that A and B take type II form in Lemma 7 with respect

to a ∆2-orthonormal frame {E1, E3, E3}. Then θ1 = θ2 = π/3 modulo π. Also, all the components

of the second fundamental form and of the connection are equal to zero except for h322, ω
3
12, ω

3
21,

ω1
31 and ω3

22. There are only two possibilities for the value of these constants:

(1) h322 = −
√
2
3 , ω3

12 = −
√

3
2 , ω3

21 = −
√

3
2 , ω1

31 = 0, ω2
33 = 0,

(2) h322 =
2
√
2

3 , ω3
12 =

√
3
2 , ω3

21 =
√

3
2 , ω1

31 =
√

3
2 .

Moreover, in both cases the sectional curvature is constant and equal to −3
2 .

Proof. As indicated in Proposition 14, we have to distinguish between two cases: when θ1 = θ2 and
when θ1 6= θ2.

Suppose first that θ1 6= θ2. By Proposition 14 both angles and the functions hkij , ω
k
ij are constant.

It follows from computing the Codazzi equation (24) with X = E3, Y = E2 and Z = E3 that
sin(2(θ1 − θ2)) = 0, hence θ1 and θ2 are equal modulo π/2. Recall that for type II submanifolds
sin 2θ1 is different from zero, 2θ1+θ2 = 0 modulo π and the angles are different modulo π. Therefore
θ1 = π

6 , θ2 = 2π
3 or θ1 = 5π

6 , θ2 = π
3 . From Lemma 8 we know that these two cases are congruent

via the isometry Ψ0,1 given in (19). It follows from Equation (12) that

ω1
11 = ω3

11 = ω2
33 = 0, ω3

21 = − 1√
6
, ω3

12 =
1√
6
, ω1

31 =

√
3

2
h322 +

1√
6
.

Computing the Codazzi equation (24) with X = E3, Y = E2, Z = E3 and X = E1, Y = E2,
Z = E2 we obtain

4− 3h322
(
3h322 +

√
2
)

3
√
3

= 0, 8
√
3− 3

√
6h322 = 0,

which is a contradiction.
Suppose now that θ1 = θ2 modulo π. Using that 2θ1+θ2 = 0 modulo π we deduce θ1 = θ2 = π/3

or 2π/3. By Lemma 8 we know that these cases are congruent via the isometry Ψ0,1 given in (19).
Thus, we only consider the cases where θ1 = θ2 = π/3.

By Lemma 10 we have h222 = h312 = 0. Moreover, by Proposition 14 we may assume that h122 = 0
and that all the functions hkij , ω

k
ij are constant. Hence, from Equation (12) we obtain

ω1
11 = ω3

11 = ω2
22 = ω2

33 = 0.

We also get

ω3
21 =

√
3h322 −

1√
6
, ω1

31 =

√
3

2
h322 +

1√
6
.

Thus computing the Codazzi equation with X = E3, Y = E2 and Z = E2 yields ω1
33 = 0.

Moreover, we obtain

−9(h322)
2 + 3

√
2h322 + 4 = 0.

Hence h322 = −
√
2
3 or h322 =

2
√
2

3 .
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If h322 = −
√
2
3 then the Codazzi equation with X = E1, Y = E2 and Z = E2 implies ω3

12 = −
√

3
2 .

Also we obtain ω3
22 = 0.

If instead h322 =
2
√
2

3 we obtain ω3
12 =

√
3
2 . A straightforward computation shows that both cases

have constant sectional curvarture equal to −3
2 . �

Now we exhibit two examples of extrinsically homogeneous Lagrangian submanifolds of type II
in Lemma 7.

Example 25. Let R⋉ϕ0
R
2 be the Bianchi group of type V with group law given by

(t, u) · (s, v) = (t+ s, ϕ0(s)u+ v)

where ϕ0 : R → Aut(R2) is given by

ϕ0(s) =

(
e−2s 0
0 e−2s

)
.

Let ĝ be the right invariant metric such that its components with respect to the frame of right

invariant vector fields
{

∂
∂t , e

−2t ∂
∂u1

, e−2t ∂
∂u2

}
are given by




8
3 0 0
0 −3

2 0
0 0 3

2


 .

In fact, this Lorentzian manifold is simply connected, geodesically complete and it has consant
sectional curvature equal to −3

2 . Hence, by the pseudo-Riemannian analogue of the Killing-Hopf

theorem (see [17]), it is isometric to H̃3
1 (−3

2), the universal cover of the anti-de Sitter space.
Now let h be the Lie subalgebra of sl(2,R) ⊕ sl(2,R) ⊕ sl(2,R) spanned by {e1, e2, e3} where

e1 =
(
i,−i,−i

)
,

e2 =

(
9

4
(j − k),

1

2
(j + k), 0

)
,

e3 =

(
9

4
(−j + k), 0,

1

2
(j + k )

)
,

where i, j and k are given in (3). The Lie algebra h is a Bianchi Lie algebra of type V with brackets

[e1, e2] = −2e2, [e1, e3] = −2e3, [e2, e3] = 0.

Therefore R ⋉ϕ0
R
2 is the universal cover of exp(h) ⊂ SL(2,R) × SL(2,R) × SL(2,R). Moreover,

the map

(w, u, v) 7→ exp(we1 + ueww csch(w)e2 + veww csch(w)e3)

defined at w = 0 as exp(ue2 + ve3), is a group isomorphism, thus exp h ∼= R⋉ϕ0
R
2. One can check

that the immersion ι : R⋉ϕ0
R
2 → SL(2,R)× SL(2,R) given by

ι(w, u, v) = exp(we1 + ueww csch(w)e2 + veww csch(w)e3) · (Id2, Id2) (43)

is a Lagrangian immersion, whose image is extrinsically homogeneous. The frame given by

E1 = −e−2wιu − e−2wιv, E2 =
1
3e

−2wιu − 1
3e

−2wιv, E3 =
√

3
8 ιw,

is a ∆2-orthonormal frame with respect to which A and B take type II form in Lemma 7, with
angle functions θ1 = θ2 =

π
3 .
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Example 26. Let R⋉ϕ1
R
2 be the Bianchi group of type III with group law

(t, u) · (s, v) = (t+ s, ϕ1(s)u+ v)

where ϕ1 : R → Aut(R2) is given by

ϕ1(s) =

(
e2s 0
0 1

)
.

Let gλ be the right invariant metric on R⋉ϕ1
R
2 such that its components with respect to the frame

of right invariant vector fields
{

∂
∂t , e

2t ∂
∂u1

, ∂
∂u2

}
are given by




2
3 0 0
0 0 1

0 1 2(λ−1)
3


 ,

where λ is an arbitrary real number. As in Example 25, this Lorentzian manifold is simply con-
nected, geodesically complete and it has consant sectional curvature equal to −3

2 . Therefore it is

isometric to H̃3
1 (−3

2).
Let h be the Lie subalgebra of sl(2,R)⊕ sl(2,R)⊕ sl(2,R) spanned by {e1, e2, e3} where

e1 = (i, 0, 0),

e2 = (12 (j + k), 0, 0),

e3 = (0,−λ+7
6 j + 11−λ

6 k ,−λ+9
6 j + 9−λ

6 k).

where i, j , k are given in (3). The Lie algebra h is a Bianchi Lie algebra of type III with brackets

[e1, e2] = 2e2, [e1, e3] = 0, [e2, e3] = 0.

Therefore R⋉ϕ1
R
2 is the universal cover of exp(h). The map φλ : R⋉ϕ1

R
2 → exp(h) given by

φλ(u, v, w) = exp

(
we1 +

uwe−w

sinhw
e2 + ve3

)

with we−w

sinhw extended to 1 when w = 0, is a surjective homomorphism with

Hλ = ker(φλ) ∼=
{

Z when λ = 2n2

n2−m2 , m > n > 0 integers,

{0} otherwise.

One can check that the map fλ : (R⋉ϕ1
R
2)/Hλ → SL(2,R)× SL(2,R) given by

fλ(u, v, w) = φλ(u, v, w) · (Id2, Id2),
is a Lagrangian immersion, whose image is extrinsically homogeneous. The frame {E1, E2, E3}
given by

E1 = e2w(fλ)u, E2 =
1− λ

3
e2w(fλ)u + (fλ)v, E3 =

√
3

2
(fλ)w

is a ∆2-orthonormal frame with respect to which A and B take type II form in Lemma 7 with
θ1 = θ2 =

π
3 .

Remark 27. For any pair λ1, λ2 the subgroups φλi
(R ⋉ϕ1

R
2) of SL(2,R) × SL(2,R) × SL(2,R)

are non-conjugate. That is, there does not exist an automorphism of SL(2,R)×SL(2,R)×SL(2,R)
preserving the isotropy subgroup ∆SL(2,R) that maps φλ1

(R⋉ϕ1
R
2) into φλ2

(R⋉ϕ1
R
2). This can

be easily seen since conjugations by elements of SL±(2,R) preserve the indefinite inner product of
sl(2,R) given in (1).
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Proposition 28. Let f : M → SL(2,R) × SL(2,R) be an extrinsically homogeneous Lagrangian

submanifold of the pseudo-nearly Kähler SL(2,R) × SL(2,R). Suppose that A and B take type II

form in Lemma 7 with respect to a ∆2-orthonormal frame {E1, E2, E3}. Then M is congruent to

an open subset of either the image of the immersion in Example 25, or the image of the immersion

in Example 26.

Proof. Because of Proposition 24 we may assume that θ1 = θ2 = 2
3π. Moreover, we divide in two

cases.
Suppose that ωk

ij and h
k
ij satisfy (1) in Proposition 24. We take the frame {ρE1, ρE2, E3} where

ρ is a non-vanishing smooth function and solution of

E1(ρ) = E2(ρ) = 0, E3(ρ) =
√

3
2ρ. (44)

It is easy to check that ρ indeed exists and that

[ρE1, ρE2] = [ρE1, E3] = [ρE2, E3] = 0.

Hence, there exist local coordinates u, v, w such that ρE1 = fu, ρE2 = fv and E3 = fw and hence

ρ(w) = e

√
3
2w. It follows from the relation between Q and P given in (16) that

Qfu = −fu, Qfv = −2

3
fu − fv +

2√
3
Jfu, Qfw = −fw.

Writing f = (p, q) yields

qu = qw = 0, qv = 2
3qp

−1pu. (45)

Using the relation between the nearly Kähler connection ∇̃ and the product connection ∇E given
in (17) we obtain

∇E
fufu = 0, ∇E

fufv = −
√

3
2ρ

2fw, ∇E
fufw

√
3
2fu,

∇E
fvfu = −

√
3
2ρ

2fw, ∇E
fvfv = −

√
2
3ρ

2fw, ∇E
fvfw = 1√

6
fu +

√
3
2fv − 1√

2
Jfu,

∇E
fwfu =

√
3
2fu, ∇E

fwfw = 0, ∇E
fwfv =

1√
6
fu +

√
3
2fv − 1√

2
Jfu.

(46)

Now we compute

〈fu, fu〉 = 0, 〈fv, fv〉 = ρ2, 〈fw, fw〉 = 3
2 ,

〈fu, fv〉 = 3
2ρ

2, 〈fu, fw〉 = 0, 〈fv, fw〉 = 0,
(47)

and
〈fu, Qfu〉 = 0, 〈fu, Qfw〉 = 0, 〈fv, Qfw〉 = 0,

〈fu, Qfv〉 = −3
2ρ

2, 〈fv, Qfv〉 = −ρ2, 〈fw, Qfw〉 = −3
2 ,

(48)

where 〈, 〉 is the product metric associated to the metric on SL(2,R) given in (1). In particular, we
have

〈pu, pu〉 = 0, 〈pv, pv〉 = ρ2, 〈pw, pw〉 = 3
2

〈pu, pv〉 = 3
2ρ

2, 〈pu, pw〉 = 0, 〈pv, pw〉 = 0.
(49)

Here, 〈, 〉 is the metric on SL(2,R) given in (1).
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To compute the second derivatives of f , we use the expression for the Euclidean connection of
R
8
4 in (18). Plugging (46), (47) and (48) into (18) we obtain

fuu = 0, fuv = −
√

3
2ρ

2fw + 3
4ρ

2f − 3
4ρ

2Qf,

fuw =
√

3
2fu, fvv = −

√
2
3ρ

2fw + 1
2ρ

2f − 1
2ρ

2Qf,

fvw = 1√
6
fu +

√
3
2fv − 1√

2
Jfu, fww = 3

4f − 3
4Qf.

Looking at each component of f we obtain differential equations for p and q:

puu = 0, puv = −
√

3
2ρ

2pw + 3
2ρ

2p, puw =
√

3
2pu,

pvw =
√

3
2pv, pvv = −

√
2
3ρ

2pw + ρ2p, pww = 3
2p, qvv = 0.

(50)

The other derivatives of q are zero because of (45).
Applying an isometry of the type (p, q) 7→ (ap, bq), we may assume initial conditions (p(0), q(0)) =

(Id2, Id2). Then from (49) and (45) it follows that there exists c ∈ SL±(2,R) such that

pu(0) = c

(
0 1
0 0

)
c−1, pv(0) = c

(
0 1

3
3 0

)
c−1,

pw(0) =

√
3

2
c

(
1 0
0 −1

)
c−1, qv(0) = c

(
0 2

3
0 0

)
c−1.

Applying the isometry (p, q) 7→ (cpc−1, cqc−1) we obtain that any solution of (50) is congruent to
an open subset of the immersion f = (p, q) where

p(u, v, w) =


 e

√
3

2
w

e

√
3

2
w (
u+ v

3

)

3e

√
3

2
w
v e

√
3

2
w (
v2 + 3uv

)
+ e

−
√

3

2
w


 , q(v) =

(
1 2v

3
0 1

)
.

Finally, taking the change of coordinates w → 2
√

2
3w, u→ −1

2(u+ v) and v → 3
2 (u− v) we get the

immersion in (43).
Now suppose that ωk

ij and hkij satisfy (2) in Proposition 24. In this case, ω3
22 is constant. We

define the constant λ as ω3
22 =

√
2
3(1− λ).

Take the frame
{
ρE1,− 1√

6
ω3
22E1 + E2, E3

}
, where ρ is a non-vanishing smooth function and

solution of

E1(ρ) = E2(ρ) = 0, E3(ρ) = −
√
6E3.

Using Proposition 24 we can easily check that this is a coordinate frame. We call this frame

{fu, fv, fw}. First we notice that ρ = e−
√
6w. We obtain from Equation (16) that

Qfu = −fu, Qfv = − 2
3ρfu − fv +

2√
3ρ
Jfu, Qfw = −fw,

We deduce

qu = qw = 0, qv = 2
3ρqp

−1pu. (51)
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Equation (17) gives us the following expressions

∇E
fufu = 0, ∇E

fufv =

√
3

2
ρfw, ∇E

fvfv = −
√

2

3
fw +

√
2Jfw,

∇E
fufw = −

√
3

2
fu, ∇E

fwfw = 0, ∇E
fvfw = 2λ−1√

6ρ
fu −

√
3
2fv +

1√
2ρ
Jfu.

From Equation (15) it follows

〈fu, fu〉 = 0, 〈fu, fv〉 = 3ρ
2 , 〈fu, fw〉 = 0,

〈fv, fv〉 = λ, 〈fv, fw〉 = 0, 〈fw, fw〉 = 3
2 .

and

〈fu, Qfu〉 = 0, 〈fu, Qfv〉 = −3ρ
2 , 〈fu, Qfw〉 = 0,

〈fv, Qfv〉 = −λ, 〈fv, Qfw〉 = 0, 〈fw, Qfw〉 = −3
2 .

In particular, we have

〈pu, pu〉 = 0, 〈pv, pv〉 = λ, 〈pw, pw〉 = 3
2 ,

〈pu, pv〉 = 3
2ρ, 〈pu, pw〉 = 0, 〈pv, pw〉 = 0.

(52)

We may use Equation (18) to compute

fuu = 0, fvv = −
√

2

3
fw +

√
2Jfw +

1

2
λf − 1

2
λQf, fww = 3

4f − 3
4Qf,

fuw = −
√

3

2
fu, fvw = 2λ−1√

6ρ
fu −

√
3
2fv +

1√
2ρ
Jfu, fuv =

√
3

2
ρfw +

3ρ

4
f − 3ρ

4
Qf.

Hence we obtain

puu = 0, puv =
√

3
2ρpw + 3

2ρp, puw = −
√

3
2pu,

pvv = λp, pvw = 1
ρ

√
2
3λpu −

√
3
2pv, pww = 3

2p, qvv = 2
√

2
3qp

−1pw.
(53)

Applying an isometry of the type (p, q) 7→ (ap, bq) we may assume that p(0) = Id2 and q(0) = Id2.
From (52) and (51) it follows that there exists a matrix c ∈ SL±(2R) such that

pu(0) = c

(
0 1
0 0

)
c−1, pv(0) = c

(
0 λ

3
3 0

)
c−1,

pw(0) =

√
3

2
c

(
1 0
0 −1

)
c−1, qv(0) = c

(
0 2

3
0 0

)
c−1.

Applying the isometry (p, q) 7→ (cpc−1, cqc−1) of SL(2,R) × SL(2,R) we obtain that any solution

of (53) is congruent to the solution with c = Id2. After the change of coordinates w →
√

3
2w,

u→ ue
−
√

3

2
w
, we obtain that such solution is the immersion fλ in Example 26. �

4.4. Extrinsically homogeneous Lagrangian submanifolds of type III.

Example 29. Let R⋉ϕ2
R
2 be the Bianchi group of type VI with the group law

(t, u) · (s, v) = (t+ s, ϕ2(s)u+ v)
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where ϕ2 : R → Aut(R2) is given by

ϕ2(s) =

(
e−2s 0
0 es

)
.

Let g̃ be the right invariant metric such that its components with respect to the frame of right

invariant vector fields
{

∂
∂t , e

−2t ∂
∂u1

, et ∂
∂u2

}
are given by




0 2 7
3

√
2
3

2 0 8
√

2
3

7
3

√
2
3 8

√
2
3

128
9


 .

Now let h be the Lie subalgebra of sl(2,R) ⊕ sl(2,R) ⊕ sl(2,R) spanned by {e1, e2, e3} where

e1 =

(
1
18

(
27 + 2

√
6
)
i−

(
2
√

2
3 +

3
4

)
j +

(
8
3

√
2
3 + 3

4

)
k ,

−
(
1 + 17

12
√
6

)
i+ 1

96

(
48 − 17

√
6
)
j −

(
1
2 +

85
48

√
6

)
k ,

− 1
2 i+

1
4

(
1− 3

√
6
)
j + 1

4

(
3
√
6− 1

)
k

)
,

e2 =

(
0,
√

2
3 i+

1
2

√
3
2 j +

5
2
√
6
k , 0

)
,

e3 =
(
8
9

(
2 + 3

√
6
)
i− 2

3

(
7 + 2

√
6
)
j + 2

9

(
37 + 6

√
6
)
k , 0,−6j + 6k

)
.

The Lie algebra h is a Bianchi Lie algebra of type VI with brackets

[e1, e2] = −2e2, [e1, e3] = e3, [e2, e3] = 0.

Therefore R⋉ϕ2
R
2 is the universal cover of exp(h). Moreover, the map defined as

(v, u,w) 7→ exp

(
ve1 +

2ue2vv

e2v − 1
e2 +

vw

ev − 1
e3

)

and as exp(2ue2 + we3) when v = 0, is a group isomorphism. Thus exp(h) ∼= R ⋉ϕ2
R
2. One can

check that the immersion  : R⋉ϕ2
R
2 → SL(2,R)× SL(2,R) given by

(u, v, w) = exp

(
ve1 +

2ue2vv

e2v − 1
e2 +

vw

ev − 1
e3

)
· (Id2, Id2)

is a Lagrangian immersion, whose image is extrinsically homogeneous. The frame given by

E1 = −
√

3

2
e−2vu, E2 = − 1√

6
v, E3 =

7e−2v

4
√
6
u +

√
6v −

3

4
evw.

is a ∆2-orthonormal frame with respect to which A and B take type III form from Lemma 7.

Proposition 30. Let M be an extrinsically homogeneous Lagrangian submanifold of SL(2,R) ×
SL(2,R). Suppose that A and B take type III form from Lemma 7 with respect to a ∆2-orthonormal

frame {E1, E2, E3}. ThenM is congruent to an open subset of the submanifold given in Example 29.

Proof. By Lemma 8 we may apply the isometry Ψ0,1 in (19) and assume that the sign of B is −1.
Proposition 15 implies that the components of the second fundamental form and of the connection
associated to E1, E2 and E3 are all constant. From the Codazzi equation (24) with X = E1,
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Y = E2 and Z = E2 we have h222 = 2
√
2

3 . Then, computing the Codazzi equation with X = E3,
Y = E2 and Z = E2 we obtain

h122 = − 13

18
√
2
, h322 =

5
√
2

9
.

We define the frame
{
ρE1, E2, ρ

−1/2( 7
12

√
6
E1 +

√
6E2 +

1√
6
E3)
}
where ρ is a non-vanishing smooth

function that satisfies

E1(ρ) = 0, E2(ρ) =
√

2
3ρ, E3(ρ) = −2

√
6ρ.

From (30) we can check that ρ indeed exists and that the defined frame is a coordinate frame. We

write said frame as {fu, fv, fw}. Hence ρ = e

√
2

3
v
. Equation (16) yields

Qfu = fu,

Qfv = − 23

18ρ
fu − 3fv + 2

√
2ρ

3
fw − 7

6
√
3ρ
Jfu − 4

√
3Jfv + 2

√
2ρJfw,

Qfw = −7ρ−3/2

√
6

fu − 4

√
6

ρ
fv + 5fw − 5ρ−3/2

3
√
2
Jfu − 12

√
2

ρ
Jfv + 4

√
3Jfw.

If we denote f = (p, q) then the first equation implies that pu = 0. From the second and third
equations we obtain

pv = pq−1

(
−5qu

6ρ
− 4qv + 2

√
2

3

√
ρqw

)
, pw = pq−1

(
4qw − 13qu + 72ρqv

3
√
6ρ3/2

)
. (54)

The relation between the connection ∇E associated to the product metric and the nearly Kähler
connection ∇̃ given in Equation (17) yields

∇E
fufu = 0,

∇E
fufv = − 11

4
√
6
fu − 3

√
6ρfv + 3ρ3/2fw + 1√

2
Jfu,

∇E
fufw = − 13

4
√
ρfu − 18

√
ρfv + 3

√
6ρfw +

√
3
ρJfu,

∇E
fvfv = 49

48
√
6ρ
fu +

29
2
√
6
fv − 7

√
ρ

4 fw − 17
9
√
2ρ
Jfu − 5

√
2Jfv + 2

√
3ρJfw,

∇E
fvfw = 91

96ρ3/2
fu +

53
4
√
ρfv − 43

4
√
6
fw − 25

6
√
3ρ3/2

Jfu − 7
√

3
ρJfv +

9√
2
Jfw,

∇E
fwfw = 19

3
√
6ρ2
fu +

12
√
6

ρ fv − 10√
ρfw − 17

3
√
2ρ2
Jfu − 12

√
2

ρ Jfv + 6
√

3
ρJfw.

From the relation between the product metric and the nearly Kähler metric in Equation (15) it
follows

〈fu, fu〉 = 0, 〈fv, fv〉 = 0, 〈fw, fw〉 = 4
ρ ,

〈fu, fv〉 = 3
2ρ, 〈fu, fw〉 = 3

√
3ρ
2 , 〈fv, fw〉 = 5

8

√
3
2ρ .

(55)

and
〈fu, Qfu〉 = 0, 〈fv, Qfv〉 = −4

3 , 〈fw, Qfw〉 = −4
ρ ,

〈fu, Qfv〉 = 3
2ρ, 〈fu, Qfw〉 = 3

√
3ρ
2 , 〈fv, Qfw〉 = − 49

8
√
6ρ
.

(56)
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In particular we have

〈qu, qu〉 = 0, 〈qv, qv〉 = −2
3 , 〈qw, qw〉 = 0,

〈qu, qv〉 = 3
2ρ, 〈qu, qw〉 = 3

√
3ρ
2 , 〈qv, qw〉 = − 17

8
√
6ρ
.

(57)

Now we compute

fuu = 0,

fuv = − 11
4
√
6
fu − 3

√
6ρfv + 3ρ3/2fw + 1√

2
Jfu +

3ρ
4 f + 3ρ

4 Qf,

fuw = − 13
4
√
ρfu − 18

√
ρfv + 3

√
6ρfw +

√
3
ρJfu +

3
2

√
3
2

√
ρf + 3

2

√
3ρ
2 Qf,

fvv = 49
48

√
6ρ
fu +

29
2
√
6
fv − 7

√
ρ

4 fw − 17
9
√
2ρ
Jfu − 5

√
2Jfv + 2

√
3ρJfw − 2

3Qf,

fvw = 91
96ρ3/2

fu +
53
4
√
ρfv − 43

4
√
6
fw − 25

6
√
3ρ3/2

Jfu − 7
√

3
ρJfv +

9√
2
Jfw + 5

16

√
3
2ρf − 49

16
√
6ρ
Qf,

fww = 19
3
√
6ρ2
fu +

12
√
6

ρ fv − 10√
ρfw − 17

3
√
2ρ2
Jfu − 12

√
2

ρ Jfv + 6
√

3
ρJfw + 2

ρf − 2
ρQf.

Hence q satisfies

quu = 0,

qww = 0,

quv =
1

8

(
12ρ

(
q − 2

√
6qv + 2

√
ρqw

)
− 5

√
6qu

)
,

quw =
1

4
√
ρ

(
6ρ
(√

6q − 12qv + 2
√

6ρqw

)
− 17qu

)
,

qvv =
1

864ρ

(
323

√
6qu − 72ρ

(
8q − 17

√
6qv + 13

√
ρqw

))
,

qvw =
1

288ρ3/2

(
289qu − 6ρ

(
17
√
6q − 204qv + 30

√
6ρqw

))
,

(58)

and p satisfies

pvv =
2

3
p− 1

18
√
6ρ

(
19pq−1qu + 72ρpq−1qv

)
,

pvw =
1

6ρ3/2

(
4ρ
(√

6p− 6pq−1qv

)
− 7pq−1qu

)
,

pww =
1

9ρ2

(
36ρ

(
p− 2

√
6pq−1qv +

√
ρpq−1qw

)
− 17

√
6pq−1qu

)
.

(59)

After applying an isometry of the type (p, q) 7→ (ap, bq), we may assume that p(0) = Id2 and
q(0) = Id2. From (54) and (57) it follows that there exists a matrix c ∈ SL±(2,R) such that

qu(0) = c

(
1 2
−1

2 −1

)
c−1,

qw(0) = c

(
0 0

3
√

3
2 0

)
c−1,
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qv(0) = c

(
1
72

(
−17 + 6

√
6
)

−17
36

1
144

(
233 − 12

√
6
)

1
72

(
17− 6

√
6
)
)
c−1,

pv(0) = c




1
9 −

√
2
3

2
9√

2
3 − 1

18

√
2
3 − 1

9


 c−1,

pw(0) = c


 −2 + 2

9

√
6 4

3

√
2
3

2− 1
3

√
2
3 2− 2

9

√
6


 c−1.

By applying the isometry (p, q) 7→ (cpc−1, cqc−1) we obtain that any solution of the system of
differential equations given in (58) and (59) is congruent to the solution with c = Id2. This solution

is the map given in Example 29 after the change of coordinates v → v√
6
, u→

√
3
2u, w → 1

4

√
3
2w.

�

4.5. Extrinsically homogeneous Lagrangian submanifolds of type IV.

Proposition 31. There are no extrinsically homogeneous Lagrangian submanifolds of the pseudo-

nearly Kähler SL(2,R)× SL(2,R) of type IV in Lemma 7.

Proof. LetM be an extrinsically homogeneous Lagrangian submanifold of the pseudo-nearly Kähler
SL(2,R) × SL(2,R). Suppose that A and B take type IV form with respect to a ∆3-orthonormal
frame {E1, E2, E3}. Then by Proposition 16 the functions ψ, θ1, θ2, h

k
ij and ω

k
ij are constant. Thus

by Lemma 12 the functions hkij are all zero except for h311. Recall that we can write θ2 = −2θ1+kπ,

with k = 0, 1. Computing the Codazzi equation (24) with X = E3, Y = E1, Z = E1 and X = E1,
Y = E2, Z = E2 yields

(h311)
2 =

1

3
(coshψ − cos 6θ1) coshψ, (60)

and √
2

3
h311 =

4(−1)k sinh(ψ)
(
− cos 6θ1 coshψ + 3(h311)

2 + cosh2(ψ)
)

3(cos 6θ1 − coshψ)
. (61)

Plugging (60) into (61) gives

h311 = 2

√
2

3
(−1)k+1 sinh 2ψ.

Comparing both values of (h311)
2 we derive cos 6θ1 = 9coshψ−8 cosh 3ψ. Then writing the Codazzi

equation (24) with X = E1, Y = E3 and Z = E2 we obtain sinh 2ψ = 0. This is a contradiction
since by Lemma 7, ψ is different from zero. �

5. Proof of the main theorem

Proof of Theorem 2. By Lemma 7 we separate the argument into four cases.
In [2], the authors proved that any totally geodesic submanifold is of type I and is congruent

to one of the first three examples given in Theorem 2. By Proposition 19, Proposition 21 and
Proposition 23, any non-totally geodesic extrinsically homogeneous Lagrangian submanifold of
type I is congruent to either Example 22 or to Example 20.

Proposition 28 implies that any extrinsically homogeneous Lagrangian submanifold of type II is
congruent to an open subset of either the image of the immersion in Example 25 or the image of
the immersion in Example 26.

Proposition 30 states that any extrinsically homogeneous Lagrangian submanifold of type III is
congruent to the one given in Example 29.
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Proposition 31 shows that there are no extrinsically homogeneous Lagrangian submanifolds of
type IV.

Except for the first, sixth and seventh examples in Theorem 2, all the submanifolds are not
isometric and therefore not congruent. Hence, it only remains to distinguish between the afore-
mentioned cases.

First, the first submanifold in Theorem 2 is the first example of Theorem 18, therefore the only
one of these three that is totally geodesic. The sixth submanifold is the immersion ı given in
Example 25 and the seventh one is the family of immersions fλ given in Example 26.

Suppose that ι is congruent to fλ for some λ. That means, there exists a isometry F of SL(2,R)×
SL(2,R) that maps one into the other. Suppose that F ∈ SL(2,R) × SL(2,R) × SL(2,R) ⋊ Z2.
These isometries preserve P and J , hence A and B have the same shape with respect to {Ei}i and
with respect to {F∗Ei}i. Hence,

−
√
2

3
= g(h(E2, E2), JE3) = g(F∗h(E2, E2),F∗JE3) = g(h(F∗E2,F∗E2), JF∗E3) =

2
√
2

3
,

which is a contradiction.
In Theorem 1 we showed that the isometry group of SL(2,R)× SL(2,R) is a semidirect product

of S3 with SL(2,R) × SL(2,R) × SL(2,R) ⋊ Z2. Therefore, to complete the proof we can assume
that F ∈ S3, i.e. F = Ψκ,τ for some κ ∈ {0, 1}, τ ∈ {0, 2π3 , 4π3 }. Moreover, we can assume that
τ 6= 0, since otherwise F preserves P , and therefore we may use the same argument as before, up
to sign. From Lemma 8it follows that P restricted to F(M) takes the shape Ã+ JB̃, where

Ã = cos τA+ (−1)κ sin τB,

B̃ = − sin τA+ (−1)κ cos τB.

For τ 6= 0 these matrices have a different form than A and B, as it can be seen in Lemma 4 of [2].
Therefore, there does not exist such a ∆2-orthonormal frame {Ei}i such that A and B take type II
form in Lemma 7 on F(M), which is a contradiction.

Similar arguments can be used to distinguish between fλ1
and fλ2

for λ1 6= λ2, by considering

the function ω2
33 =

√
2
3(1− λ) instead of h322. �
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