MTT).

Dans cette thèse nous proposons un DAS en utilisant les principes du MTT pour suivre la dynamique d'obstacles situés à plus d'une centaine de mètres et pour éviter une collision du vi General Introduction véhicule hôte avec ceux-ci. En théorie, un tel système offre une des meilleures réponses au problème des accidents de la route, mais sa mise en oeuvre pratique n'est pas une tâche triviale. Elle implique des calculs complexes et, par conséquent, les besoins de traitement prennent du temps. Cependant, pour aviser le conducteur d'un danger imminent en temps réel, les calculs doivent être effectués très rapidement. Nous utilisons plusieurs processeurs dans notre système afin de partager la charge de calcul et de réduire ainsi le temps de traitement. Les processeurs multiples fonctionnant en parallèle permettent non seulement d'accélérer le calcul, mais aussi d'aborder les questions de consommation d'énergie du système embarqué.

Nous utilisons des FPGA (Field Programmable Gate Array) comme plateforme de mise en oeuvre de notre système multiprocesseur. Les FPGA offrent la souplesse nécessaire pour les systèmes embarqués en constante évolution et sont très rentables. Un système multiprocesseur réalisé dans un FPGA rend son architecture flexible et reconfigurable tandis que les processeurs peuvent être reprogrammés si nécessaire. Ainsi les systèmes multiprocesseurs à base de FPGA garantissent une souplesse dans le matériel ainsi que dans les logiciels, et par conséquent leur passage à échelle est aisé. Nous optimisons l'architecture du système afin de minimiser la taille du matériel tout en respectant les délais en temps réel de l'application. La minimisation du matériel ne conduit pas seulement à réduire la consommation d'énergie du système, mais nous permet aussi d'adapter le système dans un FPGA plus petit. Cela joue un rôle important dans la réduction du coût du système.

Related Work and Motivation

In the last several years various kinds of driver assistance systems have emerged. Some solution providers also offer electronic platforms dedicated for developing driver assistance systems. Most of these systems and platforms have limited functionalities and in most cases they are too costly to be deployed on a large scale. If the cost of these systems could somehow be brought down they may be used in conjunction with the solution we propose. Here we present some of these systems and discuss their merits and demerits.

General Introduction

Summary

Automotive crashes are responsible for the highest number of accidentai deaths ali over the world. Researchers, automotive manufacturers and govemment authorities around the world are continuously looking for solutions to this problem. Research has shown that half of the accidents can be avoided if a driver is alerted to an impending collision a fraction of a second in advance. A mechanism for warning the driver of an approaching danger is called a Driver Assistance System (DAS).

Accident statistics show that a great majority of the vehicle crashes result from front-end collisions. Renee minimizing frontal collisions would significantly decrease road accidents. To predict a front-end collision sufficiently in advance, the obstacle must be detected from a distance. Moreover, for the DAS to be realiy effective, an imminent collision must be sensed in ali circumstances, especially in poor weather where the DAS is needed most. A radar sensor fulfills both the prerequisites of long range obstacle detection and all-weather operation. However, only detecting obstacles can be useful to a certain extent. To establish whether an obstacle is on a collision course with the host vehicle, its trajectory must be foreseen before it cornes close to the host vehicle. Determining the trajectory of a moving object requires its dynamic behavior to be monitored over a period of time. In a real traffic scenario more than one obstacle can pose danger to the host vehicle, hence trajectories of multiple objects have to be monitored simultaneously. An apparatus which is capable of performing such functions is calied a Multiple Target Tracking (MTT) system.

In this thesis we propose a DAS using the principles of Multiple Target Tracking to monitor the dynamics of obstacles hundreds of meters ahead and to avoid a collision of the host vehicle with them. While theoretically such a system offers one of the best answers to the road accident problem, its practical implementation is not a trivial task. It involves complex computations and consequently, needs a long processing time. However, to alert a driver to an approaching danger in real time, the computations must be performed very rapidly. We use multiple processors in our system to share the computation load and thereby reduce the processing time. Multiple processors running in parallel not only speed up the computation but also address the power consumption issues of the embedded systems.

We use FPGA (Field Programmable Gate Array) as the implementation platform for our multiprocessor system. FPGAs offer the flexibility needed for the ever evolving embedded systems and they are very cost effective. A multiprocessor system implemented in an FPGA makes its architecture flexible and reconfigurable while the processors can be reprogrammed v when needed. Thus FPGA based multiprocessor systems guarantee flexibility in hardware as well as in software therefore they scale very easily. We optimize the system architecture to minimize its hardware size while still meeting the realtime deadlines of the application. Minimized hardware not only leads to reducing energy consumption of the system but also enables us to fit the system in a smaller FPGA which plays an important role in reducing the cost of the system.

Résumé

Les accidents de véhicules automobiles sont responsables du plus grand nombre de décès dans le monde. Les chercheurs, les constructeurs automobiles et les autorités gouvernementales internationaux sont continuellement à la recherche de solutions pour résoudre ce problème. La recherche a montré que la moitié des accidents peut être évitée si le conducteur est alerté d'une collision imminente une fraction de seconde à l'avance. Un mécanisme d'alerte d'un danger proche est appelé Driver Assistance Systems (DAS).

Les statistiques montrent qu'une grande majorité des accidents de véhicules se passent à la suite d'une collision frontale. Minimiser les collisions frontales devrait donc diminuer considérablement les accidents de la route. Pour prévoir une collision frontale suffisamment à l'avance, l'obstacle doit être détecté à distance. En outre, pour que le DAS soit réellement efficace, une collision imminente doit être prévue en tenant compte de toutes les circonstances: par exemple plus il fait mauvais, plus le DAS est nécessaire. Un capteur radar remplit les conditions préalables de détection d'obstacles à longue portée en tenant compte des conditions météorologiques. Toutefois, seule la détection des obstacles peut être utile dans une certaine mesure. Pour déterminer si un obstacle se trouve sur une trajectoire de collision avec le véhicule d'accueil, sa trajectoire doit être prévue avant qu'il n'arrive près du véhicule d'accueil. La détermination de la trajectoire d'un objet en mouvement exige que son comportement dynamique soit suivi sur une période de temps. Dans un scénario de trafic réel, plus d'un obstacle peut être considéré comme un danger pour le véhicule d'accueil, c'est pourquoi les trajectoires d'objets multiples doivent être surveillées simultanément. Un appareil capable d'exercer de telles fonctions est appelé un système de suivi d'obstacles multiples ou Multiple Target Tracking 
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xviii Introduction

Loss of any human life is tragic in any circumstances but the accidentai death of a human being in his or her prime age has the most devastating effects on the emotional and social weil being of the society. Unfortunately, road accidents are the number one cause of accidentai deaths and the majority of their victims are in their prime age. The work presented in this document is a step towards the cause of reducing the number of road accidents and hence minimizing the loss of invaluable human lives. This introductory chapter first highlights the magnitude of this cause and then it out/ines the solution we propose to serve the cause.

General Introduction

Thousands of people around the world lose their lives to road accidents every year. Thousands others get seriously injured and most of them become disabled for life. A survey showed that 94,000 people died in road accidents in 2006 in USA, Europe and Japan [START_REF]STMicroelectronics and Mobileye Deliver Second-Generation System-on-Chip for Vision-Based Driver Assistance Systems[END_REF]. Data [START_REF]International Transportation Forum Statistics[END_REF] for the three years from 2005 to 2007 as illustrated in Figure 1, show that the road accident fatality rates in the major developed countries remain almost constant. It is not hard to imagine that the statistics are even worse in the most populous regions of the world where transportation safety structures are less developed. For example, India bas the worst road fatality rate in the world. In 2004 India registered 85000 fatalities in road accidents. In the same year 130,000 people got crippled for life in India due to road accidents [START_REF]India tops chart in road fatalities[END_REF]. The social, economical and psychological repercussions of these accidents are of enormous proportions. The saddest aspect of these fatalities is that most of the victims are less than 40 year old [START_REF]Toward Fair and Efficient Pricing in Transport, Green Paper[END_REF]. Individuals in this age group are the most productive members of society who provide, on the average, for five others dependent on them. Hence the loss of one individual in this age group not only causes emotional di stress but also economical misery and suffering for those dependent on him or her. As a consequence, the damages ripple through the fabric of the whole socio-economic setup. According to a study, in the US only, the estimated cost of road accidents exceeds US $167 billion every year [START_REF] Parasuraman | Alarm effectiveness in driver-centred collision-warning systems[END_REF].

Analyses have shown that most of the accidents are caused by the driver's inattention due to physical and mental fatigues. In Europe two thirds of the road accidents happen due to lack of attention on the part of the driver ( 1 ). The situation becomes even worse in low visibility conditions due to poor weather or night time driving. Correlations between collisions and driver reactions have shown that a considerable number of accidents can be avoided by recognizing a hazard in sufficient time and making appropriate driving maneuvers [START_REF]Tech Tutorial: Driver Assistance Systems, an introduction to Adaptive Cruise Control[END_REF]. It has been shown that if drivers reacted half a second earlier than they normally do, they would avoid approximately half of ail accidents [START_REF]STMicroelectronics and Mobileye Deliver Second-Generation System-on-Chip for Vision-Based Driver Assistance Systems[END_REF]. The authors in [START_REF] Farber | Using freeway trajfic data to estimate the effectiveness of rear end collision countermeasures[END_REF] estimated that the crash rate could be reduced by at least 50% with sorne kind of warning system onboard a vehicle. An analysis [START_REF] Knipling | Assessment of IVHS countermeasures for collision avoidance: rear-end crashe[END_REF] showed that between 37% and 74% of the collisions can be avoided by using an obstacle detection system. 

Problem Diagnosis and Our Proposed Solution

Such results can be achieved by warning signais to the driver or by automatic control of the vehicle. Electronic systems capable of alerting the driver to impending dangers in a timely manner are called Driver Assist Systems (DASs). These systems alleviate the mental pressures and physical fatigues a driver has to endure in today's driving environment. Reduced mental and physical labor guarantees a more attentive and vigilant driver. Scientific studies confirm that DASs reduce the number mental tension peaks when the driver uses an electronic waming or assistance system. Figure 2 shows the results of a study [START_REF] Iioshi | Driver Assistance System (Lane Keep Assist System)[END_REF] done by Honda Motor

Corporation for the Lane Keep Assist System. When the driver uses the DAS, he or she goes through a reduced number of mental pressure peaks and hence feels more attentive and alert to hazardous situations. The undisputable advantages of the DASs have convinced the researchers as well as the vehicle manufactures to continue to develop more and more sophisticated systems. Govemments around the world are increasingly joining hands with researchers and vehicle manufacturers to find out a way of reducing accidents and to mitigate the effects in cases where accidents cannot be avoided. 

Driver Mental Activity

Problem Diagnosis and Our Proposed Solution

To suggest an effective solution to a problem, it is of vital to analyze the problem and diagnose its causes. Results of automotive accident profiling reported in [START_REF] Ch | Development of a Pre-Crash sensorial system -the CHAMELEON Project[END_REF] and illustrated in Figure 3, show that frontal collisions account for 66.9 % of all automotive accidents. Hence it can be inferred that avoiding frontal collisions would result in 66.9% reduction in automotive accidents. Roll Accident Profile of an Automotive---source: [START_REF] Ch | Development of a Pre-Crash sensorial system -the CHAMELEON Project[END_REF] lt is proven that the stopping distance when braking suddenly, is 22 meters at a speed of 40 kilometers per hour and 44m at a speed of 60 kmlh [START_REF]The IMAPCAR parallel processor for image recognition and its contribution to the realization of pre-crash safety solutions for automobiles[END_REF]. This Skid-to-Stop distance increases nonlinearly with the vehicle speed in fairweather conditions. In poor weather the roads become slippery and the stopping distance increases even further. This means that regardless of the level of brake performance, the sensing of danger before the driver can respond is integral to the prevention of accidents.

A radar can sense an obstacle from a considerable distance and it works in poor weather as well as in fair weather. If the obstacle in question is not a stationary one, it is of consequential importance not only to detect it but to know its dynamic behavior and the evolution of its trajectory. Furthermore, to avoid a collision on real roads, multiple obstacles have to be monitored simultaneously. Monitoring the dynamic behavior and trajectory evolution of several objects is termed as Multiple Target Tracking.

We propose a DAS based on a Multiple Target Tracking (MTT) algorithm that uses an automotive radar sensor as shown in Figure 4. We use a low-cost radar for obstacle detection and plug it into our MTT system to tum it into a precise and high performance tracker. The system can monitor upto 20 moving or stationary obstacles and generates alert signais for the ones that are dangerous. The radar is mounted on the front side of the host vehicle to detect obstacles 200 meters ahead and within the 12° coverage angle. The MTT system behind the radar tracks these obstacles in realtime. Thus we target the 66.9% frontal collision zone and generate warning signais for the driver 200 meters before the vehicle arrives at the obstacle. So the driver has more than the half second time cited above [START_REF]STMicroelectronics and Mobileye Deliver Second-Generation System-on-Chip for Vision-Based Driver Assistance Systems[END_REF], to react and take a preventive action.

To be able to rapidly process multiple targets, we use a multiprocessor architecture for the for our MTT system. To make it cost effective, reprogrammable and flexible we implement the system in FPGA using soft-core processors.

Demonstration Figure 4:

A simplified illustration of our proposed DAS

Plan of the Document

After introducing the theme of the subject of the thesis in this chapter, we move on to the internai details of the system in the coming chapters. In Chapter 2 we present available literature related to our work. We give a critique of the existing solutions and compare and contrast our solution to them. In Chapter 3 we provide details of our MTT application. We explain the application's mathematical model and illustrate the key concepts used in the modeling process. In Chapter 4 we describe the software development model of the application and its mapping to a preliminary hardware architecture. We also introduce the implementation platform and the associated design and development tools in Chapter 4. In Chapter 5 we analyze the performance of the system and lay out a plan for optimizing it. Following the optimization plan, we customize the system architecture to meet the application performance requirements in the best possible way. We end chapter 5 by presenting the finalized optimum system architecture. In Chapter 6 we present the conclusions of the work and provide directions for future work.

Introduction

This chapter describes a review of the existing academie and industrial efforts being done in the fields related to the subject of this thesis. The related work is divided into three categories according to the main themes of the thesis.

In the first category, section 2, we survey sorne of the general Driver Assistance Systems (DAS) available either commercially or researched academically. ln this category we highlight the salient functional characteristics of these systems. We do not emphasize on underlying hardware or software architecture or the implementation details. In this section we also present a short critique of the existing solutions. At the end of the section we discuss our solution based on MTT. After introducing our MTT based solution, we discuss works related to MTT in section 3.

In the second category, section 4, we describe design platforms specifically targeting driver assistance or automotive safety applications. Here we look not only into the functional characteristics but also into the architectural and technological aspects of these systems. We highlight the pros and cons of these platforms followed by a short description of our proposed architecture.

In the third category, section 5, we describe MPSoC architectures designed for applications other than DASs. The interest here is not the application but the design and implementation of the architectures. Here we discuss the reasons for the popularity of the MPSoCs and we argue why we do not choose fixed MPSoC architectures. At the end of the section we highlight the reasons why we prefer an FPGA platform and soft-core processors for the implementation of MPSoC.

In section 6 we present the hardware 1 software co-design methodology that we follow for designing our system. We conclude the chapter with a summary in section 7.

Driver Assistance Systems

Driver Assistance Systems can be classified into several categories. These categories include the Adaptive Cruise Control (ACC) systems, the Lane Keep Assistance Systems (LKAS), Lane Departure Waming Systems (LDWS), Parking Assistance systems etc. In the following sections we describe the salient features of sorne of the projects and systems targeting these applications.

The INTERSAFE Project

The European Project PREVENT [START_REF]PReVENT Project Final Report[END_REF] was aimed at developing preventive and corrective safety systems for automotives. The effort was to prevent accidents from happening and to minimize the gravity of the consequences when the accident cannot be prevented. It is a grand collaborative project undertaken jointly various European academie and industrial partners. There are several subprojects within the main project. INTERSAFE [START_REF] Fuerstenberg | Intersection Driver Assistance Systems -Results of the EC-Project INTERSAFE[END_REF] was established to support the vision of IP PReVENT to create electronic safety zones around vehicles by developing and demonstrating a set of complementary safety functions. It is based on laser scanners, video cameras and bidirectional vehicle-to-infrastructure (V2I) communication. The Laser scanner system obtains a relative position within the intersection by detecting landmarks such as posts and other similar fixed objects next to the intersection, which are registered in a digital map. The video system uses lane markings at the intersection for relative localization which are registered in a digital map. Laser scanners were integrated into both left and right front HondaHiDS corners of the demonstrator vehicle. Thus a combined scan area of 220 degree around the vehicle is achieved.

Honda HiDS

Honda intelligent Driver Support (HiDS) system comprises of Adaptive Course Control system and Lane Keep Assist System [START_REF] Iioshi | Driver Assistance System (Lane Keep Assist System)[END_REF]. ACC is responsible for controlling vehicle speed and headway distance to a preceding vehicle. The ACC takes into account a Forward Speed of 45-1 OOkm/h. The Lane Keep Assist System (LKAS) Assistance provides steering movement to keep the vehicle in the center of its lane. The types of sensors used and the implementation details are not known.

SEAT ADAS

SEAT exhibited a prototype of their system called Alhambra ADAS (Advanced Driver Assistance Systems) at the lOth World Conference on Intelligent Transport Systems and Services held in Madrid in 2003 (14). The main features are an adaptive speed regulating ACC, excessive speed waming when approaching traffic signais and road markings recognition. The vehicle is also equipped with "intelligent" headlights, which regulate the adaptive lights bearn intensity according to road conditions. The ACC system automatically adjusts the cruise speed of the vehicle. It detects other vehicles, using sensors mounted in the headlights, instead of the usual radar, and maintains a safe distance by activating controls brake and accelerator.

This prototype includes the Stop & Go function, thus complementing the ACC system at low speeds (0 to 40 km 1 h), and automatically stopping the vehicle. Another feature is the detection of traffic signais by radio frequency. The vehicle receives information about the speed limit, wams the driver and adjusts the car speed. A fourth system "reads" the road markings using a camera. An electronic unit calculates the distance between the car and the road signs and sound alert or vibration of the steering wheel is generated to warn the driver of a danger. This performance is achieved with the help of a prediction system using a database complementary to the navigation system, including a series of parameters such as latitude and longitude of several reference points like the sidewalk or the radius of curvature, and dynamic data of the vehicle. The resulting information help regulate the speed with respect to the vehicle trajectory.

The SARI 1 RAD ARR Project

The project RAD ARR (Recherche des Attributs pour le Diagnostic Avancé des Ruptures de la Route) is a subproject of the SARI (Surveillance Automatisée de la Route pour l'Information des conducteurs) [START_REF] Project | Automatic Road Condition Monitoring to Provide Information to Drivers and Road Managers[END_REF] program supported by the French govemment in the framework of the PREDIT initiative for land transport safety. The objective of this study is to design an information system alerting drivers of a potential loss of control of their vehicle. The risk is considered linked to a physical disruption of the route in open country. One of the aspects of the project is to identify and quantify the trajectory limits on roads for vehicles which are then graded hierarchically according to the level of their dangerousness. A laser rangefinder is used for identifying the vehicle trajectory limits. The risk is assessed and then used to define a typology of messages or signais intended to get the driver's attention.

Another objective of the project is to measure the trajectory of vehicles tuming around a curve in the road. The measurement system is based on three digital cameras covering the vehicle from three angles: from the front, from the back and from the top. The system is equipped with a laser rangefinder that provides information on a semi-plane of the scene. Once the effectiveness of the system put is proven, it will be evaluated for deployment.

The CHAMELEON project

The CHAMELEON [START_REF] Kaempchen | Advanced Microsystems for Automotive Applications, Chapter: Sensor Fusion for Multiple Automotive Active Safety and Comfort Applications[END_REF] was another multi-partite project supported by the European Union from 2000 to 2002. The main objectives of the project were the development of pre-crash sensorial system for impending crash detection. The work was geared more towards the mitigation of the severity of the accident in case of an impending crash. They focused on the improvement of the sensor technologies and on the research in object classification and sensor fusion techniques. The sensors being researched were contributed by collaborating industrial partners and included laser scanners and microwave radars.

Various crash scenarios were simulated in the lab and their effects were analyzed to determine the number and types of the sensors and their respective technical characteristics necessary for minimizing the gravity of a crash.

Other less known DAS's

Research on sensor fusion is also reported in [START_REF] Project | Automatic Road Condition Monitoring to Provide Information to Drivers and Road Managers[END_REF]. Here the sensors under consideration are video cameras and laser scanners. The research focuses on single object tracking with a laser scanner and pattern matching for lane and object recognition.

A concept of intelligent navigator is proposed in [START_REF] Miura | Towards Vision-Based Intelligent Navigator[END_REF]. From both the current traffic condition obtained from visual data and the driver's goal and preference in driving, it autonomously generates advice to the driver. These advices include safety related and tactical maneuvers such as emergency braking due to an abrupt deceleration of the front vehicle, lane changing due to the congested situation etc. A Three-level reasoning architecture is proposed for generating advice in dynamic and uncertain traffic environments. An active vision system for realtime traffic sign recognition system is presented in [START_REF] Miura | An Active Vision System for Real-Time Traffic Sign Recognition[END_REF]. The system is composed of two cameras; one is equipped with a wide-angle lens and the other with a telephoto lens, and a PC with an image processing board. The system first detects candidates for traffic signs in the wide-angle image using col or, intensity, and shape information. For each candidate, the telephoto camera is directed to its predicted position to capture the candidate in a larger size in the image. The recognition algorithm is designed by intensively using built-in functions of an off-the-shelf image processing board to realize both easy implementation and fast recognition.

Critique of the Presented DASs

The DAS presented above are effective but there are sorne practical issues that have to be addressed. For example, the INTERSAFE ( 13) is limited to road crossings only. Secondly, the laser scanners and cameras rely on the land marks in a digital map. The land marks are very likely to change over time and the digital map must be updated on ali the systems in the field. The use of cameras for road mark identification has its own limitations. For example they are ineffective in poor weather conditions. Similarly the range of cameras is very short implying that for identifying an object; the host vehicle must get close to the object. This can be highly dangerous when the host vehicle is running at high speed or when the road is slippery due to rain or snow. Most of ali this solution relies on an infrastructure that must be placed at every road crossing. This, obviously, is a very costly proposition due to its initial fixed cost and the recurring maintenance cost.

The Honda HiDS (9) sounds interesting but since the technical details are not known, it is hard to evaluate it. Moreover systems like HiDS are not only proprietary and limited to the specifie vehicle models, but they are also very costly often more than or comparable to the cost of the vehicle itself. Hence driver of a vehicle different than the specifie model cannot use these system systems while the costs of the specifie equipped models are not in the budgetary range of everybody.

The system proposed by SEAT ( 14) works more or less on the same lines as the INTERSAFE [START_REF] Fuerstenberg | Intersection Driver Assistance Systems -Results of the EC-Project INTERSAFE[END_REF] with the addition of the ACC. Soit has ail its limitations discussed except that the SEAT system can keep a safe distance from an obstacle. Furthermore being limited to specifie high-end SEAT models, it has the same disadvantages as the Honad HiDS.

The SARI/RADARR (15) project seems to be concerned more with road profiling than developing an onboard safety mechanisms. It does propose the generation of a warning signal to the driver when the driver departs from the predefined safe trajectory or when the vehicle approaches a curve on a pre-charted road. What happens when the road is not already charted or when the drivers stays on the defined trajectory but there is an obstacle ahead, is not considered. In a way it is dependent on it is dependent external on actors like the INTERSAFE [START_REF] Fuerstenberg | Intersection Driver Assistance Systems -Results of the EC-Project INTERSAFE[END_REF].

The CHAMELEON [START_REF] Kaempchen | Advanced Microsystems for Automotive Applications, Chapter: Sensor Fusion for Multiple Automotive Active Safety and Comfort Applications[END_REF] project is concerned with damage control rather than damage prevention. It discusses the safety mechanisms and sensors which may minimize the damage when the crash is inevitable. Preventing the crash from happening is not among the objectives of the project. Solution like these can be used to complement crash prevention systems so that the damage can be reduced when it is not possible to avoid the crash.

Most of the other less know systems are almost exclusively using cameras and vision systems to alert the driver to a potentially critical situation. As discussed above, camera based systems are not effective in all conditions.

Our Proposai

We propose a DAS based on a Multiple Target Tracking (MTT) algorithm that uses automotive radar as a front end sensor. An MTT system monitors the dynamic behavior of several obstacles at a time. ln the context of Driver Assistance Systems, an MIT system detects obstacles in front of the host vehicle and monitors their distance, speed and trajectory. If the behavior of any of the obstacle fulfills preset alert conditions, the driver of the host vehicles is alerted in advance to deal with any dangerous situation. In case the vehicle is fully equipped for autonomous driving, the signais generated by the MIT can also be used to automatically control the vehicle if necessary. The alert signais generated by the MTI system can also be used to

Work Related to Multiple Target Tracking

trigger the onboard safety systems if the obstacle's behavior is rated above a predefined danger level. So it also can incorporate the pre-crash safety mechanism when the crash cannot be avoided at all.

We use a low-cost radar for obstacle detection and plug it into our MIT system to tum it into a precise and high performance tracker. The tracking algorithm helps differentiate between real danger and false alarms, so that the driver is not panicked by triggering alert signais unnecessarily. Another advantage of the tracking algorithm is that can cancel the interference for other similar or dissimilar systems. The system we propose can monitor upto 20 moving or stationary obstacles and generates alert signais for only the ones that are really dangerous.

The use of radar as sensor in our system has the advantages of longer range as compared to camera based systems. It performs better in bad visibility conditions and has lower computational requirements [START_REF] Salcic | Scalar-based direct algorithm mapping FPW implementation of Kalman Filter[END_REF]. It is an all weather system that works as efficiently in a stormy dark night as in a sunny bright day. Moreover, since radar helps detect obstacles at longer distances, it ensures longer time for vehicle drivers to react to a dangerous situation.

Our system is applicable on highways with sparse high speed traffic as well as on the urban roads with dense low speed traffic. It does not rely on any infrastructure or digital maps.

We propose a plug and play system so that it is not limited to any specifie vehicle manufacturer or a vehicle model. The low cost of the system makes it accessible to every vehicle driver.

Work Related to Multiple Target Tracking

Studies have been done on the isolated parts of MTT system [START_REF] Salcic | FPGA-Based Adaptive Tracking Estimation Computer[END_REF], [START_REF] Konstantinova | A study of Target Trac king Algorithm Using Global Nearest Neighbor Approach[END_REF] but, to the best of our knowledge, design of the complete MTT based DAS has not been addressed in full before. Sorne work has been done on different isolated components of the MTT system but in different contexts. For example an implementation of the Kalman fil ter which is a part of MTT, is proposed in [START_REF] Salcic | Scalar-based direct algorithm mapping FPW implementation of Kalman Filter[END_REF]. It is not only limited to the filter but it also is a fully hardware implementation. Fully hardwired designs lack the flexibility and programmability needed for the ever evolving modem day embedded applications. Moreover, the authors report two alternative implementations of the Kalman filter namely the Scalar-Based Direct Algorithm Mapping (SBDAM) and the Matrix-Based Systolic Array Engineering (MBSAE). The former consumes 4564 logic cells whereas the latter consumes 8610 logic cells for a single filter each. Apart from the large sizes, the internai components of both the implementations are manually organized and re-organized to get the desired performance. This is obviously not scalable and repeatable in a complex system like ours where the fil ter is not the only component to be optimized.

An attempt to implement an MfT system in hardware for a maritime application is documented in [START_REF] Boisrnenu | Etude d'une carte de tracking radar[END_REF]. In addition to being a completely hardwired implementation, the work presented here is inconclusive.

The data association aspect of MTI has been dealt with nicely in [START_REF] Konstantinova | A study of Target Trac king Algorithm Using Global Nearest Neighbor Approach[END_REF] but the physical implementation of the system is not a consideration in this work. Only Matlab simulations are reported for that part of the MTI.

Although the title of ( 23) sounds very close to our work, yet this work describes the theory of the Extended Kalman Fil ter (EKF) with a smoothing window. The paper discusses the velocity estimation of slow moving vehicles and emphasizes on the necessity of reducing the liberalization errors in the process. While the paper presents a viable solution to the problem of liberalization errors in EKF, the physical implementation of the EKF or the tracking system does not figure among the objectives of the work.

A systolic array based FPGA implementation of the Kalman fil ter only, is reported in [START_REF] Chen | The FPGA implementation of Kalman jilter[END_REF]. This work concentrates on the use of a matrix manipulation algorithm (Modified Faddeev) for reducing the complexity of the computation. This article again, presents an interesting account of implementing the Kalman fil ter in an efficient way. In cases where very fast filtering is the main objective, this may be a good solution.

In fact software forms of the algorithms like EKF [START_REF] Goransson | Tracking Low Velocity Vehicles from Radar Measurements[END_REF] and Modified Faddeev based implementation of the Kalman filter [START_REF] Chen | The FPGA implementation of Kalman jilter[END_REF] can be easily integrated into our system. For example EKF is useful in situations where a target exhibits a abrupt changes in its dynamic behavior as in hilly regions where roads curve and bend frequently. Similarly, other algorithms like [START_REF] Chen | The FPGA implementation of Kalman jilter[END_REF] can be added on if required. So the works discussed above can be considered as complementary rather than competitors to our work.

Most of the available works treat the individual components of the MIT (mainly the Kalman filter) in isolation. However, putting these and other components together to design a coherent MTT application and adapting it to automotive safety utilization, is not a trivial task.

Platforms for Automotive Applications

Sorne of the vendors provide electronic development platforms for driver assistance systems. These platforms include programmable processors, heterogeneous multiprocessor IMAPCAR systems and microcontrollers dedicated to a certain type of driver assistance application. In the following sections we describe sorne of the available platforms.

IMAPCAR

NEC upgraded the IMAP-VISION processor to IMAP-CE, which was unveiled at the ISSCC held in 2003 in the United States. The processor was renamed IMAPCAR (lntegrated Memory Array Processor for CARs) [START_REF]NEC electronics and NEC introduce imapcar image processor with advanced parallel processing capabilities for automotive safety systems new processor adopted in lexus ls460 precrash safety system[END_REF] in 2006. It is used by Toyota Lexus in their cars (26) as a safety system.

IMAPCAR uses an SIMD system for which 128-parallel processing units follow identical commands and a 4-way VLIW system capable of simultaneous execution of four commands in one cycle. Each processing element has a RISC architecture with a 24-bit multiply and accumulate unit is equipped with 2 Kbyte SRAM for unit to enhance execution performance. The processor elements are interconnected via a shift register style ring network. A single 16-bit RISC control processor with 32KB program and 2KB data caches is used to control the 128 processing elements. The IMAPCAR Architecture

In December 2008 [START_REF]ElectronicsWeekly.com[END_REF] NEC announced the second generation IMAPCAR2 processors with support for both SIMD and MIMD operations. The 128 processing engines now support 16bits rather than 8-bits supported the earlier SIMD-only IMAPCAR.

The IMAPCAR processor is primarily aimed at the image processing requirements of the automotive safety systems. An image is loaded column wise into the 128 local memories. A processing element has therefore direct access to ali pixels in a column of the picture. One of the shortcomings of the IMAPCAR design is that it is not easy to exploit the task leve] parallelism found in high leve] image processing tasks.

EyeQ2

The EyeQ2 is a joint venture by Mobileye and STMicroelectronics [START_REF]STMicroelectronics and Mobileye Deliver Second-Generation System-on-Chip for Vision-Based Driver Assistance Systems[END_REF]. lt uses two floating point MIPS32 34Kf processor cores. The two MIPS cores exchange data using the ITU (Inter Thread Communication Unit). Besides the two MIPS cores the EyeQ2 includes seven vision computing engines, and a 16-channel direct-memory-access (DMA) controller. The EyeQ2 Architecture

VIP-II

The vision computing engines are fixed logic processing elements or hardware accelerators used for image pre-processing, object classification etc. The vision computing engines available in the EyeQ2 are CE (Classifier Engine), DFinder (Disparity Finder) which is used for stereo vision, Filter, PW (Preprocessor Window), Tracker which is used for motion analysis and two Vector Microcode Processors (VMPs) which utilize parallel vector, scalar and table lookup units.

The two MIPS cores and the seven vision computing engines are connected with an interconnection network from Sonics called SMX (Sonics Multi-service eXchange). The engines and CPU logic perform all of the vision computations required by applications such as pattern matching and image classification. The system interfaces to the outside world through two CAN controllers.

VIP-II

The VIP-II (Vision Instruction Processor version 2) is the successor of the VIP-1 developed by Infineon (28). The processor is designed for vision based automotive safety applications. The VIP-II features 4 multi-tasked SIMD cores and an ARM 9 processor. Each SIMD core consists of a general-purpose core and four PE (processing element) arrays. The cores use VLIW instructions to perform arithmetic operations and memory access in parallel. Each processing element has 4stage pipeline. Data dependencies between the pipeline stages are avoided because each of the pipeline stages operates on an instruction from a different thread. To make this possible each processing element is provided with four instruction caches, four register files and four program counters.

Every SIMD core is controlled by a general purpose core. The four cores are connected via a multi-layer system bus. An additional general purpose processor (ARM9) handles the communication tasks and main control flow. The four general purpose controllers within the SIMD cores and the ARM9 are all programmed in C. To program the SIMD cores a C language extension, called DPCE (Data Parallel C Extension), is used.

MPC5561 Microcontroller

Designed by Freescale Semiconductor [START_REF] Serniconductor | MPC5561: 32-bit PowerPC Microcontrollers[END_REF], the MPC5561 MCU is a member of the MPC5500 family of microcontrollers. It features a FlexRay network controller and Freescale's e200 core, which is customized for automotive safety applications. The e200 core bas a 32-bit PowerPC architecture with additional signal processing instructions. It has a 32KB unified cache, a Memory Management Unit (MMU) and a 32-channel DMA. It has interfaces for 192KB SRAM and 1MB Flash memory apart from the conventional microcontroller peripherals like timers, watchdog etc. The FlexRay is a communications system designed to provide distributed control for automotive applications. It bas a dual-channel architecture for redundancy for the reliability requirements of safety systems. The FlexRay is yet another networking scheme for automotive applications. The other well known schemes are CAN (Controller Area Network) and LIN (Local Interconnect Network).

The e200 core is connected to the memories, the DMA controller and the Flexray network controller through a crossbar switch. Two bridges interface the extemal peripherals to the crossbar. 

TMS570F

TMS570F

In November 2008 Texas Instruments announced the TMS570F (30) microcontroller unit (MCU). It is claimed to be industry's first dual core Cortex-R4F processor-based floating-point MCU that allows automotive system designers to implement both single and double precision floating point math depending on performance requirements. According to the report it uses accelerated multiply, di vide and square root functions to improve system performance. The TMS570F MCU platform uses two identical ARM Cortex-R4F processors combined with an initial two Mbytes on-chip flash memory. Industry standard peripherals include FlexRay protocol controller, up to three CAN and two LIN modules along with Tl's ti mer co-processor and two 12-bit analog to digital converters (ADC). Targeted applications include chassis control, braking, electronic vehicle stability and steering and airbag electronics etc. Architectural details of the MCU are not provided by TL

Critique

The first three of the processors described above are solely dedicated to vision based safety and assistance systems. As mentioned earlier, vision based systems are only fair-weather and short range systems. Their performance degrades considerably in poor weather and long ranges.

The IMAPCAR [START_REF]NEC electronics and NEC introduce imapcar image processor with advanced parallel processing capabilities for automotive safety systems new processor adopted in lexus ls460 precrash safety system[END_REF], [START_REF]ElectronicsWeekly.com[END_REF] does not support task level parallelism exploitable in most of the DAS applications. It is provided to vehicle manufactures only hence everyone cannot benefit from it. lt is programmed in a C language extension specially developed for this architecture, which is called lDC (one dimensional C). This is another disadvantage which limits the designers to the single proprietary development environment and increases the cost of the already costly system even further. Furthermore, the architecture is not reconfigurable and hence inflexible and un-scalable. The EyeQ2 (1) also has the same restrictions as the IMAPCAR. The architecture is mainly designed for pixel level parallel processing of the images captured by the camera.

Furthermore, the platform is provided to vehicle manufacturers exclusively. This makes its application highly restricted and out of the reach of the everyday vehicle users.

The vision computing engines are fixed in hardware and carry out specifie image processing tasks. To scale the system for future evolutions would necessitate complete redesign of the architecture. The processor is provided only to the vehicle manufacturers like Volvo and BMW who use them in the expensive high-end vehicles.

To program the SIMD cores in the VIP-II (28), a C language extension, called DPCE (Data Parallel C Extension) is used which makes it costly and difficult to program. Thus it can be afforded by only a minority of the drivers who can afford such costly vehicles. To help reduce the high accident rates the DAS's must be economical enough to be within the reach of ali the vehicle owners.

The latter two of the processors discussed above are microcontrollers targeting automotive safety measures in pre-crash situations. Such systems can complement driver assistance systems rather than replace them. The MPC5561microcontroller (29) is meant for controlling various automotive safety mechanisms and interconnecting intelligent deviees onboard a vehicle. It is not a driver assistance system per say, rather it can be considered as a pre-crash damage mitigation system. The TMS570F (30) also falls in the same category as the MPC5561. It also concentrates on protective measures in case of an accident. Therefore these systems can be used in conjunction with sophisticated DAS's for assuring security of the passengers in cases where accidents cannot be avoided.

Our Proposai

Our work is unique in several aspects. We propose radar based DAS implemented as an MPSoC. We customize each of the processors according the needs of the application task it is MPSoC Architectures for Other Applications running. It makes the system fast, small sized and energy efficient. The individual processor can be separately programmed allowing for in system upgrading and improvement. The system designer can replace one algorithm with another for a specifie task to make the system perform more efficiently and/or more accurately. The programming is done plain ASCII C, so tweaking the existing application or adding more functionality does not require a specialist in platform specifie languages. Thus it can evolve very easily with advances in technology and with improvements in application algorithms. Moreover, the use of several concurrently running processors meets the overall real time deadlines. Several low frequency processors running concurrently consume less power compared to a single processor with a high dock frequency and doing the same job [START_REF] Ooishi | New Toyota Lexus Detects Pedestrians, Applies Brakes[END_REF]. Our reconfigurable MPSoC architecture of the system is inherently flexible, programmable and scalable. Adding additional processing elements or auxiliary hardware components does not affect the working of the existing architecture. The reconfigurability of the processors and other components in our design, allow for customizing them according to application requirements while keeping the hardware size as small as possible. The system we propose is a complete plug-and-play solution that can be easily integrated with the existing electronic systems onboard any vehicle.

MPSoC Architectures for Other Applications

Several multiprocessor systems have been designed to target applications other than the driver assistance systems. Although the applications, for which these systems are intended, are different than our application, their architectures are of interest to us. The systems presented in the following sections have multiprocessor architectures, an attribute they share with our work.

C-5 NP

The C-5 NP is specifically designed by Freescale Semiconductor Incorporation [START_REF]C-5 Network Processor Architecture Guide[END_REF], for communications applications. It deals with the networking tasks like packet processing, table lookup processing, and queue management. The C-5 NP contains 18 processors (16CPs, XP, and FP) and three coprocessors that operate as shared resources for the CPs and each other, and perform networking-specific tasks. The programmable Channel Processors (CPs) are responsible for receiving, processing, and transmitting cells or packets. The Executive Processor (XP) provides network control and management functions in user applications. The Fabric Processor (PP) manages the high-speed fabric interface. The Buffer Management Unit (BMU) manages centralized payload storage during the forwarding process. The Table Lookup Unit (TLU) provides table search and associated data storage services to the CPs, XP, and PP. The Queue Management Unit (QMU) manages application-defined descriptor queues among the CPs, PP, and theXP. . The C-5 NP also contains three independent data buses that provide internai communication paths between the eighteen processors (16CPs, XP, and PP) and the three coprocessors, supporting concurrent processing. The Payload Bus is a slotted, multichannel shared, arbitrated bus which carries payload data and payload descriptors between the processors and the BMU and QMU. The Ring Bus provides bounded latency transactions between the processors and the TLU. It also supports inter-processor communication. The Global Bus is also a slotted, multichannel, shared, arbitrated bus Supports inter-processor communication via a conventional flat memory-mapped addressing scheme.
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Viper Nexperia

The Phililps Viper Nexperia [START_REF] Philips | Home Entertainment Engine, Nexperia pnx8500[END_REF] is an MPSoC designed for multimedia applications. Its architecture includes two CPUs: a MIPS (R3940) and a Trimedia (TM32) VLIW processor. The MIPS acts as a master running the operating system, whereas the Trimedia runs video processing fonctions and acts as a slave that carries out commands from the MIPS. The system includes three buses, one for each CPU and one for the externat memory interface. A 64-bit memory bus is used by the MIPS and TM32 CPUs and on-chip blocks requiring memory access. Two PI buses and a crossover PI-to-PI or memory-mapped I/0 (MMIO) bridge enable each processor to control or observe peripheral block status. Hardware accelerators for image composition, scaling, MPEG-2 decoding and video input processing are also attached to the buses. The Viper can implementa number of different mappings of physical memory to address spaces. Programmable CPU cores allow new features, services, or standards to be supported through software upgrades without changing silicon. The Viper Nexperia Architecture

OMAP

The Texas Instruments OMAP (Open Multimedia Applications Platform) (33) is designed for mobile phone wireless and multimedia applications. OMAP cornes in many flavors.

The OMAP5912 architecture contains a TMS320C55x DSP core from TI and an ARM925T CPU. The ARM acts as a master, and the DSP acts as a slave. The ARM is used for the operating system, user interface, and OS applications. The DSP is used for signal processing applications, such as MPEG4 video, speech recognition, and audio playback. Both processors utilize an instruction cache and a memory management unit (MMU) each, for virtual-to-physical memory translation and task-to-task memory protection. The OMAP Architecture ' ' ,

The ARM MPCore (34) is a homogeneous multiprocessor that also allows sorne heterogeneous configurations. The architecture can accommodate up to four CPUs. Both the data and instruction caches can be sized between 16KB and 64KB for each processor. The caches snoop for consistency. The interconnection fabric can be configured either as dual or single 64bit AMBA 3 AXI bus. Each processor can also be configured with an optional Vector Floating Point (VFP) unit.

Sorne degree of irregularity is afforded by the memory controller, which can be configured to offer varying degrees of access to different parts of memory for different CPUs. For example, one CPU may be able only to read one part of the memory space, whereas another part of the memory space may not be accessible to sorne CPUs.

The Cell processor

Inter rupt Unes The ARM MPCore Architecture

The Cell processor

The Cell architecture (35) is designed by Sony, Toshiba and IBM for the PlayStation 3. It is comprised of hardware and software "cells". The software cells consist of data and programs (known as jobs or apulets), these are sent out to the hardware cells where they are executed.

The architcture contains a main core called Power Processing Element (PPE) and 8 special cores called Synergistic Processing Elements (SPE). The PPE is a classic 64 bit PowerPC processor with 512K cache. The processing elements, PowerPC, and the 1/0 interfaces are connected by the Element Interconnect Bus (EIB), which is built from four 16-B-wide rings. Two rings run clockwise, and the other two run counterclockwise. Each ring can handle up to three non-overlapping data transfers at a time.

The PPE runs the operating system and most of the applications but compute intensive parts of the OS and applications are offloaded to the SPEs. An SPE is a self contained vector processor which acts as an independent processor. Every SPE contains 128 x 128 bit registers, four (single precision) floating point units and four lnteger units. The SPEs also include a small 256 Kilobyte local store (LS) instead of a cache. The SPEs have very fast access to their LS but to access the main memory they must request the interconnection bus for asynchronous transfers. Each core can be explicitly programmed with independent threads. The memory is shared and the user has to manage data copying among the cores. Like the PPE the SPEs are inorder processors and have no Out-Of-Order capabilities.

Power Processor Element (PPE) (64-bit PowerPC)

Figure 13:

The Cell Architecture

Discussion and critique

The systems discussed above and many other emerging application specifie systems demonstrate the popularity of the multiprocessor architectures tailor made for the applications they are running. This ever growing popularity of the MPSoCs is caused by sorne serious limitations uniprocessor systems have.

Uniprocessor architectures have hit the wall with respect to performance and power consumption in the past decade. They, even with the highest clock speed, cannot keep up with the real-time processing requirements of the modem day embedded applications. Real-time systems require "real" parallelism and concurrency in the execution of applications [START_REF] Jerraya | Multiprocessor Systems-on-Chips[END_REF].

Our proposal

Uniprocessor architectures provide "apparent" concurrency through the use of Multi-tasking operating systems but the applications are still running sequentially on the underlying hardware. Consequently they are too slow for today's complex real-time embedded applications. In reaction to these issues, Multiprocessor System-on-Chip (MPSoCs) architectures have emerged as an alternative means for achieving higher performance.

An MPSoC uses multiple processing cores operating in parallel performing various tasks to execute a complex global application efficiently and rapidly. MPSoCs provide real concurrency by segregating tasks and running them in parallel to improve predictability and performance. Energy consumption can be efficiently managed in MPSoCs by allowing processors to idle when their tasks are finished.

Heterogeneity is one of the greatest advantages of these systems because it improves real ti me performance and predictability. For example, sorne operations in an application are standardized and can be implemented in conventional ways. However there are many specialized operations which need specialized units for higher throughput. Specialized units are tailor made according to the performance of the specifie operations and bence are power efficient and their behavior is more predictable compared to a general purpose processor.

Memory subsystems for MPSoCs are custom built for the requirements of the tasks the processors are executing. They combine off-chip bulk memory with on-chip specialized memory. This not only improves performance but the memory traffic can also be easily regulated to further reduce energy consumption.

A multi-core deviee, which combines two or more processors on a single die, offers increased performance over single-core deviees. In comparison to a traditional processor, dualcore system offers at least double the performance at the same clock frequency. Tests on a dualcore system reported in [START_REF] Leteinturier | Multi-Core Processors: Driving the Evolution of Automotive Electronics Architectures[END_REF], have shown that the same performance can be achieved at 200 MHz as a single-core system operating at 500 MHz.

An important side benefit of the improved performance is that the power consumption and beat generation of a multi-core deviee are lower for the same level of performance as a single-core deviee. In addition, the faster clock of the single-core deviee requires faster memory, which further increases the power consumption and requires special packaging to dissipate the beat.

Our proposai

While the advantages of the multiprocessor architectures are undisputable, there are sorne very fundamental decisions that must be taken before initiating an application specifie multiprocessor project. The implementation platform, the types of processors, the memory hierarchy, the interconnection framework and other components have to be determined very carefully according the needs of the application.

We use FPGAs as the implementation platform for our MPSoC. FPGAs provide enormous raw processing power compared with standard microprocessors. They give the designer the choice to run applications in hardware and in software when configured with a processor IP core. Thus FPGAs provide the flexibility of reconfiguration and the liberty of reprogramming. These are two highly sought after features needed for system evolution that neither general purpose microprocessors nor ASICs can provide. General purpose microprocessors can be reprogrammed for a desired application but their hardware architecture cannot be modified. Moreover they are slow because of the sequential execution of the code. On the other hand ASICs are fast but their architecture is cast in concrete for one specifie application hence they are absolutely inflexible. FPGAs combine the best of the two worlds. They can be configured with soft-core processors which can execute a software application and thus offer the versatility of a general purpose processor. They can also be configured with hardwired circuitry and thus provide high speed execution where needed. FPGAs can even have a mix of programmable soft-core processors and hardwired circuitry to accelerate certain parts of the application for achieving higher processing speed.

System performance can be easily scaled at any phase of the design cycle by adding processors, custom instructions, hardware accelerators, and by leveraging the inherent parallelism of FPGAs (37). FPGAs are highly receptive to IP reuse and support designing and verifying new customized IPs. FPGA designs using pre-verified IPs reduce system design and verification time. FPGA designs do not have the up-front Nonrecurring Engineering (NRE) costs which is characteristic of ASIC designs.

The choice of the FPGA platform allows us to use soft-core processors and IPs in our design. An FPGA designer can configure a group of programmable logic blocks to act as a processor. These are typically called "soft core" processors [START_REF] Maxfield | The Design Warrior's Guide to FPGAs, Deviees, Tools and Flows[END_REF]. AB of the peripheral deviees such as counter timers, interrupt controllers, memory controllers, communication functions and etc., are also implemented as soft cores in the FPGA logic blocks.

Using soft-core processors in an FPGA based MPSoC architecture has numerous advantages. Soft core processors can be instantiated as many times as the designer requires as long as there are enough FPGA resources available. Higher levels of overall application performance can be readily achieved by instantiating multiple soft-core processors. Moreover, when soft-core processors are used in the architecture of an MPSoC, their hardware features can be customized according to the requirements of the application. For example an FPGA designer can customize his/her soft-core processor configuration by sizing, including or excluding certain features of the processor according to the performance needs of the application. Soft-core

The Hardware 1 Software Co-design Flow processors support generation-time configuration options to allow designers to trade off performance and cost. Examples of generation-time configuration options include pipeline implementation, cache size, multiplier implementation, divider implementation, barrel shifter implementation, and tightly coupled memories etc. The designer can include or exclude these features at generation time and thus optimize the architecture. A soft-core processor can also be complemented by a hardware accelerators configured out of the FPGA logic blocks.

The Hardware 1 Software Co-design Flow

We follow the Y -chart hardware/software co-design flow [START_REF] Jantsch | A NOC Architecture and Design Methodology[END_REF] for the design of our M1T implementation in FPGA based MPSoC. The Y -chart co-design flow is illustrated in Figure 14. According to the Y -chart approach, an application model, derived from a target application domain, describes the functional behavior of an application in an architecture-independent mann er.
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. . sw.~. The application model is often used to study a target application and obtain rough estimations of its performance needs, for example to identify computationally expensive tasks. This model correctly expresses the functional behavior, but is free from architectural issues, such as timing characteristics, resource utilization or bandwidth constraints. Next, a platform architecture model, defined with the application domain in mind, defines architecture resources and captures their performance constraints. Finally, an explicit mapping step maps an application model onto an architecture model for co-simulation, after which the system performance can be evaluated quantitatively. The dotted lines in Figure 14 indicate that the performance results may inspire the system designer to improve the architecture, modify the application, or change the projected mapping. Renee, Y -chart modeling methodology relies on independent application and architecture models in order to promote reuse of both simulation models to the conceivable largest extent.

This methodology forms the outline of the approach we use for designing and optimizing our system. We will replicate Figure 14 in the beginning of the coming chapters with the irrelevant parts dimmed off, to emphasize only on the steps that are the subject of the chapter.

Chapter Summary

ln this chapter we presented a survey of the existing DAS solutions and compared and contrasted our proposed solution with them. Processors designed for DASs and automotive safety applications were discussed next, followed by a brief account of the MPSoC architecture we propose. We described sorne of the existing MPSoC architectures followed by the motivations behind our choice of the FPGA platform and soft-core processors for our system. In the end we presented an outline of the Y -chart HW/SW co-design flow that we follow in coming chapters.

3

Multiple Target Tracking Application

Modeling for Automotive Safety

Use of target tracking in general and multiple-target tracking in particular has been traditionally restricted to military applications. The peculiar conditions where the military MIT systems are supposed to operate cannot be generalized for use in automotive applications. An MIT system meant for automotive driver assistance applications, must take into account the specifie dynamics of the obstacles encountered on roads. In this chapt er we describe the design of our own MIT application and its mathematical model specifically tailored to the requirements of auto motive safety use.

Introduction

This chapter describes the design of the MTT application we propose for our driver assistance system. The proposed MTT based system monitors the dynamic behavior of several obstacles at a time. lt detects obstacles in front of the host vehicle and monitors their distance, speed and trajectory. If the behavior of any of the obstacle fulfills preset alert conditions, the driver of the host vehicles is alerted in advance to deal with any dangerous situation.

Tracking obstacles in real time instead of just detecting them, is necessary for several reasons. First, to assess whether an obstacle can pose a danger for the host vehicle, we need to know the recent history of its dynamic behavior. If the dynamic behavior of the obstacle is rated as dangerous, precautionary action has to be taken to avoid a collision. Tracking generates a history of the obstacle' s dynamic behavior.

Second, tracking helps eliminate false alarms which typically appear momentarily and then disappear. This discontinuous and momentary behavior is readily identified through tracking. A real target has continuous trajectory over a period of time and will not be misinterpreted as a false alarm or vice versa. Thus alerts signais are generated only for really dangerous obstacles so that the driver can concentrate on taking a preventive action.

Third, in situations where a smaller obstacle is momentarily masked behind a larger one, tracking still keeps a record of its existence for sorne time. When the smaller target suddenly reemerges from behind the larger target, the tracking system will generate an alert if it is on a collision course with the host vehicle.

A side advantage is that interference from other radars can be nullified using a tracking system. Radar is an active sensor which sends out an electromagnetic wave towards the obstacles and detects the obstacles by processing the reflected wave. Several radars operating close to one another with the same frequency range can interfere with one another. However, if every radar tracks the targets that it has already detected, chances of interference from other radars are greatly reduced.

The available literature on MfT systems mainly concem aerial target tracking. The dynamics of the aerial targets are very different than those an automotive driver has to deal with on the roads. Hence the application designed for aerial target tracking cannat be directly applied to road vehicle tracking.

The radars meant for automotive use have a shorter range and a narrower field of view. Unlike the ground-based air-traffic radars, there is no mechanical scanning of the field of view by the automotive radars. The automotive radar covers a fixed conical region in front of it. The volume of this conical region depends on the radar range and its coverage angles in azimuth and elevation.

The traffic density on the roads is very different than the air traffic density. The nature and types of obstacles on the roads are completely different and varied. In this case an obstacle may be a stationary road sign, a pedestrian, a car or a truck ali with different dynamic behaviors. The road traffic conditions also change constantly e.g. conditions on an urban road are not the same as on a highway or in a rural or a mountainous region. The traffic on the roads is not expected to stop or get delayed in poor weather conditions.

Ali these factors make road target tracking applications very different from aerial target tracking applications. However, being a relatively new field, literature about the road target tracking is very rare, although we do find small bits and pieces scattered around various other fields of research. Consequently we have to redesign the MTT application for automotive safety keeping ail these factors in mind. This is the principal theme of this chapter. Starting with the right band side of the Co-design flow [START_REF] Jantsch | A NOC Architecture and Design Methodology[END_REF] in Figure 15, we discuss the application design and modeling aspects of our Multiple Target Tracking (MTT) system. First we explain the terms and definitions used in the literature and describe the basic concepts of target tracking. Then we describe the components of a generalized MTT system. After that we present our model of the MTT system for automotive safety applications. We divide the application into various logical components and explain mathematical models for them. The application is modeled in such a way that it can be coded into manageable functions for modular software development. To render the application development process easily understandable, we use diagrams and illustrations alongside key mathematical concepts. Since the main theme of the application is automotive safety, illustrations mostly use vehicle images. Flow charts and pseudo codes are provided where required.

Multiple Target Tracking (MTT) Application
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Multiple Target Tracking (MTT) Application

The purpose of target tracking is to collect data from the sensor field of view (FOV) containing one or more potential objects of interest and to partition the sensor data into sets of observations, or tracks ( 44).

Terminology

In the context of target tracking applications, a target represents an obstacle in the way of the host vehicle. Every obstacle has an associated state represented as a vector that contains parameters defining the target's position and its dynamics in space e.g. its distance, speed, azimuth or elevation etc. A state vector with n elements is called n-state vector. A concatenation of target states defining the target trajectory or its movement history at discrete moments intime is called a track.

The behavior of a target can ideally be represented by its true state. The true state of a target is the one that characterizes the target' s dynamic behavior and its position in space in a 100% correct and exact manner. Because of the noise in the propagation channel, imperfections in the sensor and randomly varying conditions, the true state of the target cannot be determined. However, a tracking system attempts to estimate the state of a target as close to this ideal state as possible. The doser a tracking system gets to the true state, the more precise and accurate it is. For achieving this goal, a tracking systems deal with three types of states:

The Observed State or Observation corresponds to the measurement of a target' s state by a sensor (radar in our application) at discrete moments in time. lt is one of the two representations of the true state of the target. The observed state is obtained through an observation modeZ or measurement modeZ. The observation model mathematically relates the observed state to the true state taking into account the sensor inaccuracies and the transmission channel noises. The sensor inaccuracies and the transmission noises are collectively called measurement noise.

The Predicted State or Prediction is the second representation of the target' s true state. Prediction is done for the next cycle before the sensor sends the observation about it. It is a calculated "guess" of the target' s true state before the observation arrives. The predicted state of a target is obtained through a process modeZ. The process model mathematically relates the predicted state with the true state while taking into account the errors due to the approximations of the random variables involved in the prediction process. These errors are collectively termed as process noise.

Estimated State or estimate is the corrected state of the target that depends on both the observation and the prediction. The correction is done after the observation is received from the sensor. The estimated state is calculated by taking into account the variances of the observation and the prediction. To get a state that is more accurate than both the observed and predicted states, the estimation process calculates a weighted average of the observed and predicted states General Principles favoring the one with lower variance more over the one with larger variance.

In this work, the term scan is used to specify the periodic sweep of the radar field of view (FOV) giving observations of ali the detected targets. The FOV is usually a conical region in space, inside which an obstacle can be detected by the radar. The area of this region depends upon the radar range (distance) and its view angle in azimuth.

The radar Pulse Repetition Time (PRT) is the time duration between two successive radar scans. The PRT for the radar unit (45) we are using is 25 ms. This is the time window within which the tracking system must complete the processing of the information received during a scan. After this interval new observations are available for processing. As we shall see latter, the PRT imposes an upper li mit on the latency of the slow est module in the application.

General Principles

To explain the principle of target tracking, we consider tracking a single object for the moment. The general idea behind target tracking is illustrated in Figure 16. In this illustration, at scan 0, the initial measured or observed state of a target is taken as a seed state. The seed state is the a priori information about the targets. It is used to initialize the tracking system. It may be a measured state or a previously known state of a target obtained through sorne other means such as a centralized detection system. Using the seed state and the prediction process model, the next state of the target is predicted before new information about the target state is sent by the radar in scan 1. The predicted state, being based on an imperfect mathematical model, is not a 100% accurate representation of the target's true state. When the radar sends back new information in scan 1, we get a second representation of the true state of the target. This representation is not 100% accurate either due to the tolerances in the radar measurements and the noisy propagation channel. At this stage we have two representation of the target's true state, each with a different amount of inaccuracy. The goal here is to obtain a third representation which is doser to the true state than both the predicted and measured states. This is done by associating weights with the predicted and the measured states. The values of these weights are inversely proportional to the variances in the prediction model and the measurement model. This third representation is the estimated or corrected state. The predicted state for scan 2 is based on the corrected state of scan 1. When measurements are received in scan 2, the state is corrected again. This process continues as long as the tracking system is powered on.

Since every predicted state is calculated using the previously corrected state hence the current correction embodies all the previous corrections. This obviates the need to store and use the whole history for calculating the current state. This in tum helps substantially in minimizing the system memory requirements.

The tracking process explained above takes a single target into account. Single target tracking (STT) systems are designed to operate in a closed loop for tracking a single object. The STI system typically operates in the manner shown in Figure 17 with the objective of keeping the sensor pointed at the single target of interest. The STI tracking loop operates on the discriminant (or measured error) data that measures the offset between the sensor current pointing angle and the target location. Offsets in range or range rate can also be used. The STT tracking loop operates to null these offsets. Specifically a radar based STT system attempts to keep the antenna directed at the target. Additionally, a radar based STI system will typically define range or range rate gates that are adjusted to remain centered about the target range and range rate predictions.
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•Mefnure' Referring again to Figure 17, for an STT system, the discriminanat or measured error, data are directly input to a fil ter. Because the sensor is assumed to be dedicated to a single target, there is no need to perform a complex data association function, such as that discussed latter in an MfT system. 
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The Single Target Tracking loop

The filtered estimate of the target position relative to the sensor pointing angle is used as an input to a control loop that attempts to keep the sensor pointing at the target.

Single Target Tracking systems are useful in applications like camera based surveillance where a single scene of interest has to be focused on. In contrast, driver Assistance Systems must cope with more than a single obstacle. Hence a tracking-based DAS would use an embedded MTT application rather than an STT application. Figure 18 shows a simplified demonstration of the MIT based DAS.

Suppose in scan 1 the radar detects three obstacles (green cars) and sends their states back to the tracking system. As in the case of the STT, the tracking system predicts the next states (blue cars) for ali the three targets. In scan 2, the radar detects four targets and reports their states to the system. Now to calculate the estimated states we have to take into account the predicted states and the corresponding observed states just reported by the radar. But to find the corresponding observed state for every predicted state, we have to resolve the foliowing issues.

To be able to correct the states we have to choose the observed state of one and only one target and pair it with the relevant predicted state. Since in scan 1 three targets were detected hence we have predicted states for three targets. In scan 2, the radar reports the presence of four targets in its FOV. This gives rise to twelve possible parings (dotted arrows) among the predictions and the observations while we should have at most three pairings. So the first issue is to eliminate ali the irrelevant parings.

Obviously at [east one of these four targets is a new entry. We have to identify which one(s) is (are) the new entry (entries). In a different scenario the radar could have reported the presence of less than three targets in scan 2. This implies that one or more of the targets detected in scan 1 are no more in the radar FOV. In such cases we have to identify the irrelevant predictions and del ete them from the system memory.

A complex data association logic is needed to deal with ali these issues in MTT which don't exist in STI. The data association logic is also required in order to sort out recurrent sources that are not of interest (such as background clutter), and false signais that have little or no correlation intime. The main components of a typical MTT application are described in the following subsection. State prediction and estimation in MTT

MTT building blocks

A generalized view of Multiple Target Tracking (MTT) system is given in Figure 19. This illustration helps in understanding the system. In reality the partitioning Iines among the functioning blocks are not so clearly defined. The system can broadly be divided into two main blocks namely Data Association and Filtering & Prediction. The two blocks work in a closed loop. The data association block is further divided into three sub-blocks: Track maintenance, Observation-ta-Track Assignment and Gate Computation. The data association black resolves the issues discussed in above. The Observation-to-Track Assignment sub-block sorts out the observations coming from the radar and couples them with the relevant predictions made earlier.

The Track Maintenance sub-block is responsible for dealing with the new entries into the radar FOV and also those which disappear from the radar FOV in the current scan. Ali this information is passed on to the Filtering and Prediction block.

The Filtering and Prediction block predicts the next states for ail the current targets and estimates their current states. The estimated states are the system output. The filtering and prediction block also passes the prediction error covariance and the predicted state information back to the Gate Computation sub-block of the data association.

The Gate Computation sub-block defines demarcating limits around the predicted states based on the prediction error covariance. The higher the covariance, the higher these limits are. The limits for ali the elements of a state vector together form a multidimensional probability gate. In our application it is a 2 dimensional rectangular plane since we are interested only in two parameters i.e. the distance and the azimuth. The predicted state for a target is positioned at the center of the corresponding gate.

The gates are used by the Observation-ta-Track Assignment sub-block to screen out improbable observation-prediction pairings. Ail observations falling within the limits of a particular gate are potential candidates for pairing with the prediction at the center of that gate. In the stage of the Observation-ta-Track Assignment only the most probable pair is retained for correcting the state of the concerned target.

Figure 19 represents a text book view of an MTf system that can be found in [START_REF] Blackman | Design and analysis of modern tracking systems[END_REF] and in [START_REF] Brookner | Tracking and Kalman Filtering Made Easy[END_REF]. The practical implementation and internai details of the design may vary depending on the end use and implementation technology. For example the filtering and prediction part may be implemented choosing from a variety of aigorithms such as alpha-beta filters [START_REF] Welch | An introduction to the Kalman Filter[END_REF], mean-shift algorithms [START_REF] Nedovi | Tracking moving video abjects using meanshift algorithm[END_REF], Kalman filters (44), ( 49), ( 47) etc. Similarly, the Observation-to-Track Assignment part is usuaily modeled as an Assignment Problem which is extensively used in operations research. The assignment problem itself may be solved in a variety of ways, for example using the Auction algorithm (50), [START_REF] Zavlanos | A Distributed Auction Algorithm for the Assignment Problem[END_REF] or the Hungarian (or Munkres) algorithm [START_REF] Munkres | Algorithms for Assignment and Transportation Problems[END_REF], [START_REF] Burgeois | An extension of the Munkres algorithm for the assignment problem to rectangular matrices[END_REF].

The choice of algorithms for the sub-blocks is driven by factors like application environment, implementation platform, system architecture, amount of the available processing resources, hardware size of the end product, track precision and system response time etc.

MTT Mathematical Modeling: Our Approach

As stated above, the internai details, the choice of aigorithms and the interactions among different functions of the MTf system is driven by factors like implementation platform, system architecture etc. Based on the arguments given in Chapter land chapter 2, we chose to use a multi-processor architecture for our system and FPGA as the implementation platform. A multiprocessor architecture can be exploited very efficiently if the underlying application is divided into simpler modules which can run in parallel. Parallelism is one of the strongest features of the FPGA based system implementations. Moreover, simple multiple modules can be managed, modified and upgraded easily and independently of one another as long as the interfaces among them remain unchanged.

For the purpose of modular implementation we organized the application into submodules as shown in Figure 20. The functioning of the system is explained as follows.

Assuming recursive processing as shown by the outer loop (between Data Association and Filtering and Prediction) in Figure 20, tracks would have been formed on the previous radar scan. When new observations are received from the radar the processing loop is executed.
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1-r++---+1 :1 "---""""""". J ~ates In the first cycle, the incoming observations would simply pass through the Gate Checker, Cost Matrix Generator and Assignment Solver on to the filters' inputs. The filter takes an observation as an "inaccurate" representation of the "true state" of the target and the amount of inaccuracy of the observation depends on the measurement variance of the sensor. It estimates the current state of the target and predicts its next state before the next observation is available. As mentioned earlier the estimation process and the MTT application as a whole rely on mathematical models for its operation. The mathematical process model and the measurement model we proposed are detailed in sections 3.1 and 3.2 respectively. All the components of the proposed MTT implementation are explained in sections 3.3 through 3.8.

Process Model

The process modeZ mathematically projects the current state of a target into the future. This can be presented in a linear stochastic difference equation as (3.1) Where:

• Yk-1 and Yk are n-dimensional state vectors that include the quantities to be estimated.

• Vector Yk-1 represents the state of a target at instant k-1 white Yk represents the state at instant k.

• The n x n matrix A in the difference equation (3.1) relates the state at time step k-1 to the state at time step k, in the absence of either a driving function or process noise.

• Matrix A is the assumed known state transition matrix which may be viewed as the coefficient of the state transformation from instant k-1 to instant k, in the absence of any driving signal and process noise.

• The n x l matrix B relates the optional control input U keJt/to the state Yk whereas Wk-1 is zero-mean additive white Gaussian process noise (A WGN) with assumed known covariance Q. Matrix B is the assumed known control matrix and Uk is the deterministic input, such as the relative position change associated with the host-vehicle (own ship) motion.

Measurement Model

To express the relationship between the true state and the observed state (measured state) a measurement madel is formulated. It is described as a linear expression 46 (

3.2)

Where:

• Zk is the measurement or observation vector containing two elements, distance d and angle 8 as shown below. •

Filtering and Prediction

The terms Wk and Vk in equations (3.1) and (3.2) are zero-mean, white, Gaussian noises and are assumed to be independent of each other, with normal probability distributions mathematically denoted as p(Wk)-N(O,Q) and p(Vk)-N(O,R).

For implementation we chose the example case given in [START_REF] Salcic | FPGA-Based Adaptive Tracking Estimation Computer[END_REF]. In this example the matrices and vectors in equations (3 .1) and (3 .2) have the forms shown below. In the rest of this document the numerical values of ali the matrix and vector elements are borrowed from this example. Quantity T in matrix A, is 0.025 seconds and it is the radar Pulse Repetition Time (PRT) specifie to the radar unit [START_REF]TRW Autocruise AC20 radar. s.l[END_REF] we are using in our system. Yk, A and Zk have the following forms:

Yu yk= y21 YJI Y41 1 0 A= T 0 0 1 0 0 0 0 1 T 0 0 0 1 z.-[~J
Here Yn is the target range or distance, Y21 is range rate or speed, Y3I is the angle (azimuth), Y4I is the angle rate or the angular speed. In vector Zk the element d is the distance measurement and 8 is the azimuth angle measurement. Matrix B and control input UK are ignored here because they are not necessary in our application.

Filtering and Prediction

Having devised the process and measurement models, we need an estimator which would use these models to estimate the true state. The process and measurement models presented above for target dynamics can be classified as linear models with Additive White Gaussian Noise (AWGN). For this reason we use the Kalman filter because it is a recursive Least Square Estimator (LSE) considered to be the optimal estimator for linear systems with A WGN probability distribution [START_REF] Welch | An introduction to the Kalman Filter[END_REF], [START_REF] Kalman | A New Approach to Linear Filtering and Prediction Problems[END_REF]. The Kalman filter is extensively used in various applications where the process noise can be assumed to have a Gaussian probability distribution. In our future work we shall evaluate various other filters with respect to their precisions, processing speeds and computational resource requirements etc.

The "Tracking filters" block in Figure 20, is particularly important because we need as many filters as the maximum number of targets to be tracked. In our work we fixed this number at 20 as the radar we are using can measure the coordinates of a maximum of 20 targets. Hence this block uses 20 similar filters running in parallel.

Given the process and the measurement models in equations (3.1) and (3.2), the Kalman filter equations are

(3.3a) (3.3b) (3.3c) (3.3d) (3.3e) 
Here I: is the state estimation vector, I:is state prediction vector, K is the Kalman gain matrix, ~-is prediction error covariance matrix, ~ is estimation covariance matrix and 1 is an identity matrix of the same dimensions as~ . Matrix R is the measurement noise covariance matrix and it depends on the characteristics of the radar. Matrix Q is the process noise covariance matrix.

The covariance update equation (3.3c), is based on the assumption that the Kalman gain, K, is computed identically from equation (3.3d). If, due to computational error, the gain calculation is not exact or if the gain is chosen in another manner, the stabilized form of the covariance update equation that should be used is

(3.3f)
Note that (3.3c) follows directly from (3.3f) when the gain K is computed exactly from (3.3d). However, if, due to computational error, the gain (3.3d) is not exact, the use of equation (3.3f) will enhance stability.

The covariance matrix is defined in terms of the zero-mean Gaussian estimation error vector:

(3.3g)

Filtering and Prediction

The letter E here signifies Expected Value or Mean Value.
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The vector difference between measured and predicted quantities, ~ = Zk -H~is defined to be the residual (or innovation) vector with residual covariance matrix S defined as qll q,2 q,3 q,4 0 0 0 0 q2! q22 q23 q24 0 330 0 0

Q= = q3l q32 q33 q34 0 0 0 0 q4l q42 q43 q44 0 0 0 1.3*10-8 Yu Yu Yzt Yzt Yk= Y3, Yk = Y3t A- Y4t Y4t
Here .Y;, is range prediction .Y;, is speed prediction .Y;, is azimuth angle prediction, y~1 is angular speed prediction Yu is range estimate, .Yz 1 speed estimate, y 31 is angle estimate and y 41 is angular speed estimate, ali for instant k.

Matrices K and fthave the following forms.

Pu P12 P13 p~ [ku k., l P"k= P21 P22 P23 P1A K= k21 k22 P31 P32 P33 P34 k3! k32 P41 P42 P43 P44 k4! k42
Matrix ~ is similar in form to ~except for the superscript ' -' . The scan index k is ignored in the elements of these matrices and vectors for the sake of notational simplicity. The Kalman filter cycles through the prediction-correction loop shown pictorially in Figure 21. In the prediction step (also called time update), the filter predicts the next state and the error covariance associated with the state prediction using equations (3.3a) and (3.3b) respectively. In the correction step (also called measurement update), the filter calculates the fil ter gain, estimates the current state and the error covariance of this estimation using equations (3 .3c) In the case of a single target tracking system, the estimated state given by the filter would be used to null the offset between the current pointing angle of the radar and the angle at which the target is currently situated.

This operation would need just a control loop and an actuator to correct the pointing angle of the radar. Since we are dealing with multiple targets at the same time, we have to identify which of the incoming observed states to associate with which of the predicted states for making the estimation for each target. This is the job of data association block shown in Figure 20 The data association sub-modules are explained one by one in the following subsections.

Gate Computation

The first step in data association is gate computation. The Gate Computation block receives the predicted states ~and the predicted error covariance ~from the Kalman Filters for ali the currently known targets. Using these two quantities the Gate Computation block defines the probability gates which are used to verify whether an incoming observation cao be associated with an existing target prediction. The dimensions of the gates are proportional to the prediction error covariance Et-. If the innovation ( Zk -H"Y;.-) for an observation is greater than the gate dimensions, the observation fails the gate and hence it cannot be associated with the concemed prediction. If an observation passes a gate, it may be associated with the prediction at the center of that gate. In fact, observations for more than one target may pass a particular gate. In such cases ali these observations are associated with the single prediction. The Gating process can be viewed as the first level of screening out the unlikely prediction-observation associations. In the second level of screening, namely the assignment solver (discussed latter in section 3.7), a strictly one-to-one coupling is established between observations and predictions. The gate computation model is summarized below. Define Y to be the residual or innovation vector which is the difference between the actual measurement (observation) zk and the expected (predicted) measurement vector [Hf:; J.

In general for track i at scan k, (3.4) Now define a rectangular region such that an observation vector Zk (with elements zk 1 ) is said to satisfy the gate of a given track if ali elements Yu of residual vector Y; satisfy the relationship (3.5) ln equations (3.4) and (3.5) i is an index for track i, G signifies gate and l is replaced either by d or bye, whichever is appropriate (see equations 3.10 and 3.11). The term ar is the residual standard deviation and is defined in terms of the measurement variance a; and prediction variance a:__ . A typical choice for K Gl is [ K Gli!:3 .0 J. This large choice of gating Yk coefficient is typically made in order to compensate for the approximations involved in modeling the target dynamics through the Kalman filter covariance matrix [START_REF] Blackman | Design and analysis of modern tracking systems[END_REF], [START_REF] Brookner | Tracking and Kalman Filtering Made Easy[END_REF]. This concept cornes from the famous 3-sigma rule in statistics [START_REF] Eckel | Biostatistics Il: Biostatistical Modelling[END_REF]. According to this rule, for many reasonably symmetric distributions, almost ali of the population lies within three standard deviations of the mean. For the Gaussian distribution about 99.7% of the population lies within three standard deviations of the mean. We call the functions computing equation (3.10) and equation (3.11) as the Innov_d calculator and Innov_a calculator respectively. Equations (3.10) and (3.11) together put the limits on the residuals (innovations) yil<tl and yiko. In other words, the difference between an incoming observation and the prediction for target i must comply with equations (3.10) and (3.11) for the observation to be assigned to prediction i. The Gate Checker sub-function explained next, tests all the incoming observations for this compliance.

Gate Checker

The Gate Checker tests whether an incoming observation fulfills the conditions set in equations (3.10) and (3.11). Incoming observations are first considered by the Gate checker for updating the states of the known targets. Gate checking determines which observation-taprediction pairings are probable. At this stage the pairing between the predictions and the observations are not done in a strictly one-to-one fashion. A single observation may be paired with severa} predictions and vice versa, if equations (3.10) and (3.11) are complied with. In effect, the Gate Checker sets or resets the binary elements of an NxN matrix termed as the Gate Mask matrix M shown below, where N is the maximum number of targets that can be tracked.
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• • • mNN m;j = {1 if obsetvation i obeys {3.10) & (3.11) for trock j and predictions. To achieve this goal, the first step is to attribute a cost to every probable observation-prediction coupling. This is done by the Cost Generator block explained next.

Cost Matrix Generator

The Mask matrix with ali the probable pairs is passed on to the Cost Matrix Generator which attributes a cost to each pairing. The costs associated with ali the pairings are put together in a matrix called a cost matrix C as shown below.

The cost cu for associating an observation i with a prediction j is the statistical distance d~ between the observation and the prediction when mu is 1. The cost is an arbitrarily large number when mu isO.
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Cost Matrix Generator

This can be illustrated as in Figure 24. The improbable links are attributed with the highest cost (oo) while the probable ones are attributed with costs proportional to the amount of their respective probabilities.

The Cost Matrix C corresponding to this example is as follows. Note here that higher the number of the improbable links the easier and quicker it is for the assignment sol ver to arrive at the final one-to-one coupling.

The distance d~ is calculated as follows.

Defi ne (3.12) Here i is an index for observation i andj is the index for predictionj in a scan, sii is the residual covariance matrix. The statistical distance d~ is the norm of the residual vector y ii calculated as (3.13) Equation (3.12) can be written in its matrix formas To resolve these kinds of conflicts, the cost matrix is passed on to the Assignment Solver block which treats it as the weil known assignment problem in operations research (55).

Assignment Solver

The assignment solver determines the finalized one-to-one pairings between predictions and observation. The pairings are made in a way to ensure minimum total cost for ali the finalized pairings. The finalized observation-prediction pairings are passed on to the tracking filters which use them for estimating the current states of the targets and predicting their next states as weil as the error covariance associated with these predictions.

The assignment problem is modeled as follows.

Given a cost matrix of elements c = {cij} find a matrix X = {xu},

such that subject to n m C = ~ ~ CïjX;j is minimized i•l j-1 l ~ Xij = 1\f~ LXij =l'Il j
Here X;j is a binary variable used for ensuring that an observation is associated with one and only one prediction and a prediction is associated with one and only one observation. This requires X;j to be either 0 or 1 i.e. xu E{O,l}.

Matrix X can be found by using various algorithms. The most commonly used among them are Munkres algorithm [START_REF] Munkres | Algorithms for Assignment and Transportation Problems[END_REF] and Auction algorithm [START_REF] Zavlanos | A Distributed Auction Algorithm for the Assignment Problem[END_REF]. We use the former in our application due to its inherent modular structure. The algorithm is described by the flowchart shown in Figure 26. The Munkres (or Hungarian) algorithm describes a procedure for manually findlng out the solution by starring (0*) and priming (0') the zeros and covering (drawing aline over) and uncovering the rows and columns of a two-dimensional cost matrix. This is because in 1957 when the algorithm was published, computers were not accessible to many people. As shown in the flow chart the algorithm consists of six discrete steps.

To arrive at the final solution, it passes repetitively from step 3 through step 6 as indicated by the three loops in the chart. We implemented these steps as separate procedures called up iteratively by the main program. The functioning of the main program and these procedures is explained by the pseudo code that follows the flowchart. Step 1

For every row of the cost matrix, find the smallest element.

Subtract it from every element in its row.

stepnum = 2

Step2

Find a zero z in the resulting cost matrix.

If there is no starred zero already in its row or column, star this zero (Z 7 Z*).

Continue until all zeros have been considered.

Stepnum 3

Step3

Cover every column containing a Z*.

Terminate the algorithm if all columns are covered. In this case, the locations of the Z* entries in the matrix provide the solution to the assignment problem.

done true stepnum = 7

Track Maintenance

Ali the steps described in sections 3.3through 3.7 are repeated indefinitely in the loop for every radar scan. However, there are certain cases where sorne additional steps have to be taken too. Together these steps are calied Track Maintenance. The Track Maintenance sub-block consists of three functions namely the New Target Identifier, the obs-less Gate Identifier and the Track !nit/Del.

In real conditions there would be one or more targets that are detected in the current radar scan which did not exist in the previous scans. On the other band there would be situations where one or more of the targets being tracked would no more be in the radar range. In the first case we have to ensure if it is realiy a new target. The New target Identification sub-block takes care of such cases. In the latter case we have to ascertain that the target bas really disappeared from the radar FOV. The Observation-less Gate Identification sub-block is responsible for dealing with such situations.

A new target is identified when an observation fails ali the already established gates i.e. when ali the elements of a row in the Mask matrix M are zero as shown by the matrix M in Figure 28. It shows that observation 2 failed ali the existing three gates and bence it might be a new entry into the radar FOV. Such observations are potential candidates for initiating new tracks after confirmation. The confirmation strategies we use in our work are based on empirical results cited in [START_REF] Blackman | Design and analysis of modern tracking systems[END_REF] and [START_REF] Brookner | Tracking and Kalman Filtering Made Easy[END_REF]. In context of this work, 3 observations out of 5 scans for the same target initiate a new track. The new target identifier starts a counter for the newly identified target. If the counter reaches 3 in five scans, the target is confirmed and a new track is initiated for it. The counter is reset every five scans thus effective] y forming a sliding window.

The disappearance of a target means that, in a scan, no observations fall in the gate built around its predicted state. This is indicated when an entire column of the Mask matrix is filled with zeros as shown by the matrix Min Figure 29. This example shows that the gate around prediction 3 doesn't have any observation in it for the current scan. Gate1 Gate2.
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Gate3 The tracks for such targets have to be deleted after confirmation of their disappearance. The disappearance is confirmed if the concerned gate goes without an observation for 3 consecutive scans out of 5. The obs-less gate identifier starts a counter when an empty gate is detected. If the counter reaches 3 in three consecutive scans, the disappearance of the target is confirmed and its track is deleted from the system. The counter is reset every five scans.

The Track /nit/Del function prompts the system to initiate new tracks or deletes existing ones when needed.

Chapter Summary

In this chapter we focused on the application design and the mathematical modeling aspects of our embedded MTT system. We described the general concepts of tracking systems and explained the meaning of the terms and definitions used in the literature. We described the general principles of tracking by starting single tracking system (STT) and demonstrated how multiple target tracking is different and more complicated than the STT. We also explained the necessity to use MTT and not STT for automotive safety applications.

After discussing the salient features of a text-book M1T system, we moved on to the specifies of our own MTT application design. We explained how the application is broken down into individual components for modular implementation. We described the function of each module of the application and explained the interrelations among them. We developed a mathematical model for each module of the application. We used illustrations and flowcharts to make the models easily comprehensible. In the next chapter we look into the software development and software to hardware mapping aspects of the system.

Application to Architecture Mapping

In this chapter we discuss the hardware architecture for the MIT system. We discuss hardwired and MPSoC based system implementations and we argue that the MPSoC architecture is more suitable for our application than a hardwired architecture. After presenting some statistics about the profile of the application, we describe the application-ta-architecture mapping and propose a preliminary MPSoC architecture for the system. The proposed architecture is not yet optimized and serves as a starting point for a more refined and optimized system that is the subject of the next chapter.

Introduction

In the previous chapter we discussed our approach to the design and modeling of the MTT application. After developing the application model we are now ready to move on to the architectural aspects of the co-design flow. This chapter focuses on the hardware aspects of the co-design flow. Figure 30 highlights the two stages of the co-design methodology that we investigate in this chapter. First we describe the architectural aspects of the system. Then we explore the mapping of various application tasks to the architectural elements of the system.

In section 2 we discuss the possible system implementation choices and their pros and cons. Section 3 describes the implementation platform, the design environment and the associated tools. In section 4 we present a brief introduction to the Niosll soft-core processor which is used as the main building block for the MPSoC architecture. The software development structure of the application is described in section 5. Section 6 gives a view the system software used in the implementation. In section 7 the software profiling is presented where we lay emphasis on the application runtime statistics and memory requirements. This section plays an important role in determining the right processor configuration and memory subsystem for the application. Section 8 outlines the software to hardware mapping process. In section 9 the preliminary system architecture is presented. We summarize the chapter in section 10. 

Implementation Choices

In Chapter 1 and Chapter 2 we discussed the advantages of using FPGA as system implementation platform. When using FPGA as system implementation platform, we have two implementation choices. We can design a fully hardwired system using the FPGA fabric for the system hardware. Altematively, we can code the application in software and map it to soft-core processors implemented in. Both these choices have their pros and cons.

Dedicated hardware for the entire application would process it with a high speed. While it is theoretically possible, there are sorne serious practical issues associated with such a move. First, fully hardware implementations result in a large hardware size. Our experience with hardware implementation of a 2-state Kalman filter showed that it consumes about 29000 logic elements (LEs). This accounts for 48% of the logic available in the Stratix II 2S60 FPGA (56) that we use. Embedded systems need to be small sized, light and very efficient with respect to power consumption. FPGA hardwired systems are known for high power consumption proportional to their size and speed. Another demerit of the hardwired design is its lack of flexibility and scalability. A minor upgrade or debugging in the functionality of the application necessitates a complete revisit of the system hardware. The time required for dealing with such issues is prohibitively long and increases the system's time to market.

For implementing complex embedded applications, designers tum to soft-core processor based architectures. To meet the speed requirements of an application, multiple processors are often employed parallel execution of various application tasks. Hardware accelerators can be added up to share the load with the concemed processor for tasks where speed is absolutely critical. As a result, heterogeneous architectures incorporating functional units optimized for specifie functions are commonly employed to design embedded systems. Power efficiency is another driving force having a strong impact on the architectures of embedded systems. The move to MPSoC design elegantly addresses the power issues faced on the hardware side. Using multiple processors that execute at lower frequency, results in comparable overall performance in terms of instructions per second while allowing designers to slow down the clock speed. Clock speed is a major constraint for low power designs [START_REF] Schirrmeister | Multi-core Processors: Fundamentals, Trends, and Challenges[END_REF]. FPGA based MPSoC architectures are flexible and scalable. Hardware or software upgrades and modifications to the FPGA based MPSoCs are quick and with negligible NRE cost.

For the reasons stated above, we preferred to use an FPGA based MPSoC architecture using soft-core IPs to meet the performance and flexibility requirements of our system.

Implementation Platform and Design Environment

We used Altera's Nios II development kit (Stratix II 2s60 edition) as the implementation platform. This choice is driven by the fact that at the time when we started our work, this kit best matched the requirements our application. The Sratix II 2S60 FPGA (56) contains 48,352 ALUTs (60,000 Logic Elements) available to the designer for system implementation. The LE is the smallest unit of logic in Altera FPGA architecture. Bach LE features the following components (58): Altera provides its Nios II soft-core embedded processors and the accompanying Embedded Design Suite (EDS) with its development platforms. The EDS offers a user friendly interface for designing Nios II based processor systems. A library of ready to use peripherals and customizable interconnect structure facilitates creating complex systems quickly. The EDS also provides a comprehensive API for programming and debugging the system. The profiling tools included in the EDS help identify bottlenecks and critical points in an application.

Altera's embedded design suite (EDS) consists of the tools shown in Figure 31. The system design starts with creating a Quartus II project. Once the project is created, we invoke the SOPC Builder tool from within Quartus Il. The SOPC Builder tool is used to instantiate predesigned components and IPs and to interconnect these components. We can choose processors, memory interfaces, peripherals, bus bridges, IP cores, interface cores, common microprocessor peripherals and other system components from the SOPC Builder IP library. We configure the base addresses, the interrupt request priorities (IRQs), for the instantiated components.

The Nios II Processor

The Nios II [START_REF]Nios II Processor Reference Handbook[END_REF] processor is a general-purpose RISC processor core. lt is a configurable soft-core processor, as opposed to a fixed, off-the-shelf microcontroller. We can add or remove features on a system-by-system basis to meet performance goals. The main architectural features of the Ni os II processor are illustrated in Figure 32. The processor architecture supports a register file, consisting of thirty two 32-bit generalpurpose integer registers, and up to thirty two 32-bit control registers. There are no floating-point registers provided in the Nios II architecture. lt supports single precision floating-point instructions as specified by the IEEE Std 754-1985. These floating-point instructions are implemented as custom instructions. Niosll custom instructions are custom logic blocks adjacent to the ALU in the processor's data path. Using custom instructions, the designer can reduce a complex sequence of standard instructions to a single instruction implemented in hardware. The Niosll software development tools recognize C code that takes advantage of the floating-point instructions present in the processor core. When the floating-point custom instructions are

The Nios II Processor present in the target hardware, the Niosll compiler compiles the code to use the custom instructions for floating-point operations, including addition, subtraction, multiplication, division and the newlib math library [START_REF]Using Nios II Floating-Point Custom Instructions[END_REF]. The basic set of floating-point custom instructions includes single precision floating-point addition, subtraction, and multiplication. Floating-point division is available as an extension to the basic instruction set.

The Nios II architecture supports separate instruction and data buses, classifying it as Harvard architecture. The data master port connects to both memory and peripheral components, white the instruction master port connects only to memory components. Both the Instruction Master Port and the Data Master Port can be cached. The caches are direct mapped; low address bits represent cache lines. The caches follow the write through policy, data is written into extemal memory as well as the cache.

The processor can prefetch sequential instructions and perform branch prediction. The instruction master port always retrieves 32 bits of data. It relies on dynamic bus-sizing logic contained in the system interconnect fabric. By virtue of dynamic bus sizing, every instruction fetch retums a full instruction word, regardless of the width of the target memory.

The Niosll processor cornes in three customizable implementations. These implementations differ in the FPGA resources they require and the speeds they can achieve. Niosll/e is the slowest and consumes the least logic white Niosll/f is the fastest and consumes the most logic resources. Niosllls falls in between Niosll/e and Nioslllf with respect to speed and logic resource requirements. Table 1 shows the salient features of the three implementations of the Niosll core. The code written for one implementation of the processor runs on any of the two other implementations with a different execution speed. Hence switching from one processor implementation to another requires no modifications to the software code.

Structuring Application for Parallel Mapping

MPSoC architectures draw their strength from the paralielism in the application. Parallelism can be exploited at low level (fine-grain paralielism) or at high level (coarse-grain). Low level refers to parallelism at the operand level, i.e. where parts of a statement can be executed concurrently. High-level parallelism refers to different tasks being executed concurrent] y. To take ad van tage of the high level paralielism, the application is broken down to individual independent parts or tasks that can run in paraliel. Then these tasks are mapped to the processors customized to their individual performance needs. lt is important to balance the load on ali the processors to ensure that ali the processors work concurrently rather sorne working while others wait in an idle state. While dividing the application into tasks, the computational independence within the tasks must be taken into consideration. By computational independence we mean whether a task is self contained or it is dependent on other tasks for its computational needs. The former helps obtain better performance by overlapping computation and by minimizing the communication overhead. In the latter case, the task has to exchange data with other tasks and has to wait for inputs from them. Therefore such tasks cannot be executed in parallel because of the dependencies among them.

We divided the application into independent software routines which compute individual application tasks localiy with minimal inter-task communication. The software structure foliows directly from the system's mathematical mode] explained in the previous chapter. We first simulated the application in Matlab to verify that it works correctly. When the correct functionality of the application was verified, we coded it in ANSI C. Figure 33 shows software structure of the application and the interrelation among the tasks. 1t can be seen in the figure that most of the computation is contained within the tasks. There are no half-cooked results exchanged among the tasks to ensure minimum inter-task communication.

The Kalman Filter (KFl) uses Matrix Multiplication (Mat Mul), Matrix Addition (Mat Add), Matrix Subtraction (Mat Sub), Matrix Inversion (Mat Inv) and Matrix Transposition (Mat Trans) sub-functions. Ali the operands in these functions are floating point numbers. For processing ali the targets in parallel, as many filters are required as the number of targets being taken into account. In Figure 33, for processing 20 targets, 20 filters are shown in the software Gate Checker evaluates ali the innovations for association with existing predictions and screens out the improbable associations. This involves comparison operations for the distance and angle measurements with their respective predicted values. The Cost Matrix Generator (Cost Gen) function is grouped with the abovementioned functions to form the upper level Gating Module.

The Track Maintenance (Track Maint) contains three sub functions; Track Initiate (Track Init), Track DeJete (Track Del) and Track List Update (Track List). The Track Maintenance module sends the updated track list out to the Kalman filters.

System Software

Processor based systems use two types of software, the application software and the system software. We described the structural details of the application software above. In this section we present a brief description of the system software we use.

Many Nios II systems have simple requirements where minimal operating system or small footprint system software such as Altera Hardware Abstraction Layer (HAL) or a third party real-time operating system is sufficient. We use the HAL as the system software for our design, firstly because its memory footprint is small and secondly we prefer independence of any third party tools. Moreover an operating system not based on HAL requires a Memory Management Unit (MMU) to work correctly. An MMU can only be used with a Nios III F processor. This means that to use a full-featured real time operating system, every processor in the system has to be a Ni os II/F each with an MMU. This would increase the size of the hardware unnecessarily.

The HAL, illustrated in Figure 34, is a lightweight runtime environment that provides a simple deviee driver interface for programs to communicate with the underlying hardware. The HAL application program interface (API) is integrated with the ANSI C standard library. The API facilitates access to deviees and files using familiar C library functions.

HAL deviee driver abstraction provides a clear distinction between application and deviee driver software. This driver abstraction promotes reusable application code that is resistant to changes in the underlying hardware. Changes in the hardware configuration automatically propagate to the HAL deviee driver configuration, preventing changes in the underlying hardware from creating bugs. In addition, the HAL standard makes it straightforward to write drivers for new hardware peripherals that are consistent with existing peripheral drivers [START_REF]Guidelines for Developing a[END_REF].

generates more instruction-cache misses than are generated by the original source code. The Gprof can be used to profile the entire system; the user cannot designate specifie sections of the code for profiling. The Gproftool is more suited for understanding interdependencies among the functions in the application rather than the knowing the exact runtimes of the individual functions.

The second method of profiling the application is the use of a performance counter peripheral provided in Altera's IP library. The performance counter peripheral is a block of counters in hardware that measure the execution time taken by the user-specified sections of the application code. It can monitor upto seven code sections. A pair of counters tracks each code section. A 64-bit time (dock-tick) counter counts the number of dock ticks during which code in the section is running while a 32-bit event counter counts the number of times the code section runs. These counters accurately measure the execution time taken by the designated sections of CIC++ code. Performance counters are best suited for measuring the Iatencies of the application modules more accurately.

We used both of the tools to have a thorough understanding of the behavior of an application. We used the GProf primarily for determining interdependencies among the application tasks and the Performance Counter peripheral for measuring accurately the execution time of each task. The relevant results of the profiling are discussed in the following sections.

.1. Application Runtime

The runtimes of the various application tasks obtained through profiling are summarized in Table 2 through Table 4. Ail the latencies, cited in these tables, are obtained by running the application modules on a Niosllls processor (cf. Table 1) with 100MHz dock, 4KB instruction cache and using an off-chip SDRAM deviee. We use this configuration as a baseline for executing ali the modules of the application. This allows us to observe the relative speeds of the modules on afixed platform. Later on, we adapt the configurations individually for each of the processors according to the requirements of the respective modules they are running. The latencies shown here offer an intuitive insight into the runtime behavior of the application and from the basis of our mapping and optimization strategies.

Table 2 shows the breakdown of the execution time taken by the Kalman filter. The top level function is indicated by KALMAN and the other functions are those called by the KALMAN for the filtering process. The main contributor to the execution time is the Matrix Multiplication sub function. There are two reasons for this; first, because this function involves multiplication operations on the floating point numbers and second, it is invoked eleven times for a single iteration of the filter. The global runtime for the filter is 15.146 ms. In its present non-optimized form, for processing 20 targets in parallel we replicate the filter 20 times to meet the realtime requirements of the application. Step 1 4.266

Step 2 1.396

Step 3 8.519

Step 4 61.221

Step 5 18.986

Step 6 51.850

Table 3 lists the runtimes for the Munkres algorithm and its sub-functions. The two sub functions that contribute the most to the overall execution time are Step4 and Step6. These two sub functions are called by the top level function repeatedly in a nested loop. Step5 is the third most costly sub function with respect to execution time. We shall concentrate on these sub functions in the optimization process discussed in the next chapter.

The Gating Module runtime and those for its sub-functions are given in Table 4. The Cost Mat Gen (Cost Mat Gen) represents the runtime of the whole Gating Module. The other functions are sub-functions called repeatedly by the Cost mat Gen to construct the cost matrix. The Innov_d and Innov_a calculators involve operations on floating point numbers which are repeated 400 times for every scan. Hence they take 135ms and 113 ms respectively to complete these operations. The Gate Checker involves only comparison operations for the distance and angle measurements bence the relatively shorter execution time. The Gate Mask Generator makes up the higher level function for the two innovation calculators hence it includes the time taken by them. The Cost Matrix Generator's execution time 291.818 ms, is roughly the sum of the execution times for the Gate Checker and the Gate Mask Generator. These sub functions are regular and repetitive which makes their behavior predictable. In the next chapter we shall see that these characteristics make these sub functions tractable and easy to optimize. The contents of the three tables discussed above show the runtimes of the application tasks and their sub functions. The breakdown of the runtimes helps us concentrate on the most time consuming sub functions of the tasks during the optimization process. The above discussion Memory Requirements also highlights the intricate interrelations among the sub functions of the tasks. This is the reason we keep these sub functions together within the mentioned tasks. Processing resources are allocated to the tasks according to their needs. Memory allocation, discussed next, is one of these needs.

.2. Memory Requirements

To be able to appropriately allocate memory to various application modules, we estimated their memory requirements. Although these estimates were obtained using the specifie Nios II platform, they are not necessarily dependent on that platform. The memory requirements will still be the same if we use another platform. We also estimated the memory used by various sections of the code for each module. We determined the amount of memory required by the .text section, .data section, the stack section and the heap section of the program. Typically, the .text section is the part of the object module that is reserved for the program instructions. The .data section contains initialized static data e.g. in C, initialized static variables, string constants etc. The heap section is used for dynamic memory allocation. The stack section is used for holding the retum addresses (program counter) when function calls occur. As we shall see in the next chapter, the memory sizes of these sections play an important role in the optimization process of the system.

Table 5 summarizes the memory requirements of various modules. Our initial analysis (cf.

Table 2) shows that it takes 15.146 ms to execute the filter on a standard Nios II processor with 4KB instruction cache. To take a maximum of N targets into account, the Kalman filter is replicated N times. AU the N filters process the targets in parallel. Assuming, for the moment that a standard Nios II would run the filter, we allocate N identical processors executing the Kalman filters in parallel in the preliminary architecture.

Obviously this proposition has to be optimized to be viable. We will discuss the optirnization strategies for the fil ter in the next chapter.

The Munkres algorithm consists of six distinct iterative steps. It takes 147.197 ms (cf. Table 3) on a standard Nios II processor to loop through these steps for ali the targets. Hence the Munkres algorithm cannot be combined with any of the other functions. In the preliminary architecture we assign the Munkres algorithm to a separate processor. Here again we have to accelerate the processing to achieve higher speed.

The sub functions of the Gating Module (innov-a, innov _d, gate mask gen, gate check) are always in constant communication with one another. So we group these three blocks together and map them onto a single processor to minimize inter-processor traffic and communication dela ys. A voiding excessive inter-processor communication is desirable for reducing hardware and software complexity as well as for energy conservation.

The three blocks of the Track Maintenance sub functions (track init, track del, track list) individually don't demand heavy computational resources, so we grouped them together for mapping onto a processor. 6 summarizes the assumed contents of the preliminary architecture. At this stage the number of processors, processor types, the cache sizes and local memory sizes are only assumed based on the initial analysis presented above. In the next chapter we shall present a summary the finalized architecture after the optimization process.

Preliminary System Architecture

One of our mapping requirements is to make the system scalable so that the Ievel of performance is maintained as the number of processors and the problem size are increased. We believe that tracking 20 targets at a time are more than enough for automotive applications. However the need for tracking more targets can be easily incorporated into the system provided the sensor can handle more than 20 targets. Ali the application modules are parameterized so that increasing or decreasing the number of targets is as simple as modifying one parameter in the application header file. At the architecture lev el, ali we need to do is to increase or decrease the number of filters accordingly. Since the filters run in paraliel, changing the number of filters would not affect the overall system latency.

Preliminary System Architecture

The proposed multiprocessor architecture includes different implementations of the Nios II processor and various peripherals as system building blocks. We distributed the application over different processors as distinct functions communicating among them in producer-consumer fashion as shown in Figure 36. The architecture uses severa! Nios II processors as distinct function units for execution the main tasks of the application.

The system consists of Nios II processor core(s), a set of on-chip peripherals, on-chip memory and interfaces to off-chip memory and peripherals, ali implemented on a single FPGA deviee. As can be seen in this figure, every processor hasan Instruction cache (1-cache), a Data cache (D-cache), a local memory.

The local on-chip memories are intended for storing the performance critical sections of the code. The sizes of these memories depend on the requirements of the particular application module a processor is executing. The total memory requirement must be less than the available memory in the target FPGA. On-chip memories support dual port accesses, aliowing two masters to access the same memory concurrently. The size and width of the memory are userconfigurable. Since the on-chip memories are connected to the data master of the Nios II processors, we set the data width of the on-chip memory to 32 bits, the same as the data-width of the Nios II data master.

Since the execution time of the individual functions and their latencies to access a shared memory connected to a common bus are not identical, dependence exclusively on common bus would become a bottleneck. Additionaliy, since the communication between various functions is of producer-consumer nature, complicated synchronization and arbitration protocols are not necessary. Hence we chose to have a smalilocal on-chip memory for every processor and a large off-chip memory deviee shared by ali the processors for non critical sections of the application modules. As a result the individual processors have lower latencies for accessing performance critical sections of the code located in theirs their local memories.

A Nios II processor core might include one, both, or neither of the cache memories. In the final system, the caches will be either I-cache and D-cache or D-cache only. The sizes of the caches and the local memories are not known at this stage. In the next chapter we shall demonstrate how to systematically determine the optimal sizes of these caches and the local memories. Besides, we will also show which processors must have both I-cache and D-cache and which ones need only D-cache in a latter section.

Clock distribution

Figure 36:

The Non-Optimized Initial Architecture

External clock

Every processor communicates with its neighboring processors through buffers allocated out of the on-chip memory blocks in the FPGA. This arrangement forms a system level pipeline among the processors. At the lower levet, the processors themselves have a pipelined Preliminary System Architecture architecture. Thus the advantages of pipelined processing are taken both at the system level as weil as at the processor level. An additional advantage of this arrangement is that changes made to the functions running on different processors do not have any drastic effects on the overall system behavior as long as the interfaces remain unchanged. The buffers are flushed when they are full and the data transfer resumes after mutual consent of the concemed processors. The loss of information during this procedure doesn't affect the accuracy because the data sampling frequency, as set by the radar PRT, is high enough to compensate for this minor loss.

The interconnect links shown in Figure 36, are not traditional buses. Four separate interconnects are used to ensure parallel processing. Using a single interconnect in a multiplexed fashion would serialize the inter-processor communication. The interconnect links are based on A val on switch fabric. The Ni os II processor uses the A val on switch fabric as the interface to its embedded peripherals. The switch fabric may be viewed as a partial cross-bar where masters and slaves are interconnected only if they communicate. The A val on switch fabric, with the slaveside arbitration scheme, enables multiple masters to operate simultaneously. Slave-si de arbitration moves the arbitration logic close to the slave where it determines which master gains access to the slave in the event that multiple masters attempt to access it at the same time. The slave-side arbitration scheme minimizes the congestion problems characterizing the traditional bus [START_REF]Avalon Switch Fabric[END_REF]. Both data memory and peripherals are mapped into the address space of the data master port of the Nios II processors.

The architecture also includes an off-chip 32MB DDR SDRAM as shared memory connected to ali the processors through the system-interconnect fabric. Access to the non critical sections of the code and data located in the off-chip shared memory is routed through an SDRAM controller core. Simultaneous accesses to the shared memory by more than one master are overseen by the slave-side arbitration logic.

The extemal oscillator on our board provides a 50 MHz dock. The PLL (phase-locked loop) is used for generating 100 MHz dock signais, distributing dock signais to different deviees in the design and reducing dock skew between deviees.

The architecture presented in Figure 36 not a definitive one. It will undergo modifications to reduce its hardware size, improve the processing speeds of various modules and optimize its on-chip memory requirements. In its current form its overall processing speed is too slow to meet the application realtime requirements. The cache sizes, local on-chip memories have not been optimized yet. After applying the optimizations discussed in the next chapter, the system is accelerated to meet the application realtime deadlines while at the same time its hardware size is reduced. Reduced hardware size is one of the main characteristics of embedded systems. Reducing the hardware size reduces the system energy consumption. Although the system is expected to be powered up by the vehicle power supply, yet the consumed energy is dissipated in the form of beat which shortens the service life of the system.

Chapter Summary

This chapter dealt with the hardware aspects of the hardware/software co-design flow for system design. We reasoned that the MPSoC implementation is preferable over the hardwired implementation for our application. We presented a brief view of the Nios II soft-core processor which we are using as the processing element in the MPSoC. We described the FPGA platform, the design environment and the associated tools used for the Nios II based MPSoC.

We presented the software development model of the application and emphasized that application is divided into independent paraliel software routines. Then we summarized application profiling tools and sorne presented selected results of the profiling. Application software profiling led us to the initial software to hardware mapping scheme. We proposed an initial architecture for the system built around the Nios II cores. In the preliminary architecture ali the processors are supposed to be the standard Nios Ills implementations. The standard Nios II (Nios II/s) is the medium version of the implementations. The initial design assumes 23 Nios II processors in the architecture.

We proposed locally connected on-chip memories are provided to store the performance critical sections of the code for each processor. The optimum sizes of the on-chip local memories will be determined and discussed in the next chapter after optimization.

We proposed instruction and data caches for the processors. The caches sizes will be tailored up to the requirements of the particular needs of the application task a processor is executing. Sorne of the processors will have either one of the two caches or none at ali in the finalized design. The non-critical sections of the code are stored in the off-chip shared SDRAM.

We discussed that the processors are connected to each other in a producer-consumer ring and they synchronize themselves through buffers. We described the interconnection structure of the architecture. The masters and slaves in the architecture are connected by the A val on interconnect fabric. The fabric is a partial cross-bar structure where only those slaves are connected to a master to which it makes transactions. In case of simultaneous access by more than one masters to a shared slave, the interconnect fabric employs a slave-side arbitration logic to deal with congestion and contention.

The architecture presented here is not yet definitive. lt will undergo improvements and modifications based on optimization results. Details of these optimizations are given in the next chapter.

Introduction

In the last chapter we discussed the application software structure and its mapping to the hardware architecture. We proposed a provisional architecture for the multiprocessor system. In this chapter we explain the final steps of the co-design flow [START_REF] Jantsch | A NOC Architecture and Design Methodology[END_REF]. As depicted in Figure 37, we discuss the performance analysis and optimization aspects of the flow. In section 2 we discuss the constraints we have deal with while planning our optimization strategies. In section 3 we first outline the optimization strategies and then explain their significance one by one. Here we formulate strategies for speeding up the system while using the minimum possible computational resources. We apply these strategies in succession to ali the modules of the application until we get the desired results. We deal with application tasks one by one and scrutinize them for potential improvements. Section 4 we explain how the optimizations are applied to Kalman filter module. We clarify the reasons for continuing the optimization process even when the runtime of the filter is less than the radar PRT. In section 5 we use the optimization steps to customize the configuration of the processor for executing the Gating Module. Section 6 passes the Munkres algorithm through the optimization steps and introduces a new strategy for arriving at the final goal. Section 7 explains why the Track Maintenance module does not need to be optimized. In section 8 we conclude the chapter by illustrating the final optimized system architecture. We also summarize the final execution times of ali the application modules and the architectural components of the complete system. We end the chapter by presenting the amount of FPGA resources used by each component of the architecture.
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Performance Analysis and Optimization

Using the profiling tools discussed in the preceding chapter, we analyzed the application to obtain necessary statistics about its performance. Since we require the system to be as compact Constraints as possible, we aim to keep the sizes of the Niosll cores and their peripherals to the minimum and thereby minimize the usage of FPGA resources. These resources include the on-chip memory, the processor cache sizes and the configurable logic (LEs) etc. The initial performance analysis of the application modules shows that the realtime deadlines of the application cannot be met without optimization of the architecture, especially in the case of the Gating Module and the Assignment Solver. To be able to successfully optimize the system, we need to be aware of the constraints to be observed. The main constraints that we have to adhere to are the following.

• We need the overall response time of the system to be less than the radar PRT. The radar PRT for the radar unit we are currently using is 25ms. Since the application modules as discussed in the preceding chapter run in parallel, this means that the slowest application module must have less than 25ms of response time. Renee the first objective is to meet this deadline.

• The on-chip memory and the caches are allocated out of the memory blocks available on the FPGA. Both the on-chip local memory and the cache sizes have a tremendous impact on the execution speed of the system. However the Stratixll EP2S60 FPGA (56), we are using for this system contains a total of 318KB of configurable on-chip memory. This memory has to make up the processors' instruction and data caches, their internai registers, peripheral port buffers and locally connected dedicated RAM or ROM. Consequently we have to find the right sizes of the on-chip local memories and the caches to optimize the hardware size as weil as the execution speed. Accordingly we have to be vigilant not to overuse the on-chip memory and to keep the total on-chip memory requirement of the application below the 318KB limit. We can use off-chip memory deviees but they are not only very slow in comparison to on-chip memory but they also have to be shared among the processors. Controlling access to shared memory needs arbitration circuitry which adds to the complexity of the system and further increase the access time. On the other hand we cannot totally eliminate the off-chip memory for the reasons stated above. In fact we must balance our reliance on the off-chip and on-chip memory in such a way that neither the on-chip memory requirements exceed the acceptable limits nor the system becomes too slow to cope with the time constraints.

• We must choose our hardware components carefully to minimize the use of the programmable logic on the FPGA. The size of the system must not exceed the 48,352 LUTs (60,000 Logic Elements) available in the FPGA. Small hardware size is still desirable even if we have the liberty to use a bigger FPGA. Excessive use of programmable logic not only complicates the design and consumes FPGA resources but also increases power consumption. For these reasons we optimize the hardware features of the processors and leave certain options out when they are not absolutely essential for meeting the time constraints.

Optimization Strategies

To meet the constraints discussed above, we laid out our optimization plan as follows:

• Select the appropriate processor type for each module to execute it in the most efficient way.

• ldentify the optimum cache configuration for each module and customize the concerned processor accordingl y.

• Explore the needs for custom instruction hardware for each module and implement the hardware where necessary.

• ldentify the performance critical sections in each module and map them onto the fast onchip memory to improve the performance while keeping the on-chip memory requirements as low as possible.

• •

Look for redundancies in the code and remove them to improve the performance .

Investigate if the C2H compiler hardware can effectively accelerate certain functions. If so, use the C2H compiler.

The abovementioned optimization steps entail exploration of the "space" of ali possible configurations of the MPSoC architecture and choosing the one that best meets the constraints. To reduce the time for the exploration, we tackle the hardware configurations of the processors individually one after the other. In the following pages we explain these strategies and their impacts on the system performance.

Choice of Niosll Implementation

The Niosll processor cornes in three customizable implementations. These implementations differ in the FPGA resources they require and the processing speeds they can achieve. Niosll/e is the slowest and consumes the least logic white Niosll/f is the fastest and consumes the most logic resources. Niosllls falls in between Niosll/e and Niosll/f with respect to speed and logic resource requirements. However, the code written for one implementation of the processor will run on any of the other two implementations with a different execution speed. Hence switching from one processor implementation to another requires no modifications to the software code. The choice of the right implementations is dependent on the speed requirements of a particular application module and the availability of sufficient FPGA logic resources. Optimization of the architecture trades off the speed for resource saving or vice versa depending on the requirements of the application.

Another deciding criterion for selecting a particular implementation of the processor is the need for instruction and data caches. For example if we can attain the required performance for an application module without any cache, the Niosllle would be the right choice for running that module. On the other hand, if a certain application module needs instruction and data cache to achieve a desired performance, Niosll/f would be chosen torun it.lf only instruction cache can enable the processor to run an application module with the desired performance, we shall use Niosll/s for that module. The objective is to reach the desired speed with the least possible amount of hardware.

1-cache & D-cache

The Niosll architecture supports cache memories on both the instruction master port (instruction cache) and the data master port (data cache). The cache memory resides on-chipas an integral part of the Niosll processor core. The cache memories can improve the average memory access time for Niosll processor systems that use slow off-chip memory such as SDRAM for program and data storage. The need for higher memory performance (and by association, the need for cache memory) is application dependent. Many applications require the smallest possible processor core, and can trade-off performance for size. The cache memories are optional. A Niosll processor core might include one, both, or neither of the cache memories. Furthermore, for cores that provide data and/or instruction cache, the sizes of the cache memories are user-configurable. The inclusion of cache memory does not affect the functionality of programs, but it does affect the speed at which the processor fetches instructions and reads/writes data. Both the Instruction and Data Cache sizes for Niosll/f can range from 0 to 64KB in discrete steps of 0, 2KB, 4KB, 8KB, 16KB, 32KB and 64KB.

Optimal cache configuration is application specifie; therefore every processor has its own optimal instruction and data cache sizes. For example, if a processor system includes only fast, on-chip memory (i.e., it never accesses the slow off-chip memory), an instruction or data cache is unlikely to offer any performance gain. As another example, if the criticalloop in a program is 2 KBytes, but the size of the instruction cache is 1 KByte, an instruction cache does not improve execution speed. In fact, an instruction cache may degrade performance in this situation [START_REF]Nios II Processor Reference Handbook[END_REF].

In view of these assertions and the constraints discussed above we must choose the optimum instruction and data cache sizes that are necessary for achieving the desired performance for each application module. We analyzed the behavior of each module vis-à-vis the Instruction Cache and the Data Cache sizes. The objective here was to see how the performance changes with the changing sizes of the caches. We charted the runtime of each task with respect to different cache configurations to find where the bottlenecks lie.

Floating point custom instructions

Optimal caches can speed up the execution of an application module to a certain extent. Sometimes further speedup is required to meet execution time requirements of the module. 

On-chip Vs off-chip memory sections

Time-critical software algorithms can be accelerated by adding custom instructions to the Niosll processor instruction set. Niosll custom instructions are custom logic blacks adjacent to the ALU in the processor's data path. Using custom instructions, we can reduce a complex sequence of standard instructions to a single instruction implemented in hardware. The custom instruction logic connects directly to the Niosll arithmetic logic unit (ALU) as shawn in Figure 38.

The floating-point custom instructions, optionally available on the Niosll processor, implement single precision floating-point arithmetic operations in hardware. They accelerate floating-point operations in Niosll CIC++ applications. The set of custom instructions is available on all Niosll cores. The basic set of floating-point custom instructions includes single precision floating-point addition, subtraction, and multiplication. Floating-point division is available as an extension to the basic instruction set. The Niosll software development tools recognize C code that takes advantage of the floating-point instructions present in the processor core. When the floating-point custom instructions are present in the target hardware, the Niosll compiler compiles the code to use the custom instructions for floating-point operations, including addition, subtraction, multiplication, division and the newlib math library [START_REF]Using Nios II Floating-Point Custom Instructions[END_REF].

The best choice for a hardware design depends on a balance among floating-point usage, hardware resource usage, and performance. While the floating-point custom instructions speed up floating-point arithmetic, they add substantially to the size of the hardware design. When resource usage is an issue, we rework the algorithms to minimize floating-point arithmetic.

On-chip Vs off-chip memory sections

In an ideal situation we would keep all the memory sections of a program in the fast onchip memory. From Table 5 in Chapter 4, we can see that the memory footprints of the whole code and the .text sections for all the modules are too large to be accommodated in the on-chip memory. This implies that we have to rely greatly on the off-chip SDRAM or SSRAM.

However accessing the off-chip memory is inherently far slower than the on-chip memory. Moreover, different processors would have to go through the arbitration logic to access the shared off-chip memory deviee which would further increase the memory access time. So, on one band we cannat use the off-chip memory exclusively since it would slow the system down beyond the acceptable limits, on the other band, we have to minimize our dependence on on-chip memory due to its scarcity. We have to strike a balance in our reliance on dedicated on-chip memory and the shared off-chip memory without compromising the performance too much.

By default, HAL-based systems are linked using an automatically generated linker script that is created and managed by the Nios II IDE. The linker script controls the mapping of code and data within the available memory sections. lt creates standard code and data sections (.text, .data, and .bss), plus a section for each physical memory deviee in the system. Typically, the .text section is the part of the object module that is reserved for the program instructions. The .data section contains initialized static data e.g. in C, initialized static variables, string constants etc. The .bss (Black Started by Symbol) section defines the space for non initialized static data. The heap section is used for dynamic memory allocation e.g. when malloc() in C or new() in C++ are used. The stack section is used for holding the retum addresses (program counter) when function calls occur. ln general, the Nios II design flow automatically specifies a sensible default memory partitioning. However, we wish to change the partitioning in special situations. For example, to enhance the performance we can place performance-critical code and data in the on-chip RAM with fast access time. In these cases, we have to manually specify which code belongs in which section.We can control the placement of .text, .data, heap and stack memory partitions by altering the Niosii system library or BSP settings. By default, the heap and stack are placed in the same memory partition as the .rwdata section. We can place any of these sections in the onchip RAM if needed to achieve the desired performance. But due to the large footprint of the .text section we prefer it to be placed in the off-chip memory. However, by transferring the less memory-hungry sections into the on-chip memory, we can get considerable performance boost. For example if a certain module makes an abundant use of malloc() or new(), placing the heap section in the on chip memory can improve its speed by large margin. Similarly if a module makes frequent calls to other functions, putting the stack section in the on chip memory can help reach a higher execution speed for that module.

C2H Compiler

Altera provides a tool called C2H compiler [START_REF]Nios II C2H Compiler User Guide[END_REF] which is intended to transform C code into a hardware accelerator. We tried this tool but it tumed out that it has sorne serious limitations. It can be used for codes operating only on integers. So, for the reasons discussed in section 6.5, we could use it only for the Munkres algorithm. But the tool can accelerate only a single function and that function too must not involve complex computations. So we could not use it for step4 and step6 of the algorithm where we needed it most. The tool simply stops working when we try to accelerate either of these two functions without producing any error message.

In case of small functions (like step3 of the algorithm) where it does work, the hardware size of the accelerator is almost half that of the processor to which it is attached while the speedup is nominal. In brief, if this tool is improved to remove these limitations it can be very useful. In its current form it is far from its stated goals.

We applied the strategies described in sections 3.1 through 3.4, to ali the modules of the application. In the following sections we discuss the results of these strategies.

Kalman Filter Optimization

Using the strategies outlined above for optimizing the Kalman filter, we first have to choose the right Niosll implementation for the filter. This choice depends on the cache requirements of the program. In the next subsection we discuss the cache requirements of the processors for executing the Kalman filter.

Cache Analysis

Figure 39 shows the influence of !-cache and D-cache sizes on the processor time of the Kalman filter algorithm running on Nioslllf processor with lOOMHz clock and using off-chip RAM. It can be observed here that when D-cache size is increased from 0 to 2KB the execution time drops, but it remains almost unchanged beyond 2KB D-cache. The execution time drops slightly when the !-cache size is increased from 4KB to 8KB and it drops profoundly when the!cache size is increased to 16KB. Beyond 16 KB !-cache, the execution time remains almost unchanged with increasing !-cache size. This indicates 16KB of instruction locality and 2KB of data locality in the filter code. Based on these observations, we can say that 16KB 1-cache and 2KB D-cache are the optimum choices for the processors executing Kalman filters. However, for tracking a maximum of 20 obstacles we need 20 of these processors. Viewed in isolation, 16KB may not look much but we have to look at the global memory demands of the system. Compiling the system with a Nioslllf having 16KB !-cache and 2KB D-cache, we found that the total on-chip memory used by this configuration accounts for 7% of that available on our FPGA. Obviously replication of this system composition 20 times, is not feasible. Besides, we have to keep in mind that the other processors in the system also have on-chip memory requirements which have to be met by the available on-chip memory. This calls for an optimization whereby we must reduce this excessive usage of on-chip memory. .....
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One way to bring about this optimization is to reduce the number of processors required to run the Kalman filters without reducing the number or targets being tracked. For this we need to speed up the processors so that more than one target can be treated by a single processor. The runtime behavior of the Kalman filter with respect to various cache configurations can be observed more clearly in Figure 40. Whatever the 1-cache or D-cache size, the processor time never exceeds 15ms. Even with 4KB 1-cache and no D-cache the processor time is below the 25ms threshold set by the radar PRT. On the contrary, if we use the optimal cache configuration the execution speeds up remarkably.

Figure 41 shows the performance of the Kalman filter on Niosllls with 16KB 1-cache, 2KB D-cache, lOOMHz clock and using off-chip memory exclusively. Even with ali memory sections in the off-chip deviee and using no floating point custom instructions, the run time is around 2.2ms. Hence, with the optimal configuration (16KB 1-cache and 2KB D-Cache cf.

Figure 41) it is possible to reduce the number of processors for Kalman filters and thus conserve valuable FPGA logic as weil as the on-chip memory. With 2.2ms processor time we can theoretically use 2 processors for 20 Kalman filters without exceeding 25ms time limit. But in practice we would have to add sorne further intelligence into the system to deal with this housekeeping of 10 filters on a single processor. This would, obviously, add sorne latency into the system and we would exceed the 25ms time limit for 10 filters. The hardware size per processor would increase but the gain in size due to the reduction in the number of processor will heavily outweigh this increase. Moreover, due to the reduced number of processors, a great deal of on-chip memory will be conserved. These issues merit further investigation and we do the same in the next two subsections.

Floating Point Custom Instructions

To be able to minimize the number of processors for executing the filters, we must accelerate the processing to the maximum possible limit. For this we tested the floating point custom instructions' impact on Kalman filter's performance. Figure 42 shows the results the tests. The overall runtime for the filter drops from 2.2ms to 1.3ms when floating point custom instructions hardware is used. This accounts for a speedup of 41% in comparison with the scenario where no floating point custom instructions are used. The most significant improvement is witnessed in case of the Mat Mul sub-function. This improvement can be attributed to two factors. One, Mat Mul relies heavily on floating point multiplication and second, it is invoked 11 times in a single iteration of the filter algorithm. Floating point custom instructions are the most effective in such situations hence this remarkable improvement. This speedup cornes at the cost of a bulkier hardware. The usage of ALUTs increases by 8% when floating point custom instructions are used. With the 1.3ms runtime, we can now theoretically use 2 processors running 10 filters each in 13ms, ignoring the time for managing the housekeeping part. This multiplexing logic can become simpler if we could manage to use one processor for the filters instead of two. For this we would have to speed up the processing even further. In the following subsection we explain the procedure for achieving this speedup.

On-Chip Memory

We investigated the prospects of improving the runtime for the filter further through on chip memory placement. The outcome of this investigation is summarized in Figure 43. As before, Kalman represents the overall algorithm and the other bars are its constituent subfunctions. These results are obtained with 16KB !-cache and 2KB D-Cache.

Moving only the stack section to the on-chip memory reduces that runtime from 2.2ms to 1.9ms without using the floating point custom instructions and from 1.3ms to 1.01ms with the floating point custom instructions. Since the stack section of the memory requires only 2KB, the cost in terms of memory size for this speedup is nominal. We achieve this speedup by connecting 2KB of on-chip dedicated memory to the processors for the stack. Now we canuse only one processor for 20 filters with time to spare for the housekeeping part of this set-up.

Since the housekeeping is not a computation intensive task, we use a Niosll/e processor for it alongside the Nioslllf processor running the filters. We cali this processor the Housekeeper and its job is to feed the data for 20 targets in sequence to the filtering processor and to synchronize the information exchange with the Gating Module and the Assignment Solver. The housekeeper takes around 3ms to accomplish its task. Thus we reduce the number of processors two from the initially proposed 20 Niosll/s processors for the Kalman filters. The finalized architecture contains a Nioslllf processor for filtering and a Niosll/e for the housekeeper. 

Gating Module Optimization

As in the case of the Kalman fil ter, the optimum cache configuration is necessary for choosing the right Niosll implementation for the Gating Module as weil as for improving its speed. In section 5.1 we analyze the behavior of the Gating Module for various l-each and Dcache combinations.

Cache Analysis

Figure 44 reveals the influence of !-cache and D-cache sizes on the processor time of the Gating module running on Niosll/f with lOOMHz clock. A remarkable speedup is observed when !-cache size changes from 4KB to 8KB and again when it changes from 8KB to 16 KB. Beyond 16KB the speedup for the !-cache is insignificant. The D-cache size does not matter muchas long as it is more than zero. Figure 45 gives a clearer view of the runtime of the Gating Module with respect to the !-cache and D-cache size variation. The overall processor run time is minimum (70ms) when !-cache size 1 16KB and D-cache size is 2KB. 
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Based on these observations 16KB !-cache and 2KB D-cache are the optimum cache sizes for the gating module. The total on-chip block memory usage for this processor sums up to 8% of that available on the FPGA.

Using these cache sizes we charted the performance of the processor while varying number of obstacles from 2 through 20 as shown in Figure 46. The Innov _d and Innov _a calculators are two subroutines used by the Gate Mask Generator function to calculate distance and angle innovations. The sum of the times taken by these two subroutines is roughly equal to the time taken by the Gate Mask Generator. The Gate Checker and Gate Mask Generator functions are in tum called up by the Cost Mat Gen which is the top level function of the Gating module. The Cost Mat Gen represents the overall behavior of the whole Gating module. This behavior of the gating module is observed when we use the off-chip SDRAM exclusively.

Although the overall run time for 20 obstacles is minimum (70ms) in the given circumstances, yet it is weil above the 25ms mark we are aiming for. We have to improve the processor performance to get to the desired execution time of 25ms. 

Floating Point Custom Instructions

With the optimum cache configuration the Gating Module executes in 70ms on the Nioslllf processor. To accelerate the execution of the Gating Module, we inserted the floating point custom instruction hardware into the processor. Figure 47 shows the performance of the Gating module after the floating point custom instructions are added to the processor. Using the floating point custom instructions with Nioslllf processor for the Gating module improves the overall performance by approximately 50%. Comparing this figure with Figure 46 in section 5.1, we notice two interesting differences. The first, and the very obvious one, is the drop in the overall runtime from 70 ms to 37 ms for 20 obstacles. The second important difference is that the curve for the Gate Checloer, which was earlier above the Innov _a and Innov_d curves, is now below them. This shift in behavior is due to the fact that in addition to the floating point multiplication and division, the Gate Checker uses the sqrt() function of the ANS! C math library. The sqrt() itself relies on multiply and divide operations intemally. Hence the floating point custom instructions improve the performance of the Gate Checker more than the Innov_a and Innov_d which don't use sqrt(). Although by using the floating point custom instruction we managed to bring the execution time from 70ms down to 37ms yet we are still above the desired 25ms threshold hence we need further improvement in the processor performance.

On-Chip Memory

To further improve the performance of the Gating Module, we placed various me mory sections of the function in the on-chip RAM. Figure 48 shows the result of these memory placements. The lowest runtime of 22ms is achieved by keeping ali the memory sections in the on-chip memory. But this would require the on-chip RAM to be at least 61KB. This combined with the on-chip memory taken up by the 1-cache and D-cache sums up to 79KB. This is a high

Munkres Algorithm Optimization

requirement considering the limited on-chip memory availability. The next best solution, 23 ms, is obtained when we place the stack and the heap sections in the on-chip memory. There is a little speed loss as compared to the conditions when ali the memory sections are on chip but in this case only 3KB of dedicated on-chip memory would be sufficient to get this speedup. This is clearly a huge gain in on-chip memory saving compared to the earlier requirement of 79KB. So the Gating module can operate adequately by using a Nioslllf processor with 16KB 1-cache, 2KB D-cache, 3KB dedicated on-chip ram and floating point custom instructions.

Munkres Algorithm Optimization

Following the same methodology as for the preceding modules, we first determine the optimum cache configuration for the Munkres Algorithm and then make the choice of the sui table processor implementation. For further improvements we consider floating point custom instructions and on-chip placement of various memory sections.

Cache Analysis

Using a range of instruction and data cache sizes, Munkres algorithm manifested the behavior as presented in Figure 49. The first observation here is that when the D-cache size is more than 0, the runtime drops deeply, whatever the 1-cache size. Beyond 2KB the influence of the D-cache is not so striking. The runtime decreases gradually with increasing 1-cache size. Looking more closely at the figure we can eliminate 4KB from the list of the competitors for the 1-cache size. Figure 50 shows the runtime more clearly against the cache configurations. An 8KB 1-cache along with 16KB D-cache offers the minimum execution time of 71.07ms. Hence this is the optimum 1-cache/D-cache combination for this module. A Niosll system with these cache sizes uses 9% of the on-chip block memory available on the FPGA.

Figure 51 shows the performance of the algorithm using this system composition for number of obstacles ranging from 2 to 20. Stepl through Step6 are the constituent sub-functions of Munkres algorithm. The Cali to Munkres denotes the total runtime of the algorithm including the six sub-functions. We notice here that the two main contributors to the total runtime are Step4 and Step6. This is because these two sub-functions contain nested loops and they are invoked multiple times during the solution finding process. The overall runtime, for 20 obstacles, is 71ms which is higher than the 25ms bound. We need to further optimize the system to meet the speed constraint of the application. For this we use floating point custom instructions in the processor to accelerate floating point operations in the algorithm. 

Number of Targets

Munkres Algorithm performance with 8KB 1-cache and 16KB D-Cache

Floating point Custom Instructions

Floating point custom instructions bring Munkres algorithm's execution time from 71ms down to 47 ms for 20 obstacles as shown in Figure 52. Although this is a 33.8% improvement over the previous performance, yet 47ms is almost twice the time we aim to attain i.e. 25ms. This urges us to look for other ways and means to improve this performance. ln pursuance of this goal we try out severa} methods as explained in the following sections. 
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Munkres Algorithm and Memory Sections

Placing various memory sections on chip does not have a considerable influence on the Munkres algorithm performance, although there is sorne improvement as shown in Figure 53. We gain only 6ms if all the memory sections are put on chip. The next best gain is achieved by putting the heap section on chip. This is due to the use of a few malloc() statements in the code. While neither of these gains is enough to reduce the execution time below 25ms, the former is not even feasible given the memory footprint of the algorithm. We have to look elsewhere for a possible and viable solution. The following section explains our approach for dealing with this concern. Munkres algorithm operates on the cost matrix iteratively to find an optimum solution. It looks for the minimum value in every column and row of the cost matrix such that only one value in a row and a column is selected. It cornes out with a solution when the sum of the selected elements of the cost matrix reaches its minimum. This procedure remains the same whether the elements of the cost matrix are floating point numbers or integer numbers. We found out that if we truncate the fractional part of the floating point elements of the cost matrix, the final solution is the same as in the case of the floating point cost matrix. This is demonstrated in Figure 54 which shows screen shots of the results generated by the algorithm for both types of cost matrices.

Hence we can replace the floating point cost matrix by a "representative" integer cost matrix without sacrificing the accuracy of the final solution. The advantage of this manipulation, however, is that with integer cost matrix the mathematical operations become simpler and faster, reducing the runtime of the algorithm by a large margin. Additionally, using an integer cost matrix precludes the need for the floating point custom instruction hardware. Consequently the size of the processor is reduced by 8%. We made necessary modifications to the codes of Munkres algorithm to incorporate this rearrangement. A glimpse of the advantage of these transformations can be seen in Figure 55 which shows the optimal cache configuration for the integer version of Munkres algorithm. Certainly, 8KB !-cache and 16KB D-cache are still the best choices, the point worth noticing here is that with this cache configuration using an integer cost matrix, the runtime for the overall algorithm drops down to 24ms as opposed to the 82ms with floating point cost matrix. So the final solution to Munkres algorithm's defiance is to use a cost matrix with integer elements and map the algorithm to a Niosii/F processor with 8KB !-cache and 16KB D-cache. After the success of the last optimization of the Munkres algorithm discussed in section 6.4, we investigated the other modules for similar optimizations. We found out that this technique cannot be extended to ali the modules of the application for the following reasons.

Discussion

• The Kalman filter calculates the predicted states, prediction error covariance, estimated states and estimation error covariance for the targets. The variations in the values of these quantities, from one radar scan to another, are very small and they occur to the right of the decimal point. It takes hundreds of scans for these changes to carry over to the left of the decimal point. Hence the integer parts of these floating point numbers remain unchanged for hundreds of scans. Nevertheless, these small variations play an important role not only in the fil ter itself but also in the operation of the Gating Module.

• In the filter, the estimated state and estimation error covariance are fed back to the prediction stage of the filter. The prediction stage uses them as the basis of predictions for the next scan. If we use only the integer parts of these quantities, there would be no change in the estimated values for hundreds of scans. Obviously, this would introduce an error into the predictions. Due to the cyclic feedback between the prediction and correction stages of the fil ter, an avalanche of errors would be generated in a few seconds.

• The predicted states and the prediction error covariance are also used by the Gating Module to locate the centers of the probability gates and to calculate the difference between the measured and the predicted target coordinates i.e. innov _d and innov _a respectively. If we use only the integer parts of the predicted and measured coordinates, there would be two catastrophic errors introduced into the system. First, because of the non-changing integer parts of the predicted coordinates, the gates would be centered at the same fixed locations for hundreds of scans. This would mean that all the targets remained stationary these scans, which is an unlikely proposition. Second, for the same reasons, innov_d and innov_a would remain zero for hundreds of cycles. Zero innovations mean that the predicted coordinates are exactly identical to the measured coordinates which is practically impossible.

• The Gating Module uses the prediction error covariance to calculate the dimensions of the probability gates. Using the constant integer part of the covariance would fix the gate dimensions to a constant size for hundreds of scans. This again, is unrealistic and would inject even more error into the system.

• For the Munkres algorithm (the Assignment Solver) the case is different. The Munkres algorithm is the last step of the application loop. By the time the application reaches this step, most of the floating point operations are already completed resulting in the Cost Matrix. The output of the Munkres algorithm is the Matrix X which has either ls or Os as its elements. The 1 's in the matrix are used to identify the most probable observationprediction pairs. No arithmetic operations are performed on the Matrix X. For these reasons replacing floating elements of the cost matrix with representative integers neither changes the output of the algorithm nor affects the accuracy of the overall application.

Track Maintenance

So far we have not mentioned the Track Maintenance block of the M1T application in the context of optimization. The reason for this deliberate omission is that very short processing time is required for this block. A simple Niosll/e processor executes this block in 8ms. In future we may even remove this processor and run the Track Maintenance block as a second task on one of the other processors.

Chapter Summary

In this chapter we presented the procedure we adopted for optimizing our application specifie MPSoC architecture. Profiling the application helped us in allocating processing resources to the application modules and in planning our optimization strategies. Using three different hardware implementations of the Niosii soft core embedded processor and other components; we devised a heterogeneous MPSoC architecture for the system.

For formulating our optimization strategies we also identified the constraints to be met. The constraints include the radar PRT time limit for the application execution, the limited amount of available on-chip memory and the size of the system hardware. To avoid overusing the on-chip memory we optimized the I-cache and D-cache sizes for each application module. Determining the I-cache and D-cache requirements not only helped us in accelerating the system but also in selecting the right configuration of the Niosii processor for each module.

The optimum cache configurations reduced the execution times by at least 50%. The Gating Module and the Assignment Solver needed further acceleration to arrive at the eut-off time set by the radar PRT. We incorporated floating point custom instructions hardware in the relevant processors to accelerate them further. Floating Point custom instructions reduced the runtime from 70ms to 37ms (47% speedup) for the Gating Module and from 71ms to 47ms (34% speedup) for the Assignment Sol ver. To bring these times below the radar PRT, we needed to speed these modules up even more.

Shifting the whole application to the fast on-chip memory could greatly improve the speed however it is not feasible due to the large memory footprint of the application and the limited amount of the on-chip memory. We experimented with placing different memory sections like the stack and the heap in the fast on-chip RAM. Placing only the stack and the heap memory sections on-chip for the Gating Module, brought the runtime down to 23ms which is below the PRT eut-off time and hence we settled for it.

For the Assignment Solver (Munkres algorithm) we gained only 6ms in runtime by putting the entire module in the on-chip memory. This gain is neither enough to get us to our goal nor we can afford to put the entire module on-chip. Exploring the algorithm we found that the final output of the algorithm remains unchanged if we drop down the fractional part of the floating point elements of the input Cost Matrix. This treatment of the input matrix reduced the runtime for the algorithm below the PRT without compromising the accuracy of the final solution.lt also allowed us to remove the floating point custom instructions and thereby save 8% of the processor hardware size. Processing speed was not the only objective in choosing the system components and the optimization strategies; we sought to keep the on-chip memory utilization and the hardware size in check too. We optimized the amount of processing resources to reduce the hardware size.

The optimized system architecture is shown in Figure 56. In comparison to the initial architecture presented in the Chapter 4, its hardware size is very low since the number of processors for the Kalman filters is reduced from 20 to only one. An additional Niosll/e processor, the Housekeeper is added to the architecture. The two Niosll/e processors have neither caches nor local memories. The rest of the processors use caches as weil as local memories for to achieve the desired performance.

Table 7 summarizes the finalized system configuration. Note here that the 20ms runtime for the Kalman filters accounts for processing 20 targets one after the other by a single processor. The Munkres algorithm is the module with highest latency of 24ms yet it is lower than the time limit set by the radar PRT. The total on-chip memory usage adds up to 27% of that available in the FPGA. Thus there is enough memory left for future optimizations. The pie chart shown in Figure 57 summarizes the FPGA resources used by the different system components.
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The system easily fits in the Stratixll FPGA with enough space spared for the future evolution of the system. 

Conclusion and Outlook

Scientific research and development flourish through the unending quest for finding better and better solutions to scientific problems. The end of one endeavor marks the start of another. However, to keep the interest alive and to quantify the progress, certain milestones are set to be achieved in a predefined timeframe. The objectives set for the three years of this work were large/y accomplished. In this chapter we briefly recapitulate on the highlights of our efforts and the ir results achieved in the last three years. In the second half of the chapter we provide directions for the possible extensions of the work.

Conclusion

Road accidents are one of the most lethal problems the humanity is confronted with. The need for finding viable solutions to the problem is becoming more and more imperative with every passing day. Researchers, automotive manufacturers and government authorities around the world are continuously looking for answers to this problem. The conventional safety systems, onboard a vehicle, are mostly intended for post-crash damage minimization rather than accident avoidance. Research has shown that half of the accidents can be reduced if a driver is alerted to an impending collision a fraction of a second in advance. As a result various kinds of systems have been proposed for warning the driver of an approaching danger. These systems are collectively called Driver Assistance Systems (DASs). Most of the existing DASs, though helpful, are too limited in their functionality to be fully effective. Moreover, in most cases they are too costly to be employed on a large scale. The lack of efficiency of these systems can be attributed to the design principles and implementation techniques of these systems. The implementation technology is also one of the causes of the exorbitant costs of these systems.

In this work our objective was to provide an efficient, low cost and evolvable solution to the road accident problem. To propose an efficient solution, we analyzed the principal scenarios of road accidents. Examining accident statistics we found that a great majority of the vehicle crashes result from frontal collisions. So minimizing frontal collisions would significantly decrease road accidents. To predict a frontal collision sufficiently in advance, the obstacle must be detected from a distance. Moreover, for the DAS to be really effective, an imminent collision must be sensed in ali circumstances, especially in poor weather where the DAS is needed most. A radar sensor fulfills both the prerequisites of long range obstacle detection and all-weather operation. Rowever, only detecting obstacles can be useful to a certain extent. To establish whether an obstacle is on a collision course with the host vehicle, its trajectory must be foreseen before it cornes close to the host vehicle. Determining the trajectory of a moving object requires its dynamic behavior to be monitored over a period of time. In a real traffic scenario more than one obstacle can pose a danger to the host vehicle. Renee trajectories of multiple objects have to be monitored simultaneously. An apparatus which is capable of performing such functions is called a Multiple Target Tracking (MTT) system.

In Chapter 3 of this document we explained the fundamental concepts of the MTT application. The principles of MTT have been used in aviation applications like Air Traffic Control (A TC) etc. Rowever, the specifie operating environment of automotives is very different than that of airbome vehicles. Therefore, an MTT application designed for aviation use cannot be directly applied to automotives. Renee we specifically designed an MTT application for use in automotives. We modeled the application mathematically and then structured it into easily manageable software functions and sub-functions.

While theoretically an MTT system offers one of the best answers to the road accident problem, its practical implementation is not a trivial task. It involves complex computations and consequently, needs a long processing time. Rowever to alert a driver to an approaching danger in real time, the computations must be performed very rapidly. We use multiple processors to share the computation Joad and thereby reduce the processing time. Multiple processors running in parallel not only speed up computation but also address the power consumption issues of the embedded systems. Due to these advantages many multiprocessor platforrns have been developed on commercial scale, for various applications. Commercially available multiprocessor platforms have fixed hardware architectures making it impossible to customize them for an evolving application. Apart from the rigidity of their architectures, the commercially available multiprocessor platforms are very costly too. Modem day embedded systems must be flexible enough to evolve according to the demands of the end user and they must have low cost.

We took ali these aspects into consideration while designing the architecture of our system. In Chapter 4, we presented the mapping of our MIT application to the multiprocessor architecture of the system. We took care to group the application sub-functions in such a way that the dependency of computations, among various groups, is minimized. This way the communication among the groups of functions is as low as possible. We label these groups as modules and map these modules to individual processors to forman interim architecture for the system.

We chose FPGA as the implementation platform for our multiprocessor system. FPGAs offer the flexibility needed for the ever evolving embedded systems and they are very cost effective. A multiprocessor system implemented in an FPGA makes its architecture flexible and reconfigurable while the processors in the architecture can be reprogrammed when needed. Thus FPGA based multiprocessor systems guarantee flexibility in hardware as weil as in software. The hardware flexibility of our multiprocessor architecture owes its existence, mainly to the use of soft-core processors. Soft-core processors are IP cores defined in a Hardware Description Language (HDL) in which many architectural parameters can be customized at system design time. The architectural parameters are chosen according to the requirements of the application to be executed on the processor. Th us their hardware size, processing speed and configuration can be optimized at design time. Optimization of the architecture leads to the reducing the system hardware size and bence its energy consumption. Moreover, reducing the hardware size allows us to fit the system in a smaller FPGA to reduce the cost of the system.

In Chapter 5, we described the optimization process for improving our preliminary architecture. Our goal was to minimize the hardware size while maximizing the speed within possible limits. These seemingly contradictory objectives were accomplished by using various optimization techniques. The strategies included optimizing processor configurations like their cache sizes, size of dedicated local memories, custom instructions and placements of various memory sections in the on-chip or off-chip deviees. These strategies were successful enough to reduce the number of processors to five from the initially proposed 23. We also managed to bring the overall processing time to below the radar PRT (Pulse Repetition Time). The whole system fits in a contemporary medium size FPGA leaving enough space for future enhancements and functionalities.

2.

Outlook

While the work accomplished the envisaged objectives set at the start, several extensions are possible for future continuation. Future work can be divided into two categories; the first category is related to the application aspects and the second the category concems the architectural aspects of the system.

In the application related areas we foresee the following venues for exploration.
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• In the current forrn of the application we use the Kalman filter for the prediction and estimation of the target states. The Kalman filter perforrns with sufficient speed and accuracy for road safety applications. Nevertheless, other estimators may be explored for better speed and precision performance, especially in cases where obstacles are expected to exhibit nonlinear dynamic behavior e.g. in hilly regions. One of the algorithms that may be used in such situations is the Extended Kalman Filter (EKF) which takes into account the nonlinearities in the prediction and estimation processes. Another algorithm used mainly in robotics, is the Meanshift algorithm. This algorithm may be investigated for computational resource saving.

• In the current work we solve the assignment problem in the data association part of the application by using the Munkres algorithm. As we saw in Chapter 5, this algorithm takes the longest of ali the application modules after optimization. We see two opportunities of deeper study in this respect. The first possibility is to examine the Auction algorithm for solving the assignment problem in the data association function. The auction algorithm has been successfully used in fields like network resource allocation.

The second venue of research in this regard can be the incorporation of the radar cross-signature of the obstacles into the data association process. The radar signature depends on the size, the form and the angle of approach of an obstacle.

If the signature of an obstacle, in the current radar scan, matches with that of a previously detected obstacle, the association between the two can be confirmed with little further screening. This functionality can be implemented by a pattern matching algorithm. Used in conjunction with the any of the assignment solver algorithms, it would highly improve the accuracy of the data association process. At the same time, it would simplify the gating process as weil as the assignment solver due to a reduced cost matrix.

Outlook

On the architectural front, we foresee several tracks for future research.

• The first one concerns the mapping of the three most time-consuming subfunctions of the Munkres algorithm (step4 through Step6) onto individual processors while the rest of the algorithm is mapped onto a separate processor. This would form a cluster of four processors locally communicating in a synchronized fashion while the cluster would communicate asynchronously with the outer world. Such types of architectures are known as GALS (Globally Asynchronous Locally Synchronous) architectures. This would accelerate the execution of the algorithm while its internai operations would be isolated from the rest of the system. In the same manner the Gating Module can be distributed over three processors; one each for innov_a and innov_d and the third for the rest of the module.

• As an alternative, the floating point operations may be converted into fixed point operations. In fixed point format, the computational components become smaller hence the application may be implemented as hardwired circuitry in the FPGA.

Hardwired circuits operate at very high speed as compared to the software running on processors. However, sufficient accuracy must be maintained during the conversion from floating point to fixed point operations.

• Another approach can be to integrate dynamic reconfigurability into the system for adapting its architecture to the operating conditions at runtime. This involves in-depth investigation into the application as well as the operating environment of the system.

An example assignment problem solved by Munkres Algorithm.

Appendices

A. An example assignment problem solved by Munkres Algorithm. The first known MPSoC according to [START_REF] Wolf | Multiprocessor System-on-Chip (MPSoC) Technology[END_REF], is the Lucent Daytona shown in Figure 58. Daytona was designed by Lucent Technologies (a Bell Labs subsidiary) for wireless base stations. It contains four SPARC V8 CPUs connected to a high speed bus in a symmetric architecture. The CPUs intemally contain a 32-bit RISC, 64-bit SIMD, a 16 x 64 register file and a controller each. The four SPARC CPUs are enhanced with 16 x 32 multiplication, division step, touch instruction, and vector coprocessor. Each CPU a reconfigurable L1 cache and they snoop to ensure consistency. The CPUs share a common address space in memory. The high speed system bus supports split transactions. 

II. Nomadik

The ST Microelectronics Nomadik shown in Figure 59 is also aimed for mobile multimedia applications. It contains a combination of an ARM926 core and two programmable accelerators based on MMDSP+. The ARM is used as the host processor while one of the accelerators runs audio related functions and the other is dedicated to video processing. The architecture is built on classic bus. The architecture supports 16-bit, 24-bit fixed point and 32-bit floating point operations.

the components are interconnected using an AMBA bus. The processors communicate via mail boxes. The global memory is accessible to both processing units through a bridge between the AMBA bus and the memory. The architecture also contains a hardware FIFO (HWFIFO) directly connected to the local buses of the two processors. The HWFIFO is used for synchronization.

The memory address space of a processor subsystem is divided into two parts: 3MB for local memory and 1 MB for peripheral memories. Bus transactions with addresses lower than 4 MB (Ox00400000) are treated as accesses to local components, while those with addresses higher than 4MB are forwarded to the global AMBA bus via the bridge component of the processor subsystem.

This architecture allows two types of communication schemes between the processors: using the global memory and using the hardware FIFO. In the first communication scheme, one processor can deliver data to other processor though a global shared memory and send a synchronization event via a mailbox between different processors. The second possible communication scheme between the two processors is based on the hardware FIFO. The HWFIFO is a point-to-point communication between two processor subsystems. Besides the data transfer, the HWFIFO also implements the synchronization mechanism of the processors. The HWFIFO provides an alternative path for data transfer instead of using the shared memory and global network. Thus, it can decrease the required bandwidth of the global memory and network and speed up the communication.

The hardware nodes consist of distributed external memory subsystem (DXM) and peripherals on tile (POT) subsystem. The distributed external memory subsystem includes a global memory shared by the processors. The POT includes the system peripherals of the RISC processor, e.g. timer, advanced interrupt controller (AIC), but also the I/0 components of the tile such as the seriai peripheral interface (SPI).

The interconnection between these software and hardware subsystems is made via the AMBA bus. Hence, all the subsystems contain a bridge component to interface with the AMBA bus and a local bus for the local components interconnection.

The ARM processor can access directly the data memory and control/status registers of the DSP processor via the AMBA slave interface of the DSP subsystem. In the same way, the DSP core can read/write directly on the local memory of the RISC processor by initiating a DMA transfer. Moreover, the processors can store and load data to/from DXM connected to the AMBA bus. Therefore, this architecture allows different kinds of communication mapping schemes between the processors characterized by different performances.

C. The Nios II Processor Deatails Processor Architecture

The Nios Il architecture describes an instruction set architecture (ISA). The ISA in turn necessitates a set of functional units that implement the instructions. A Ni os II processor core is a hardware design that implements the Nios II instruction set and supports the functional units. A functional unit can be implemented in hardware, emulated in software, or omitted entirely. Every implementation achieves specifie objectives, such as smaller core size or higher performance. Implementation variables generally fit one of three trade-off patterns: more-or-less of a feature; inclusion-or-exclusion of a feature; hardware implementation or software emulation of a feature.

• More or less of a feature-For example, to fine-tune performance, the designer can increase or decrease the amount of instruction cache memory. A larger cache increases execution speed of large programs, while a smaller cache conserves on-chip memory resources.

• Inclusion or exclusion of a feature-For example, to reduce cost, the designer can choose to omit the JTAG debug module. This decision conserves on-chip logic and memory resources, but it eliminates the ability to use a software debugger to debug applications.

• Hardware implementation or software emulation-for example, in control applications which rarely perform complex arithmetic, the designer can choose for the division instruction to be emulated in software. Removing the divide hardware conserves on-chip resources but increases the execution time of division operations.

Register File

The Nios II architecture supports a register file, consisting of thirty two 32-bit generalpurpose integer registers, and up to thirty two 32-bit control registers. Currently there are no floating-point registers provided in the Nios II architecture.

Arithmetic Logic Unit

The Nios II ALU operates on data stored in general-purpose registers. ALU operations take one or two inputs from registers, and store a result back in a register. To implement any other operation, software computes the result by performing a combination of the fundamental operations.

Sorne Nios II processor core implementations do not provide hardware to support the entire Nios II instruction set. In such a core, instructions without hardware support are known as unimplemented instructions. The processor generates an exception whenever it issues an unimplemented instruction so the exception handler can call a routine that emulates the operation in software. Therefore, unimplemented instructions do not affect the programmer's view of the processor but they take longer to execute than the implemented instructions.

The Nios II architecture also supports user-defined custom instructions. The Nios II ALU connects directly to custom instruction logic, enabling the user to implement in hardware operations that are accessed and used like native instructions. Like custom peripherals, custom instructions allow the user to increase system performance by augmenting the processor with custom hardware. The soft-core nature of the Nios II processor enables the user to integrate custom logic into the arithmetic logic unit (ALU). Similar to native Nios II instructions, custom instruction logic can take values from up to two source registers and optionally write back a result to a destination register.

From the software perspective, custom instructions appear as machine-generated assembly macros or C functions, so programmers do not need to understand assembly language to use custom instructions.

• lnterrupts • Reset Distribution

Arbitration for Multi-master Systems

The system interconnect fabric supports systems with multiple master components. The system interconnect fabric provides shared access to slaves using a technique called slave-side arbitration. If a system contains multiple masters (e.g. two processors or a processor and a direct memory access (DMA) peripheral), SOPC Builder automatically generates slave-side arbitration technology to optimize multi-master system performance. Slave-side arbitration moves the arbitration logic close to the slave where it determines which master gains access to a specifie slave in the event that multiple masters attempt to access the same slave at the same time. The connection between a master and a slave exists only if it is necessary and is specified in by the designer. If a master never initiates transfers to a specifie slave, no connection is necessary, and therefore no logic resources are wasted to connect the two ports. It eliminates unnecessary master-slave connections.

Slave-side arbitration allows multiple masters to transfer data simultaneously. Unlike traditional host-side arbitration architectures where each master has to wait until it is granted access to the shared bus, multiple masters can simultaneously perform transfers with independent slaves with slave-side arbitration scheme. Arbitration logic stalls a master only when multiple masters attempt to access the same slave during the same cycle.

The interconnect fabric provides configurable arbitration settings, and arbitration for each slave is specified independently. For example, the user can grant one master more arbitration shares than others, allowing it to gain more access cycles to the slave. The arbitration share settings are defined for each slave independently.

Slave-Side Arbitration VS Traditional Shared Bus Architectures

In traditional bus architectures, one or more bus masters and bus slaves connect to a shared bus, consisting of wires on a printed circuit board or on-chip routing. A single arbiter controls the bus (that is, the path between bus masters and bus slaves), so that multiple bus masters do not simultaneously drive the bus. Each bus master requests the arbiter for control of the bus, and the arbiter grants access to a single master at a time. Once a master bas control of the bus, the master performs transfers with any bus slave. When multiple masters attempt to access the bus at the The Nios Il Processor Deatails same time, the arbiter allocates the bus resources to a single master, forcing all other masters to wait.

Figure 63 illustrates the bus architecture for a traditional processor system. Access to the shared system bus becomes the bottleneck for throughput. Only one master has access to the bus at a time, which means that other masters are forced to wait and only one slave can transfer data at a time. With the slave-side arbitration the system interconnect fabric uses multimaster architecture to eliminate this bottleneck. Multiple masters can be active at the same time, simultaneously transferring data with independent slaves. For example, Figure 64 demonstrates a system with two masters sharing a slave. Arbitration is performed at the slave. The arbiter dictates which master gains access to the slave if both masters initiate a transfer with the slave in the same cycle. The arbiter logic multiplexes all address, data, and control signais from a master to a shared slave. When multiple masters contend for access to a slave, the arbiter grants shares in round-robin order. At every slave transfer, only requesting masters are included in the arbitration.

The Nios ll Processor Deatails
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  In our application m is 2 as we have two elements d

	• The m x n observation matrix H in the measurement equation (3 .2) relates the
	current state to the measurement (observation) vector Zk. The dimension mis the
	number of elements in Zk.•

and o inZk.

• The term Vk in equation (3 .2) is a random variable representing the measurement noise.

  through (3 .3e).

	Prediction		Correction
	(Time Update)		(Measurement Update)
	State Prediction {3.3a}		Filter Gain {3.3c}
			State Estimation (3.3d}
	Error Cov. Pred. {3.3b)	
		:' .	Error Cov Estim {3.3e}
	Figure 21:	The Kalman Filter

  An adaptive look-up table (ALUT) is the cell used in the Quartus II software for logic synthesis for Stratix II and later deviee families. It is equivalent to about 1.25 LEs (59) .

	• A four-input look-up table (LUT), which is a function generator that can
	implement any function of four variables
	• A programmable register
	• A carry chain connection
	• A register chain connection
	• The ability to drive ali types of interconnects: local, row, column, register chain,
	and direct link interconnects
	• Support for register packing
	• Support for register feedback

Table 1 :

 1 Different Niosll implementations and the ir features ~

		Nlos 11/f	Nios Il/ s	Nios Il/ e
		Fast	Standard	Economy
	Descriptton Features			
	Pipeline	6 Stage	5 Stage	None
	H/W Multiplier and Barrel Shifter	1 Cycle	3 Cycle	Emulated in SW
	Branch Prediction	Dynamic	Static	None
	Instruction cache	Configura ble	Configura ble	None
	Data Cache	Configura ble	None	None
	logic Usage (Logic Elements)	1400-1800	1200-1400	600-700

Table 2 :

 2 Runtimes of the Kalman Filter Functions

	< ' v . ' , ; l'he ~~~ri Ftltet•: • " • :,
	Function	Runtime in ms
	KALMAN (top level Function)	15.146
	Matrix Addition	1.060
	Matrix Multiplication	11.871
	Matrix Subtraction	0.824
	Matrix Transposition	0.841
	Matrix Inversion	0.376

Table 3 :

 3 Runtimes of the Munkres Algorithm Functions

	.. «	'	<	. .	,• • , ' The Munkrès Algori.th.,_ •' 1-~ ' v , , ' , ' '). : ' , ,	.. ,,
		Function	Runtime in ms
	Cali to Mukres (top level Function)	147.197

Table 4 :

 4 Runtimes of the Gating Module Functions

The Cost Matrix Generator .

  

	Function	Runtime in ms
	Cost Mat Gen {top level Function)	291.818
	Gate Mask Generator	258.356
	lnnov_d calculator	135.592
	lnnov_a calculator	113.178
	Gate Checker	30.989

Table 5 :

 5 Memory requirements of various application modules

	Whole Code + lnitialized Data	81 KB
	.text Section	69.6 KB
	.data Section	10.44 KB
	The stack Section	approximately 2 KB
	The heap section	approximately 1 KB

Table 6 :

 6 Summary of the preliminary architectural components

	ModuleName	,,	Numberof. Processor. l..(athe Prooess~ns . :rYpe Slz~	o:.cilche Size	Local •.Memory	Runtime
	'Kàl.ban Fifters .:		20	Niosll/s	4KB	0	81KB	15.146ms
	' Gattng Module V' ,	, .	1	Niosll/s	4KB	0	63KB	291.81 ms
	. MunkréS~rithm • •	1	Niosll/s	4KB	0	62KB	147.19ms
	.. . tr~k'Maintènance ...	1	Niosll/s	4KB	0	0	1.5ms

Table

Table 7 :

 7 Finalized System Component Summary

					: " .	"	v	«~ )
						.,.: '	1	;~.
	Niosll/f	16KB	2KB	3KB	8%
	Niosll/f	16KB	2KB	3KB	8%
	Niosll/f	8KB	16KB	2KB	9%
	Niosll/e	0	0	0	1%
	Niosll/e	0	0	0	1%
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Gate Computation

In its matrix form for scan k and track i, equation (3.4) can be written for scan k as follows

This can be simplified down to (3.6) Consequently equation (3.5) gives (3.7) Since the state vector contains two elements d and e, the variances a,, a; and a:also The values of the a:components are chosen from the diagonal elements of P;-k i.e. aY:i = pi22 an aY8 = Pï44.

The residual standard deviations for the two observed state vector elements are defined as follows (3.8) (3.9)

Gate Checker

If an observation i fulfills both the conditions of equations (3.10) and (3.11) for a predictionj, the corresponding element mii of matrix Mis set to 1 otherwise it is reset to O. This process is illustrated pictorially in Figure 23.

The solid arrows marked with 1 's along them, indicate that the observations and the predictions they are linking, have passed the gating conditions of equations (3.10) and (3.11). Notice here that at this stage a single observation is linked with more than one prediction and vice versa. The dotted arrows with O's along them indicate that these pairs didn't pass the gating conditions and hence these pairings are not probable.

Predictions Observations

~------------1 ~------------1

;

-----1-----~----------ï--:

L ___________ J L ___________ J

The Gate Checking Process

The matrix M generated for this example is as follows.

Predictions ,....----"----

M -[ ~ : ~ ]fb~~atioos

The Mask Matrix M would typically have more than one 1 's in a column or a row indicating the possibilities of couplings. The ultimate goal for estimating the states of the targets is to have only one '1' in a row or a column for a one-to-one coupling of observations This simplifies down to (3.14) And the inverse of Sij is given as Using this inverse and equations (3.6), (3.13) and (3.14), d~ is calculated as follows. The cost matrix demonstrates a conflict situation where several observations are potential candidates to be associated with a particular prediction and vice versa. A conflict situation is illustrated in Figure 25. This figure depicts the general idea of the gating process. The three rectangles represent the gates constructed by the Gate Computation module. The predicted states are situated at the center of the gates. Certain parts of the three gates overlap one another. Sorne of the incoming observations would fall into these overlapping regions of the gates. In such cases all the predictions at the center of the concerned gates are eligible candidates for association with the observations falling in the overlapping regions. The prediction with the smallest statistical distance d~ from the observation is the strongest candidate.

Assignment Solver

, glve• soh..id.Qai The sequence eventually terminates with an unpaired Z 1 =Z 2 N for sorne N.

Unstar each starred zero of the sequence.

Star each primed zero of the sequence, thus increasing the number of starred zeros by one.

Erase all primes, uncover all columns and rows, stepnum = 3.

Step6

Let h be the smallest uncovered entry in the resulting cost matrix.

Add h to all covered rows.

Subtract h from all uncovered columns Without altering stars, primes, or covers, stepnum = 4

Assignment Solver

Running the Cost Matrix C through the Munkres Assignment algorithm we find the final solution Matrix X. An example of the solution matrix is given below which shows a result of the Assignment Solver for a 3x3 cost matrix. Predictions ~ 0 1 0

It shows that observation 1 is to be paired with prediction 2, observation 2 with prediction 3 and observation 3 with prediction 1. The pictorial illustration corresponding to this solution is given in Figure 27 which is self explanatory. Predictions ,------------1 Now that we know which observation to pair with which prediction, we are ready to do the estimations. For this purpose the finalized pairs passed on to the Kalman filters which estimate the states of the concemed targets and predict their states for the next cycle. The SOPC Builder produces a corresponding a software environment to develop applications. The software environment matches the target hardware including header files, custom libraries (peripheral routines), and design-specifie operating system (OS) kemels etc. Once the system integration is complete, RTL code is generated for the system. The generated RTL code is sent back into the Quartus II project directory where it is synthesized, placed and routed and finally an FPGA is configured with system hardware.

Implementation Platform and Design Environment

Mter having the FPGA configured with a Niosii based hardware, the we download the relevant application tasks to the processor(s) in the system. This is done in the NIOS II IDE. The IDE manages Niosii C/C++ application and system library or board support package (BSP) projects. The system library includes all the header files and drivers related to the system hardware components.

Structuring Application for Parallel Mapping

model. The Kalman Filters provide predicted states and prediction error covariance to the Gating Module. The filters calculate the estimated target states as the system output. The Hardware Abstraction Layer (HAL) Structure

Application Profiling

To map the software to the hardware in a systematic way and to be able to optimize the resulting architecture latter on, the application must be profiled. Before deciding to allocate processing resources to the application modules, we profiled the application to measure the latencies, resource requirements of each software module and dependencies among the modules. Two tools namely the GProfand Altera's Performance Counter [START_REF]Profiling Nios II Systems. s.l[END_REF] peripheral are provided by Altera for profiling applications. Both these two tools have their merits and demerits.

The Gprof profiler tool called nios2-elf-gprof can be used without making any hardware changes to the Nios II system hardware. This tool directs the compiler to add calls to the profiler library functions into the application code. The profiler provides a crude overview of the runtime behavior of the entire system and also reveals the dependencies among application functions. However adding instructions to each function cali for use by the GNU profiler affects the code's behavior in numerous ways. Each function becomes bulkier because of the additional function calls to collect profiling information. Collecting the profiling information increases the entry and exit time of each function. Pulling the profiling function into instruction cache memory The memory footprint of the application plays an important role not only in the execution speed of the application but also in the size of the system hardware and consequently in the power consumption. Furthermore, understanding the memory requirements helps design an optimum memory subsystem. Knowing the memory requirements allow us to decide on issues like memory system topology, dedicated or shared memory, the amount of on-chip and off-chip memory etc. These considerations will be explored in the next chapter.

Software to Hardware Mapping

With latencies and memory requirements of the application tasks known, we can now assign the tasks statically to different processing resources. Figure 35 shows the preliminary mapping scheme. This choice of mapping is motivated by several factors. We want torun the application tasks on separate processors to ensure as much task levet parallelism as possible. We keep the sub functions in the tasks together to minimize inter-processor communication. However, we don't want sorne of the processors overloaded white others are under-loaded. To ensure the load balance among the processors we optimize the architecture as weil as the application as discussed in the next chapter.

Analysis and Optimization

Embedded system in general and FPGA based embedded systems in particular must have the minimum possible hardware sizes. Minimizing the hardware size is primarily desirable for accommodating the systems in a smaller FPGA thereby reducing the total system cost. Power consumption is also proportional to the hardware size of the system. However the system must also me et the application realtime deadlines. Therefore in the process of reducing the hardware size, the system processing speed must not be compromised beyond tolerable limits. The optimization strategies that we discuss in this chapter, aim at finding the right balance between the system hardware size and its processing speed.

III. IXP2855

Externat.

, vo.~ 'Mitfti(,ry !<::::==========:::::::: :=::::==========~ OeviCe . The Intel IXP2855 is a network processor. It contains 16 multi-threaded micro-engines organized into two clusters to for data processing and an Intel XScale core for control functions.

In addition, the IXP2855 integrates two cryptography blocks that provide hardware acceleration of encryption and data integrity algorithms. The two cryptography blocks utilize the same bus structures and communication processes as the micro-engines.

IV. lAX with AMBA Bus

The lAX (67) architecture as illustrated in Figure 60, is composed of an ARM7 processor, a configurable XTENSA processor and a global memory of 256MB. Both the processors are also equipped with their private local memories. The ARM processor is used to execute the control functions of the application, while the Xtensa processor is used for r processing data-intensive algorithms. The Xtensa processor can be customized to the target application functions with an automatic instruction set generator called XPRES (Xtensa Processor Extension Synthesis). All Some MPSoC Architectures

V. Diopsis RDT

The Shapes (68) MPSoC architecture shown in Figure 61, is a multi-tile architecture based on a Diopsis tile also called D940. The Diopsis tile is a triple core system integrating an ATMEL mAgicV VLIW DSP an ARM 9 RISC microcontroller and a distributed network processor (DNP). The local memories of the DSP and RISC can be accessed by both processing units. Additionally, a distributed extemal memory (DXM) can be used to share data among ali the processors. The data transfer between these processors can follow different paths using an AMBA bus, e.g. the DSP can read/write data to the local memory of the ARM by using a DMA transfer or bypassing the DMA. The ARM includes the processor core and local memories: SRAM for data and ROM for program code. The DSP includes the DSP core, data memory (DMEM), program memory (PMEM), control and data registers (REG), direct memory access engine (DMA), programmable interrupt controller (PIC) and the mailbox as synchronization component for the communication between the two processors. The Nios II Processor Deatails

The architecture supports single precision floating-point instructions as specified by the IEEE Std 754-1985. The basic set of floating-point custom instructions includes single precision floating-point addition, subtraction, and multiplication. Aoating-point division is available as an extension to the basic instruction set. These floating-point instructions are implemented as custom instructions.

Exception and lnterrupt Controllers

The Nios II architecture provides a exception controller to handle ali exception types. Every exception, including hardware interrupts, causes the processor to transfer execution to an exception address. An exception handler at this address determines the cause of the exception and dispatches an appropriate exception routine.

Ali exceptions are precise which means that the processor has completed execution of ali instructions preceding the faulting instruction and not started execution of instructions following the faulting instruction. Precise exceptions allow the processor to resume program execution once the exception handler clears the exception.

The Nios II architecture supports 32 externat hardware interrupts. The processor core has 32 levet-sensitive interrupt request (IRQ) inputs, irqO through irq31, providing a unique input for each interrupt source. IRQ priority is determined by software.

Instruction and Data Buses

The Nios II architecture supports separate instruction and data buses, classifying it as a Harvard architecture. Both the instruction and data buses are implemented as Avalon-MM master ports. The data master port connects to both memory and peripheral components, while the instruction master port connects only to memory components.

Both data memory and peripherals are mapped into the address space of the data master port. The Nios II architecture is little endian. Words and halfwords are stored in memory with the more-significant bytes at higher addresses. The address map for memories and peripherals in a Nios II processor system is design dependent. The user specifies the address map at system generation time.

Programmers access memories and peripherals by using macros and drivers. Therefore, the flexible address map does not affect application developers.

Typically, Nios Il processor systems contain a mix of fast on-chip memory and slower offchip memory. Peripherals typically reside on-chip, although interfaces to off-chip peripherals also exist.

Instruction Master Port

The Ni os II instruction bus is implemented as a 32-bit A val on-MM master port. The instruction master port performs a single function: it fetches instructions to be executed by the processor. The instruction master port does not perform any write operations. It is a pipelined Avalon-MM master port. The instruction master port can issue successive read requests before data has returned from prior requests. The Nios Il processor can prefetch sequential instructions and perform branch prediction to keep the instruction pipe as active as possible.

The instruction master port always retrieves 32 bits of data. It relies on dynamic bussizing logic contained in the system interconnect fabric. By virtue of dynamic bus sizing, every instruction fetch returns a full instruction word, regardless of the width of the target memory. The Instruction Master Port can be cached.

Data Master Port

The Nios II data bus is implemented as a 32-bit Avalon-MM master port. The data master port reads data from memory or a peripheral when the processor executes a load instruction and it writes data to memory or a peripheral when the processor executes a store instruction. Byteenable signais on the master port specify which of the four byte-lane(s) to write during store operations.

The Data Master Port can be cached. When the Nios II core is configured with a data cache line size greater than four bytes, the data master port supports pipelined A val on-MM transfers. When the data cache line size is only four bytes, any memory pipeline latency is perceived by the data master port as wait states. Load and store operations can complete in a single dock-cycle when the data master port is connected to zero-wait-state memory.

JTAG Debug Module

The Nios II architecture supports a JTAG debug module that provides on-chip emulation features to control the processor remotely from a host PC. PC-based software debugging tools communicate with the JTAG debug module and provide facilities, such as the following features:

The Nios II Processor Deatails The debug module connects to the JTAG circuitry in an FPGA. The soft-core nature of the Nios II processor allows the user to debug a system in development using a full-featured debug core, and later remove the debug features to conserve logic resources.

The System Interconnect Fabric for Memory-Mapped Interfaces

To effectively exchange information, the IP cores in the system have to be connected among them by a reliable and efficient communication medium. Components of a Nios II based system communicate among them by means of a communication infrastructure called the "system interconnect fabric".

The System interconnect fabric for memory-mapped interfaces implements a partial crossbar interconnect structure that pro vides concurrent paths between mas ter and slaves. System interconnect fabric consists of synchronous logic and routing resources inside the FPGA.

In the path between master and slaves, the system interconnect fabric might introduce registers for timing synchronization, finite state machines for event sequencing, or nothing at ali, depending on the services required by the specifie interfaces.

The System interconnect fabric can connect any combination of components. It consumes minimallogic resources, provides greater flexibility, and higher throughput than a typical shared system bus.

The system interconnect fabric logic provides the following functions:

• Address Decoding The arbiter logic evaluates the address and control signais from each master and determines which master, if any, gains access to the slave next. It grants access to the chosen master and forces all other requesting masters to wait. The arbiter uses multiplexers to connect address, control, and datapaths between the multiple masters and the slave.

Arbitration Rules

To allocate access intervals (shares) to different masters, the arbiter logic uses a faimessbased arbitration scheme. Each master pair has an integer value of transfer shares with respect to a slave. One share represents permission to perform one transfer. For example, assume that the designer has assigned three shares to Master 1 and four shares to Master 2. ln this case if two masters continuously attempt to perform back-to-back transfers to a slave, the arbiter grants Master 1 access for three transfers, then Master 2 for four transfers. This cycle repeats indefinitely. Figure 65 demonstrates this case, showing each master's transfer request output, wait request input (which is driven by the arbiter logic), and the current master with control of the slave.