

licrostructure

re Simu

Optimization of WLAM process Parameters for Metal Forming Tool Repair

Conférence AMS Senlis 20-21 mars 2024

Hans Boungomba¹, Philippe Moreau¹, Yabo Jia¹, Tarik Sadat¹, Mirentxu Dubar¹, J-D Guérin¹, André Dubois¹, Laurent Dubar¹

¹Université Polytechnique des Hauts-de-France - LAMIH - UMR CNRS 8201 Campus Mont Houy - 59313 Valenciennes

CARNOT

ARTS

DES SCIENC APPLIQUÉES Intro

Global Strategy Parametric study

Equipment used for reloading

DED WLAM + 5-axis machining centre : Why?

CNC

HAAS 750 5-axis

3D Printer

- Meltio M450 (Wire Laser)
- 6 Laser diode Power max 1.2 kW

Simulation

Tribo tests

Microstructure

CARNOT

Fin

CNIS

Université Polytechnique HAUTS-DE-FRANCE

Interaction time(s) $t_{int} = \frac{\phi_{laser}}{V_{l}}$

Laser-matter interaction regimes as a function of power densities (W/cm²) and interaction times (s) involved

Intro	Global Strategy		Para	ametric stu	ıdy	Microstructure	Simulation	Tribo te	ests		Fin	
	• •	•				• •						•
										•	cnrs	Université Polytechnique

Parametric study

- **Bath Stability Parameters: Bead Morphologies**
- Manufacturing parameters
- Laser power: from 500 W to 1000 W ٠
- Feed rate: 15.2 mm/s •

- Unstable beads between 500W 600W
- "Balling" phenomenon •
- Reducing the machine feed increases the ٠ laser/material interaction time

Intro	Global Strategy
	• •

Parametric st	udy	

Microstructure Simulation

Tribo tests

CITS UNIVERSITÉ UNIX CINES BEDI

Fin

Some defects

Denting phenomenon

 Bumps at the beginning and end of printing

Early wire breakage

Intro		lobal St	rategy		Pa	rametric study
						•

Microstructure Simulation • •

Tribo tests

Université Polytechnique HAUTS-DE-FRANCE CNIS

Fin

Unsymmetric geometry

720 µm

mm

Feed rate : 15.2 mm/s Penetration of the bead: 125 μm Bead width: 1.937 mm Bead height : 1.06 mm

2.187 mm

1 mm

250 µm

1.937 mm

1 mm

125 µm

Intro	Global Strategy	Parametric study	Microstructure	Simulation	Tribo tests	
• • •	• •	$\bullet \bullet \bullet \bullet \bullet$	• •	• •	• • •	• •

Multi-scale characterization

Bead and substrate microstructures

Homogeneous bead - Laser power : from 800 W to 1000 W

- Growth of columnar/equiaxed grains
- Homogeneous HAZ
- Ferrito-pearlitic

Ferrite-perlite

Interface bead-substrat Dendritic + Martensite. EBSD

Intro	Global Strategy	Pa	rametric study	Microstructure	Simulation	Tribo tests		Fin	
	• •	• •	• •	• •	• •	• • •	• •	•	• •
								cnrs	Université Polytechnique HAUTS-DE-FRANCE

Multi-scale characterization

Hardness of beads and substrate

Bead/substrate hardness

- Bead/substrate hardness : Hv ~ 200Hv
- HAZ : 200Hv < Hv < 600Hv</p>
- Microstructure not easily identifiable
- Transformation Ferrite/Perlite + Martensite

Macro prediction after reload:

Hans Boungomba

Phase transformation

Numerical approach

Multiphysics and multi-scale coupling:

Macroscopic Scale:

Compating	10 10 0		fin od
UTEOINELIV	DIC-0	lei	mea
	P		

1400.00 1227.44 1054.88 882.31 709.75 537.19 364.62 192.06 19.50

Microscopic Scale:

Prediction of the geometry

Pai	rametric st	udy	

•

• •

Tribo tests

Composite tools and tribo testing

Materials choice

	Materials tested	Materials to come
Wire	316L	Acier outils H11
Tool repaired	Acier 38CrMoV5	Acier 38CrMoV5
Friction sample	Acier	Alu 7050 7075 7475

Fin

Step 3: Sliding tool with reload 38CrMoV5 H11

Step 4: Sliding tool with reload before machining

Reloaded worn

H11

Preliminary results of tribo tests

Friction "composite tool" / "steel specimen"

- Matrix : acier X38CrMoV5 (AISI H11)
- Bead : 316L
- Sample : steel

3 Tests

- standard tool without reload
- standard tool with reload
 - standard tool with uncompleted reload \rightarrow 0.17 < F_t/F_n < 0.37

 $\rightarrow 0.05 < F_t/F_n < 0.12$

 $\rightarrow 0.33 < F_t/F_n < 0.57$

DES SCIENCES APPLIQUÉES

CARNOT

ARTS

Intro	Global Strategy	Pai	rametric stud	dy	Microstructure	Simulation	Tribo tests		Fin		
	• •							•	•		
									CNTS	(Université Polytechnique

Merci de votre attention !

Microstructures des cordons et du substrat

Monocordons non homogènes - Puissance laser : de 500 W à 700 W

- Zone de refroidissement rapide
- Croissance de grains colonnaires
- Cordons créant du « balling »

Possible dissymétrie de focalisation des faisceaux lasers ?

- Zones de surfusion
- ZAT importante
- Mix grains colonnaires/équiaxes

Monocordons homogènes - Puissance laser : de 800 W à 1000 W

- Croissance de grains colonnaires/équiaxes
- Pas de zones de surfusion
- ZAT homogène
- Mix grains colonnaires/équiaxes

	Intro	Global Strategy	Parametric	study	Microstructure	Simulation	Tribo tests	Fin	
•		• •	•		• •	• •	• • •	•	•
								CNrs	Université Polytechnique HAUTS-DE-FRANCE

Caractérisation multi-échelle

Mesure des températures

	Distance thermocouple	Température max
Simulation	< 3 mm	650°C
Mesure sur plaque	2.9 mm	250°C
Mesure sur frotteur	< 1 mm	580°C

ARTS