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Abstract

In this thesis, we study the indirect stability of some coupled systems with
different kinds of local discontinuous dampings. We also study the stability and
the instability results of the Kirchhoff plate equation with delay terms on the
boundary or dynamical boundary controls.

First, we investigate the stabilization of locally coupled wave equations with
non-smooth localized viscoelastic damping of Kelvin-Voigt type and localized
time delay. Using a general criteria of Arendt-Batty, we show the strong stability
of our system in the absence of the compactness of the resolvent. However, by
combining the frequency domain approach with the multiplier method, we prove
a polynomial energy decay rate.

Second, we investigate the stabilization of locally coupled wave equations
with local viscoelastic damping of past history type acting only on one equation
via non-smooth coefficients. We prove the strong stability of our system. Next,
we establish the exponential stability of the solution if the two waves have the
same speed of propagation. In the case of different propagation speeds, we prove
that the energy of our system decays polynomially. Moreover, we show the lack of
exponential stability if the speeds of wave propagation are different with a global
damping and a global coupling.

Third, we investigate the stabilization of a linear Bresse system with one
discontinuous local internal viscoelastic damping of Kelvin-Voigt type acting on
the axial force, under fully Dirichlet boundary conditions. We prove the strong
and polynomial stabilities of our system.

Finally, we consider two models of the Kirchhoff plate equation, the first
one with delay terms on the dynamical boundary controls, and the second one
where delay terms on the boundary control are added. For the first system, we
prove its well-posedness, strong stability, non-exponential stability, and polyno-
mial stability under a multiplier geometric control condition. For the second one,
we prove its well-posedness, strong stability, and exponential stability under the
same multiplier geometric control condition. Finally, we give some instability
examples of the second system for some choices of delays.
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Résumé

Dans cette theése, nous étudions la stabilité indirecte de certains systémes
couplés avec différents types d’amortissements locaux discontinus. Nous étudions
également des résultats de stabilité et d’instabilité de I’équation des plaques de
Kirchhoff avec des termes de retard a la frontiere ou des contrdoles dynamiques a
la frontiere.

Tout d’abord, nous étudions la stabilisation des équations d’ondes locale-
ment couplées avec un amortissement viscoélastique localisé non régulier de
type Kelvin-Voigt et un retard temporel localisé. En utilisant un critére général
d’Arendt-Batty, nous montrons la stabilité forte de notre systéme en 1’absence
de la compacité la résolvante. Cependant, en combinant approche du domaine
fréquentielle avec la méthode des multiplicateurs, nous prouvons un taux de
décroissance polynomial de I’énergétique.

Deuxiemement, nous étudions la stabilisation d’équations d’ondes localement
couplées avec un amortissement viscoélastique local de type histoire passée
agissant seulement sur une équation via des coefficients non régulier. Nous
prouvons la stabilité forte de notre systéeme. Ensuite, nous établissons la stabilité
exponentielle de la solution si les deux ondes ont la méme vitesse de propagation.
Dans le cas de vitesses de propagation différentes, nous prouvons que ’énergie de
notre systeme décroit de facon polynomiale. De plus, nous montrons 1’absence
de stabilité exponentielle si les vitesses de propagation des ondes sont différentes
avec un amortissement global et un couplage global.

Troisiemement, nous étudions la stabilisation d’un systéme linéaire de Bresse avec
un amortissement viscoélastique interne local discontinu de type Kelvin-Voigt
agissant sur la force axiale, sous des conditions aux limites entiéerement de
Dirichlet. Nous prouvons la stabilité forte et polynomiale de notre systeme.

Enfin, nous considérons deux modeles de D’équation des plaques de Kirch-
hoff, le premier avec des termes de retard sur les contrdoles dynamiques aux bords,
et le second ou des termes de retard sur le controle aux bords sont ajoutés. Pour
le premier systéme, nous prouvons son caractere bien posé, sa stabilité forte,
sa stabilité non-exponentielle et sa stabilité polynomiale sous une condition de
controle géométrique par multiplicateur. Pour le second systéme, nous prouvons
son caractere bien posé, sa stabilité forte et sa stabilité exponentielle sous la
méme condition de controle géométrique par multiplicateur. Enfin, nous donnons
quelques exemples d’instabilité du second systéme pour certains choix de délais.
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Symbols and Notations

R The set of real numbers.

R, The set of non negative real numbers.
R* The set of non zero real numbers.

N The set of natural numbers.

N* The set of non zero natural numbers.
Z The set of integer numbers.

C The set of complex numbers.

1 The imaginary unit.

R The real part.

R The imaginary part.

L The Lebesgue space.

Hm The sobolev space.

C° The space of continuous function.

Ct The space of continuously differentiable functions.
C? The space of twice continuously differentiable functions.
D(Q) The set of smooth functions in 2
D'(92) The space of distribution in €.

B The modulus.

|| The semi-norm in X.

-1l 5 The norm in X.

() x The inner product in X.

max The maximum.

min The minimum.

sup The supreme.

inf The infimum.

fy=0,f The partial derivative of f with respect of y.

fyy = Oyyf The second partial derivative of f with respect of y.

g'(s) The derivative of g with respect to s.

A<B Means that there exists a constant C' > 0 independent of A, B and a
natural parameter n such that A < CB.
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Introduction

In this thesis, we study the indirect stability of some coupled systems with different kinds
of local discontinuous dampings. We also study the stability and the instability results of the
Kirchhoff plate equation with delay terms on the boundary or dynamical boundary controls.
This thesis is divided into five chapters.

In the first chapter, we recall some well-known results about semigroups, including some
theorems about strong, exponential, polynomial, and analytic stability of a Cy-semigroup. We
also recall the definition of the multiplier geometric control condition denoted by MGC.

A wave is created when a vibrating source disturbs the medium. In order to restrain
those vibrations, several dampings can be added such as frictional (viscous), Kelvin-Voigt,
time delay, past history (infinite memory) dampings. However, time delays appear in several
applications such as in physics, chemistry, biology, thermal phenomena not only depend on
the present state but also on some past occurrences (see [44] and [72]) . In the last years,
the control of partial differential equations with time delays have become popular among
scientists, since in many cases time delays induce some instabilities see [36, 38, 39, 42].

The notion of indirect damping mechanisms has been introduced by Russell in [100]
and since this time, it retains the attention of many authors. In particular, the fact that
only one equation of the coupled system is damped refers to the so-called class of ”indirect”
stabilization problems initiated and studied in [10, 11, 12] and further studied by many
authors, see for instance [13, 78, 109] and the rich references therein. The study of such
systems is also motivated by several physical considerations like Timoshenko and Bresse
systems (see for instance [1], [8], [84] and [86]). The Bresse system is a model for arched
beams (see Fig. 1 for an illustration), see [74, Chap. 6]. It can be expressed by the equations
of motion:
P1Ptt = Qcc + lNa

pathy = M, — Q, (Bresse System)
prwy = Ny — lQ,

where N = ks(w, — lp) is the axial force, Q@ = ki(v, + ¥ + lw) is the shear force, and
M = k1), is the bending moment. The functions ¢, ¢, and w are respectively the vertical,
shear angle, and longitudinal displacements. Here p; = pA, po = pl, k1 = kGA, ks = FA,
ky = ET and [ = R, in which p is the density of the material, E the modulus of the elasticity,
G the shear modulus, k& the shear factor, A the cross-sectional area, I the second moment
of area of the cross section, R the radius of the curvature, and [ the curvature. We note
that by neglecting w (I — 0) in (Bresse System), the Bresse system reduces to the following
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Figure 1: The circular arch

conservative Timoshenko system:

p1¢1 — k1(pe + 1) =0,
p2wtt - kax:ﬂ + kl (Spgc + w) =0.

In chapters two, three, and four, we focus on strongly coupled systems with different kinds of
indirect local dampings and non-smooth coefficients at the interface.

In chapter two, we investigate the stability of local coupled wave equations with singu-
lar localized viscoelastic damping of Kelvin-Voigt type and localized time delay. More
precisely, we consider the following system:

(uy — [auy + b(x) (K1 + Koty (2,6 — 7)), + c(x)y
=0, (x,t) € (0,L) x (0,00),
Yt — Yoz — C(x)uy = 0, (z,t) € (0, L) x (0,00),
0 u(0,t) = u(L,t) =y(0,t) =y(L,t) =0, t>0, (Sysl)
(u(,0), (2, 0)) = (o), s (). re(0.D),
(y(2,0), ye(2,0)) = (yo(x), y1(x)), z € (0,1L),
u(z,t) = fo(w,1), (x,t) € (0, L) x (=7,0),

\

where L,7,a and k; are positive real numbers, k, is a non-zero real number and
(wo, u1, Yo, Y1, fo) belongs to a suitable space. We suppose that there exist 0 < a < <7y < L

2
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and a non-zero constant ¢y, such that

1, (), oo e (),
b(x)_{ 0, ve@r), M C(x)_{ 0, z€(0,0)U(y,L).

In fact, there are few results concerning the stability of coupled wave equations with local
Kelvin-Voigt damping and without time delay, especially in the absence of smoothness of
the damping and coupling coefficients (see Subsection 2.1.2). This motivates our interest to
study the stabilization of system (Sysl) in this chapter. As in [88], we introduce the following
auxiliary change of variable

n(z,p,t) = u(x,t —p7), x€(0,8), pec(0,1),t>0.

Then, system (Sysl) becomes

t) € (0, L) x (0, 00),
t) € (0, L) x (0, 00),
1) € (0, 58) x (0,1) x (0, 00),

(uy — (Sp(u, ug,m)), +c(x)y; =0, (z,
(,
(x

w(0,t) = u(L,t) = y(0,t) = y(L,t) =0, t>
(p;

Yit — Yo — c(T)up = 0,
Tnt(aj?pv t) + Up(l'; P, t) = 07

p
0
1(0.p,t) = 0, 1) € (0.1) x (0,00). (By2)
(u(,0). (. 0)) = (o (). s (). (0.1)
(0(.0), (. 0)) = (3o), 1 (), (0.1)
L 1z, p,0) = folz, —p7), (z,p) € (0,8) x (0,1),

where Sp(u, us, n) 1= aug + b(2) (K1 + Koy, (2, — 7)). Moreover, from the definition of b(z),
we have

Si(u,ug, ) == auy + Kt + Kane (-, 1,¢), in (0, 5),
Sb(ua Ug, 77) - .
Ay, in (8,L).
The energy of system (Sys2) is given by
E(t) = Evu(t) + Evy(t) + Evp(t),

where

1 [ 1 [t
Elu()zé/ (|ut|2+a|ux|) T, E’ly(t):§/0 (|yt|2+|yx|2> dr and

7|k
Ey,(t) = |2|//\7)x ,p, t)Pdpdz.

According to Lemma 2.2.1, we have

d

B
GEO < == o) [ s

In the sequel, we make the following assumptions

k1 >0, ko € R* and |kg| < K.

3
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Then, system (Sys2) is dissipative in the sense that its energy is non-increasing with respect
to time (i.e. E|(t) < 0). Now, we write system (Sys2) as the following first order evolution
equation

U= AU, U(0) =0y,
where Uy = (uo, u1, Yo, Y1, fo(-, —p7)) " € Hi. The Hilbert space H; is defined by
My = (HL(0,L) x L*(0, L))" x W,

where

W= L*((0,1); H;(0,8)) and HL(0,5) := {5 € H'(0,5) | 7(0) =0} .

The space W is a Hilbert space of H} (0, /)-valued functions on (0, 1), equipped with the
following inner product

B rr
(", )w :Z/ / men2dpdz,  Nn',n* € W.
0 0

The Hilbert space H; is equipped with the following inner product

L - B o
(U,Ul)le/O (auxu;jtvvl—l-yxy%jtzzl) d:):—|—7|/<2|/0 /0 n.ntdpdz,

where U = (u,v,y,2,1)", Ut = (ul, v, y* 21, n!)T € H;. The linear unbounded operator

Ay D(Ay) C Hy — H, is defined by:
U= (u,v,y,2,n)" € Hy | ye H*0,L)N HL0,L), v,z € H0,L)

DIAY=9" (Sywvm)s € I20.L), n,eW. 5(~0) = () in (0, 5)
and
u v
v (Sb(%%??))x - C()Z
Ay | = z , YU = (u,v,y,2,m)" € D(A).
z Yoo + ()
n —77'n,

In chapter three, we investigate the indirect stability of coupled elastic wave equations with
localized past history damping. More precisely, we consider the following system:

(

Uy — <aux —b(x) /000 g(s)uy(x,t — s)ds) + c(x)y,

=0, (x,t) € (0,L) x (0,00),

it — Yoo — cla)uy = 0, (2.8) € 0.1) > (0,20),(gy3)
uw(0,t) = u(L,t) = y(0,t) = y(L,t) =0, t>0,

(u(z, —s),u(x,0)) = (uo(z, s), u1(z)), (x,s) € (0,L) x (0,00),

(y(2,0), %:(z,0)) = (yo(2), y1(x)), z € (0, L),

\

where L and a are positive real numbers. We suppose that there exist a non-zero constant c
and positive constants «, 3,7, and by such that 0 < a < 8 <y < L, and define

b(z) = bo, z € (0,05), and ofz) = co, € (a,7),
0, ze€(p,L), 0, z€(0,a)U(n,L).

4
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The general integral term represents a history term with the relaxation function g that is
supposed to satisfy the following hypotheses:

g € L'([0,00)) N C([0,00)) is a positive function such that

g(0) :== go > 0, / g(s)ds =7, b(z):=a—b(z)j>0, and
0
g'(s) < —mg(s), for some m > 0,Vs > 0.

Moreover, from the definition of b(z), we have

According to the best of our knowledge, it seems that no result in the literature exists concern-
ing the case of coupled wave equations with localized past history damping, especially in the
absence of smoothness of the damping and coupling coefficients. This motivates our interest to
study the stabilization of system (Sys3) in this chapter. As in [35], we introduce the following
auxiliary change of variable

Wi 5,) = u(a,t) — u(a,t—s), (1,5,1) € (0, 8) x (0,00) X (0, 00).
Then, system (Sys3) becomes

(

et — (Sl;(,)(u,w))x +e()y =0, (z,) € (0, L) x (0,00),
Yt — Yoz — C(-)ug = 0, (z,t) € (0, L) x (0,00),
wi(z, 8,t) + ws(x, s, t) —uy = 0, (x,s,t) € (0,8) x (0,00) x (0,00),
u(0,t) = u(L,t) = y(0,t) = y(L,t) =0, t>0,
\ w(z,0,t) =0, (z,t) € (0, 8) x (0,00), (Sys4)
w(0,s,t) =0, (s,t) € (0,00) x (0,00),
(u(z, =s), u(x,0)) = (uo(z, s), ur(x)), (z,5) € (0, L) x (0, 00),
(y(,0), ye(,0)) = (yo(x), y1(2)), z € (0,1L),
[ wol®,8) == w(w,s,0) = up(r,0) —ug(z,s), (v,s) € (0,8)x (0,00),

where

Sy (u,w) = boug + bo/ g(8$)wy(z,s,t)ds, in (0,5),
0
AUy, in (6,[1)

The energy of system (Sys4) is given by
Ey(t) = Eau(t) + Eay(t) + Eou(t),

where
L

1 [F ~ 1
&szi/(mﬁ+wmwﬁm,@aw=§l<mf+mm¢rmd

b
Eyo(t 0// 8)|wz (-, 5, 1) [*dsdz.
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According to Lemma 3.2.1, we have

b
O/ / 8)|wz (-, 5, 1) [Pdsdz < 0.

Then, system (Sys4) is dissipative in the sense that its energy is non-increasing with respect
to time. Now, we write system (Sys4) as the following first order evolution equation

U= AU, U(0) = Uy,
where Uy = (uo(+,0), u1, Yo, y1,wo(+,8)) T € Ha. The Hilbert space H, is defined by
H = (H}(0,L) x L*(0,L))* x W,
where
W, = L2((0,00); H;(0,3)) and H(0,8) :={@we H'(0,8) | ©(0) =0} .

The space W, is a Hilbert space of H} (0, 3)-valued functions on (0,0), equipped with the

following inner product
B oo _
:/ / g(s)wlw2dsdz, Yw' w?eW,.
o Jo

The Hilbert space Hs is equipped with the following inner product

L ~ J— R— JR— —
UUl), = b(uzul + vvl + gyl + 221 ) dx
HQ 0 T xT

B oo -
+ by / / g(s)wywldsde,
o Jo

where U = (u,v,y,z,w)’ € Ho and U' = (ul, v, y!, 21, w!)T € Hy. Now, we define the linear

unbounded operator A, : D(Ay) C Hy — Ho by:

U= (u,v,y,z,w) €Hy|ye H*0,L)NHLO,L), v,2 € H0, L)

D(Az) = (Si)(ww)) € L20.L), w, €W,y w(-,0)=0 in (0,8)

and
v

(Sz,(.)(u,w?x —c()z VU = (u,0.y,2.0) € D(AY).

Yz + (+)V
—Ws + v

As

g ne e g
I

In chapter four, we investigate the stability of a Bresse system with only one discontinuous local
internal Kelvin-Voigt damping on the axial force. More precisely, we consider the following
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system:

prpu — ki(pz + ¢ + lw)y — lks(w, — lp)
—ld(x) (Wi — lpy) =0, x,t) € (0,L) x (0,00),
p2tbee — katbee + ki (e + 9 + lw) =0, (z,t) € (0,L) x (0,00),
p1wy — [ka(w, — lp) + d(2) (Wi — lpr)],

—~

+ ki (0p + 9+ lw) =0, (x,t) € (0, L) x (0,00), (Sysb)
o(x,t) =(z,t) = w(x,t) =0, (x,t) € {0, L} x (0,00)
p(x,0) = @o(x), wu(x,0) = pi(a), z € (0,L),
(2, 0) = Yo(x), i(z,0) =i (2), z € (0,L),
| w(z,0) = wo(x), wi(z,0) =wi(z), z e (0,L),

where p1, po, k1, ko, k3,1 and L are positive real numbers. We suppose that there exist 0 < a <
£ < L and a positive constant dg, such that

i) — do if z€(a,p),
10 if ze(0,0)U(B, L)

According to the best of our knowledge, it seems that no result in the literature exists concern-
ing the case of Bresse system with only one discontinuous local internal Kelvin-Voigt damping
on the axial force, especially under fully Dirichlet boundary conditions and without any condi-
tion on the curvature [. This motivates our interest to study the stabilization of system (Sys5)
in this chapter. The energy of system (Sys5) is given by

1

L
Es(t) = 5/0 (p1 e > 4 palthe|? + prlwe]? + kilws + 0 + lw|? + ko || + ks|w, — lo]?) da.

A direct computation gives

L B
E5(t) = —/ d(z)|wie — Lo, Pdx = —do/ |wie — o] *dz < 0.
0 «

Thus, system (Sysb) is dissipative in the sense that its energy is non-increasing with respect
to time. Now, we write system (Sysb) as the following first order evolution equation

U= AU, U(0) = Uy,
where Uy = (o, 01, %0, 1, wo, w1) " € Hs. The Hilbert space Hs is given by
My = (HL(0,L) x L*(0,L))".

The Hilbert space Hs is equipped with the following inner product and norm

L ~ ~ ~ — —_ —_
(U, U)y, = / {k:l(vi + 03 + 10°) (V] 4+ 03 + 105) + p1v*v2 + kpvivd + povied
0

+ ks (02 — oY) (03 — ) dz + plvﬁﬁ} dz,
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and

L
U1, = / [kl 4+ 08 4 105 4 o2 + Kool + pafP
0

+kglvp — W' 4 pa|0°} da,

where U = (v!,02, 03, 0% 05 09T € Hz and U = (v!, 0!, 02,03, 0%, 05,08)T € Hs. Now, we

define the linear unbounded operator Aj : D(A3) C Hz — Hs by:

U= (vhv3 03 vt 0% 08T € Hz | v} 0 € H*(0,L) N HY(0, L)

DIA) =0 2 0108 e B0, L), [ke? + d(2) (8 — 1o?)] € L2(0, L)
and
2
k Lk ld
V! 2wl 0P+ 10%), + — () — ) + () (VS — Iv?)
02 P1 P1 A P1
5 v
v
As [ | = @vix — E(U; + v + v°) ’
il P2 P2 i
b
1 5 11 6 oy ki 5
[kg(?}x ) +d(z) (v, — v )} (v, +v° + v°)

p1 Toom
for all U = (v, v? 03, 0%,0°,0%) T € D(A3).

In Sections 2.2, 3.2, and 4.2, we prove that the operators A; are m-dissipative in H,,
j € {1,2,3}. Thus, according to Lumer-Phillips theorem (see Theorem 1.2.8), we deduce
that the operators A; generate a Cj-semigroup of contractions et in H; which give the
well-posedness of systems (Sys2), (Sys4), and (Sys5b).

In Sections 2.3, 3.3, and 4.3, we use a general criteria of Arendt-Batty (see Theorem
1.3.3) to show the strong stability of the Cy-semigroups e associated with systems (Sys2),
(Sys4), and (Sysb) in the absence of the compactness of the resolvents of A;. The tools used
in these proofs are:

e In Section 2.3, by using a contradiction argument (see Remark 1.3.5) with the help of

some multiplier techniques, we prove that iR C p(A;), p(A;) being the resolvent set of
A

e In Sections 3.3 and 4.3, by using Holmgren uniqueness theorem (see [75]) and Fredholm
alternative (see Theorem 1.1.4), for all A € R, we prove that

— ker(iA — A;) = {0}, j € {2.3}.

— RN — A;) =H;, j €{2,3}.

In Sections 2.4, 3.4, amd 4.4, by combining a frequency domain approach with a multiplier
method (see Theorems 1.3.6 and 1.3.7), we prove that the energies of systems (Sys2), (Sys4),

and (Sysb) decay exponentially or polynomially with the rates summarized in the following
table:
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System Energy decay rate
(Sys2) t!
Exponential if a=1
(Sysd) |y if a1
Tl if B=k
e p1 pe
(Sysb) o bk
P1 P2

In other words, for all Uy € D(A;), j € {1,2,3}, there exists a constant C' > 0 independent of
Uy such that for all t > 0, we have

C C .
Ey(t) < ?HUOH%)(Al)v Ey(t) < ?HUOH%(AQ) if a#1,

C k k
t (Aa) p1 P2
Es(t) < c I A
— ol if = # =,
Vi 1’ pa

and for all Uy € H,, there exist constants M > 1 and € > 0 independent of U such that for
all t > 0 we have
||€tA2U0||H2 < Me_Et“UOH")'-Q if a=1.

In Section 3.5, we use Theorem 1.3.6 to prove the lack of exponential stability of system
(Sys3) when b(z) = ¢(z) = 1 in case of different speeds of propagation, i.e., when a # 1.

In the last chapter, we study the boundary stabilization of the Kirchhoff plate equa-
tion with time delay. Let Q@ C R? be a bounded open set with boundary I' of class C*
consisting of a clamped part I’y # () and a rimmed part I'; # () such that Ty N Ty = 0. In the
first part of this chapter, we study the stability of the Kirchhoff plate equation with delay
terms on the dynamical boundary controls, namely we consider

(w2, t) + A%u(z,t) =0 in Q x (0,00),
u(z,t) = dyu(r,t) =0 on Ty x (0,00),
Biu(z,t) +n(z,t) =0 on I'y x (0,00),
Bou(z,t) — &(x,t) =0 on I'y x (0,00),

ne(x,t) — Opuy(x,t) + Bin(x, t) + Ban(z,t — 1) =0 on I’y x (0,00),
(Sys6)

&z, t) —u(z,t) + é(x,t) + y&(x,t —72) =0 on I'y x (0,00),
u(z,0) = ug(x), w(z,0) =wuq(x) in €,
n(@,0) =m(x), &(,0)==&(x) on I,
n(z,t) = fo(z,t) on TI't x (—=71,0),
( &z, t) = go(,t) on I'1 x (—72,0).

In the second part of this chapter, we study the stability of the Kirchhoff plate equation with
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delay terms on the boundary controls, by considering:
( ugy(z,t) + Au(z,t) =0 in Q x (0,00),
u(z,t) = dyu(r,t) =0 on Ty x (0,00),
Biu(z,t) = —f10,ui(x,t) — fa0,up(x,t — 1) on T’y x (0, 00),
Bou(z,t) = yrug(x,t) + yous(x, t —15) on T'y x (0, 00), (SysT7)
u(z,0) = up(x), u(z,0) =ui(x) in €Q,
u(z,t) = fo(x,t) on Ty x (—7,0),
L Dy, t) = go(x,t) on T’y X (—79,0).

Here and below, 31, 71, 71 and 73 are positive real numbers, S5 and 7, are non-zero real numbers,
v = (v1,v) is the unit outward normal vector along I', and 7 = (—us,14) is the unit tangent
vector along I". The constant 0 < p < % is the Poisson coefficient and the boundary operators
By and B, are defined by

Bif = Af + (1 — p)Cyf
and
Bof = 0, Af 4+ (1 — p)0-Caf,
where
Cif = 2v1v0fy 0y — ylzfmgg2 — V%lezl and Cof = (1/12 - Vg)fxm — 1V (forey — fogas) -

In Section 5.2, we study the first system (Sys6). For this aim, as in [88], we introduce the
following auxiliary variables

2, p,t) =n(x,t —pr), x€Tly, pe(0,1),t>0,
2z, p,t) = &(x,t —pra), xz €Ty, pe(0,1),t>0.
Then, system (Sys6) becomes
[y + A% =0 in Qx(0,00),
(0,50),
Biu+n=0 on I'| x (0,00),
Bou—&=0 on I'y x (0,00),
— Oyuy + B+ Boz' (-, 1,t) =0 on Ty x (0, 00),
& —up + 1€+ 72%(,1,t) =0 on I'y x (0,00),
712 (-, p,t) + 2, (- p,t) =0 on I'y x (0,1) x (0,00),
7922 (-, p, )—I—Zg(-,p, t)=0 on I'y x (0,1) x (0, 00),
u(+,0) = ug(+), w(-,0) =uy(-) in Q,
n(-,0) =no(-), &(-0) =&() on I,
2, p.0) = fo(-,—pm) on Ty x(0,1),
[ 2%(5,0,0) = go(-, —pm2) on Ty x (0,1).
The energy of system (Sy

1
E(t)zi{a(u,u)—l—/Q]ut|2d:17—|—/F In|2dl + : &|*dT
1 1

1 1
+ Tﬂﬁg’/ / }21<',p,t)’2dpdr—|—7'2|’}/2|/ / ‘22(.,p,t)}2dde},
F1 0 Fl 0

10

u=0,u=0 on I'yx

9

)

(Sys8)

Sys ) is given by
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where the sesquilinear form a : H*(2) x H?*(2) — C is defined by

a(f7 g) = /(‘2 [fxlflgmlaﬁ _'_ f$2x2g12.’22 + lu (fxlxlgxgitz + fx2$2§r1m1)

+ 2(1 - M)fx11‘2§x112:| dx
According to Lemma 5.2.1, we have

d

CB(t) < (5~ 5) / ofr = (el / Jefar <o

In the sequel, we make the following assumptions

Bi,m >0, B2, €RY, |B] < B and || <.

Then, system (Sys8) is dissipative in the sense that its energy is non-increasing with respect
to time (i.e. E'(t) <0).

In Subsection 5.2.1, we write system (Sys8) as the following first order evolution equa-
tion

U= AU, U(0)= Uy,
where Uy = (ug, u1,m0, &0, fo(-, —p71), 9o (-, —p72)) " € H. The Hilbert space H is defined by

H = HZ () x L2(Q) x (L3(T1))” x (L3I x (0,1)))%,
where
HE () ={fe H*(Q) |f=0,f=00nTg}.
The Hilbert space H is equipped with the following inner product

(U,Ul)H:a(u,u1)+/vv_1dm+/ nidl +
Q r

1 1
7|5l / / SSTdpdD + 7)) / / 22dpdr,
Iy JO Iy Jo

where U = (u,v,n,&,24,22)7, Ul = (ug,v1,n1, &1, 21,22)" € H. Now, we define the linear

unbounded operator A : D(A) C ‘H —— H by:
U= (u,0,n,8,2",2%)" € Dry(A%) x Hf (Q) x (L*(T'1))* x (L*(T'y; H(0,1))) |
Biu=-n, Bu=¢ 2'(,0)=n, 22(,0)=¢ on I}

£6,dT
'y

D(A) = {

where
Dr,(A%) = {f € H{ (Q) | A*f € L*(Q), Bif € L*(T'y), and Bof € L*(Ty) }
and
v
u — A%y
v dyv — Bin — Baz' (-, 1)
A 7&7 = v=m€=7C1) | VU= (w0062 € D(A).
2! —izl
»2 711 P
L2
TQZp

11
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Next, we prove that the operator A is m-dissipative in H. Thus, according to Lumer-Phillips
theorem (see Theorem 1.2.8), we deduce that the operator A generates a Cp-semigroup of
contractions e in H which gives the well-posedness of (Sys8).

In Subsection 5.2.2, we use a general criteria of Arendt-Batty (see Theorem 1.3.3) to
show the strong stability of the Cp-semigroup e** associated with system (Sys8) in the absence
of the compactness of the resolvent of A.

In Subsection 5.2.3, we use Theorem 1.3.6 to prove the lack of exponential stability of
system (Sys8).

In Subsection 5.2.4, we use Theorem 1.3.7 to prove under the multiplier geometric control
condition MGC (see Definition 1.4.1) that the energy of system (Sys8) decays polynomially
with rate t~!. In other words, for all Uy € D(A), there exists a constant C' > 0 independent
of Uy such that

C
E(t) < ?HUOHQD(A)a t>0.

In Section 5.3, we study the second system (Sys7). We use Theorem 1.3.6 to prove under
MGC geometric condition that system (Sys7) is exponentially stable if

51)71>07 BZ?WQGR*v ’62’<61 and "72’<71

Moreover, we give some instability examples of system (Sys7) in the cases |52] > f; and
2l = 7

Haidar Badawi
Valenciennes, France
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Chapter 1

Preliminaries

As our analysis is based on the semigroup and spectral theories, in this chapter we will recall
some well-known results about semigroups, including some theorems about strong, exponential,
polynomial, and analytic stability of a Cy-semigroup. We also recall the definition of the
multiplier geometric control condition denoted by MGC . All of the theorems are stated
without proofs, but the relevant references are given. The reader may skip this chapter in the
first reading, then refer to it as a reference of related. For more details see [31, 68, 71, 24, 30,
94, 77, 27, 67].

1.1 Bounded and Unbounded linear operators

We start this chapter by giving some well known results about bounded and unbounded
operators. We are not trying to give a complete development, but rather review the basic
definitions and theorems, mostly without proof, see [31, 68, 71].

Let (E, |- ||g) and (F, || -||r) be two Banach spaces over C, and H will always denote a Hilbert
space equipped with the scalar product (-, ), and the corresponding norm || - || z.

A linear operator T : E' —— F'is a transformation which maps linearly E in F', that is
T(au+ fv) = aT(u) + T (v), Yu,ve Eand a,p e C.

Definition 1.1.1. A linear operator T : E — F' is said to be bounded if there exists C' > 0
such that
|ITullr < Cllullg Y ue€EE.

The set of all bounded linear operators from E into F' is denoted by L(E, F'). Moreover, the
set of all bounded linear operators from E into E is denoted by L(FE).

Definition 1.1.2. A bounded operator T € L(FE, F) is said to be compact if for each sequence
(Tp)nen C E with ||z,||z =1 for each n € N, the sequence (T'z,,)nen has a subsequence which
converges in F'.

The set of all compact operators from E into F' is denoted by K(E, F'). For simplicity one
writes K(E) = K(E, E).

Definition 1.1.3. Let T € L(E, F), we define

e Range of T by
R(T)={Tu: ue E} CF.

13
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e Kernel of T by
ker (T)={ue E: Tu=0} C E.

Theorem 1.1.4. (Fredholm alternative, see Theorem 6.6 in [31]). If T € K(FE), then
e ker (I —T) is finite dimensional (I is the identity operator on E).
e R(I—T)is closed.
o ker(I-T)=0&R(I-T)=E.

Definition 1.1.5. An unbounded linear operator 7' from FE into F is a pair (T, D (T)),
consisting of a subspace D (T') C E (called the domain of 7") and a linear transformation.

T:D(T)C E+— F.
If E=F, then we say (T, D (T)) is an unbounded linear operator on FE.
Definition 1.1.6. Let 7': D (T) C E —— F be an unbounded linear operator.

e The range of T is defined by
R(T)={Tu: uwe D(T)} CF.
e The kernel of T is defined by
ker (T)={ue D(T): Tu=0} C E.
e The graph of T is defined by
G(T)={(u,Tu): we D(T)} C E xF.

Definition 1.1.7. A map T is said to be closed if G (T') is closed in £ x F'. The closedness of
an unbounded linear operator T' can be characterized as follows

if u, € D(T) such that u,, - v in E and Tu,, — v in F, then u € D (T) and Tu = v.

Definition 1.1.8. Let T': D (T') C E +—— F be a closed unbounded linear operator.

e The resolvent set of T is defined by

p(T)={Xe€ C: A —T is bijective from D (T) onto F}.
e The resolvent of T is defined by
RA\T)=W\—-T)", YAx€p(T).
e The spectrum set of 1" is the complement of the resolvent set in C , denoted by
o (T) =C\p(T).

14
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Definition 1.1.9. Let T': D (T) C E — F be a closed unbounded linear operator. We can
split the spectrum o(7T") of T into three disjoint sets, given by

e The point spectrum of 7" is defined by
op(T) ={A € C: ker(A\] —T) # {0}},
in this case A is called an eigenvalue of T'.

e The continuous spectrum of 7" is defined by

oo(T) = {A €C ker(\M —T) =0, ROM —T) = F and (A — T)"" is not bounded} .

e The residual spectrum of T is defined by

o (T)={XA € C: ker(\] —T) =0 and R(A —T) is not dense in F'}.
(T) =A{ ( ) ( ) ¥

Definition 1.1.10. Let 7' : D (T)) C E — F be a closed unbounded linear operator and let
A be an eigevalue of A. A non-zero element e € F is called a generalized eigenvector of T
associated with the eigenvalue value ), if there exists n € N* such that

(M —T)'e=0 and (M —T)"'e#0.
If n =1, then e is called an eigenvector.

Definition 1.1.11. Let T': D (T) C E — F be a closed unbounded linear operator. We say
that T has a compact resolvent, if there exist Ay € p (T) such that (Aol — T)~! is compact.

Theorem 1.1.12. (see Theorem 6.5.5 in [68]). Let (7, D (T)) be a closed unbounded linear
operator on H, then the space (D (T), ||-HD(T)> where [ul| ppy = [|Tull g+ |ully, Vue D(T)

is a Banach space .

Theorem 1.1.13. (see Theorem 6.7 in [71]). Let (T, D (T")) be a closed unbounded linear
operator on H, then p (T) is an open set of C.

1.2 Semigroups for Cauchy problems

In this section, we introduce some basic concepts concerning semigroups. The majority of
evolution equations can be reduced to the form

Ut:AU7 t>0, iIlH,
(1.2.1)

U(0) = Uy,
where A is the infinitesimal generator of a Cy-semigroup S (t) over a Hilbert space H. Let us
start by basic definitions and theorems, see [31, 92].

Let (X, ||-||x) be a Banach space, and H be a Hilbert space equipped with the inner product
(-,-) g and the induced norm ||| .

Definition 1.2.1. A family (S (¢)),5, of bounded linear operators in X is called a strongly
continous semigroup (in short, a Cy-semigroup) if

15
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e S(0) =1 (I is the identity operator on X).

e S(t+s)=5()S(s), Vit,s>0.

e For each uw € H, S (t)u is continuous in ¢ on [0, +-00].
Sometimes we also denote S (t) by e/

Definition 1.2.2. For a semigroup (S (t)),5,, we define an linear operator A with domain
D (A) consisting of points u such that the limit

Ay e L DB U~

t—0+ t

exists. Then A is called the infinitesimal generator of the semigroup (S (Z)),s-

Proposition 1.2.3. (See Theorem 2.2 in [92]). Let (S (t)),», be a Co-semigroup in X. Then
there exist a constant M > 1 and w > 0 such that -

1S () oy < Me™', V> 0.

If w = 0 then the corresponding semigroup is uniformly bounded; moreover, if M = 1 then
(S ()= 1s said to be a Cy—semigroup of contractions.

Definition 1.2.4. An unbounded linear operator (A, D (A)) on H, is said to be dissipative if
R (Au,u),; <0, VueD(A).

Definition 1.2.5. An unbounded linear operator (A, D (A)) on X, is said to be m-dissipative
if

e A is a dissipative operator.
e 3 )¢ > 0 such that R (A — A) = X.
Theorem 1.2.6. (See Theorem 4.5 in [92]). Let A be a m-dissipative operator, then
e RAM—-A) =X, VA>0.
e [0,00[C p(A).

Theorem 1.2.7. (Hille-Yosida, see Theorem 3.1 in [92]). An unbounded linear operator
(A, D (A)) on X, is the infinitesimal generator of a Cy-semigroup of contractions (S (t)), if
and only if

e Ais closed and D (A) = X.
e The resolvent set p (A) of A contains RT, and for all A > 0,

IO = A7, <A

1
HE(X)

Theorem 1.2.8. (Lumer-Phillips, see Theorem 4.3 in [92]). Let (A, D (A)) be an unbounded
linear operator on X, with dense domain D (A) in X. A is the infinitesimal generator of a Cy-
semigroup of contractions if and only if it is a m-dissipative operator.

16
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Theorem 1.2.9. (see Theorem 4.6 in [92]). Let (A, D (A)) be an unbounded linear operator
on X. If A is dissipative with R (I — A) = X and X is reflexive, then D (A) = X.

Corollary 1.2.10. Let (A, D (A)) be an unbounded linear operator on H. A is the infinitesimal
generator of a Cp-semigroup of contractions if and only if A is a m-dissipative operator.

Theorem 1.2.11. Let A be a linear operator with dense domain D (A) in a Hilbert space H.
If A is dissipative and 0 € p(A), then A is the infinitesimal generator of a Cy-semigroup of
contractions on H.

Theorem 1.2.12. (see Theorem 7.4 in [31]). Let (A, D (A)) be an unbounded linear oper-
ator on H. Assume that A is the infinitesimal generator of a Cy—semigroup of contractions

(S (8)i20-

1. For Uy € D (A), the problem (1.2.1) admits a unique strong solution

U(t)=St)Uy € C*(Ry,D(A))NC" (R, H).

2. For Uy € H, the problem (1.2.1) admits a unique weak solution

Ut)eC' (R, H).

1.3 Stability of semigroups

In this section, we introduce some definitions about strong, exponential, polynomial and an-
alytic stability of a Cy-semigroup. Then, we give some results about the stability of Coy-
semigroup. For more details, see [67, 94, 24, 30, 77, 27].

Let (X, ||-||x) be a Banach space, and H be a Hilbert space equipped with the inner product
(-,-)y and the induced norm |||, .

Definition 1.3.1. Assume that A is the generator of a strongly continuous semigroup of
contractions (S (t)),5o on X. We say that the Co-semigroup (S (t)),5, is
e Strongly stable if
lim ||S(f)ullx =0, VuelX.
t—+o00
e Uniformly stable if
lim |15 (8) | zx) = 0.

t——+o0

e Exponentially stable if there exist two positive constants M and e such that

IS (@) ullx < Melullx, ¥t>0,¥ueX.
e Polynomially stable if there exist two positive constants C' and « such that
IS (1) ullx < CE2ullpuay, V>0, ¥ u e D(A).

Proposition 1.3.2. Assume that A is the generator of a strongly continuous semigroup of
contractions (S (t)),s, on X. The following statements are equivalent

e (5 (1)), is uniformly stable.

17
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® (S (t)),5 is exponentially stable.

To show the strong stability of a Cy-semigroup we rely on the following result due to Arendt-
Batty [24].

Theorem 1.3.3. (Arendt and Batty). Assume that A is the generator of a strongly con-
tinuous semigroup of contractions (S (¢)),, on a reflexive Banach space X. If

e A has no pure imaginary eigenvalues.
e 0 (A)NiR is countable.
Then S (t) is strongly stable.

Remark 1.3.4. If the resolvent (I —T)~! of T is compact, then o (T') = o, (T). Thus, the
statement of Theorem 1.3.3 lessens to o,(A) NiR = (.

An alternative method based on Arendt and Batty theorem and a contradiction argument, see
[82, page 25] is presented in the following Remark.

Remark 1.3.5. Assume that the unbounded linear operator A : D(A) C H — H is the
generator of a Co—semigroup of contractions (S()),s, on a Hilbert space H and suppose that
0 € p(A). According to [82, page 25|, in order to prove that

iR={iA| AeR} Cp(A), (1.3.1)
we need the following steps:

(i) It follows from the fact that 0 € p(A) and the contraction mapping theorem that
for any real number A with [\ < ||A7!||7!, the operator iA\] — A = AGNAT! — 1) is
invertible. Furthermore, [|(iA] — A)7!|| is a continuous function of X in the interval
(=IATHIS ATHI.

(i) If sup {||GAT — A)7Y| | [\ < |[A7Y|7'} = M < oo, then by the contraction mapping
theorem, the operator iAI — A = (iXgI — A)(I+i(A—Xg) (1Mol —A) ) with [No| < |[A7Y| 7!
is invertible for |\ — Ag| < M~!. Tt turns out that by choosing |\g| as close to |47~}
as we can, we conclude that {\ | |A| < [[A7Y|"'+ M1} C p(A) and [|(iA] — A)7| is a
continuous function of A in the interval (—|| A7~ — M1 JA7Y|"P + M),

(iii) Thus it follows from the argument in (ii) that if (1.3.1) is false, then there is
w € R with |[A7'|™! < |w| < oo such that {i\| |\ < |w|} C p(A) and

sup {[|(iA — A)7Y| | [N < |w|]} = oo. It turns out that there exists a sequence
{MUn) sy € R x D(A), with A, — w asn — oo, [\ < |w] and ||Up]ly = 1,
such that

(tApl — AU, =F, - 0in H, as n — 00.

Then, we will prove (1.3.1) by showing that ||U,||[z — 0 (up to a subsequence) which
contradicts ||U,||,; = 1. O
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Next, when the Cy-semigroup is strongly stable, we look for the necessary and sufficient con-
ditions of exponential stability of a Cp-semigroup. In case when the Cy-semigroup is not
exponentially stable, we may look for a polynomial one. In fact, exponential and polynomial
stability results are obtained using different methods like: multipliers method, frequency do-
main approach, Riesz basis approach, Fourier analysis or a combination of them. In this thesis
we will review only two methods. The following result is a frequency domain approach method
which was obtained by Huang [67] and Priiss [94].

Theorem 1.3.6. Assume that A is the generator of a strongly continuous semigroup of con-
tractions (S (t)),5o on H. S (t) is uniformly stable if and only if

e IRCp(A).

o limsup ||(GA —A)"" | 2oy < o0.
AER,[A| 00

Moreover, the following result is a frequency domain approach method which was obtained by
Borichev and Tomilov [30] (see also [27] and [77]) .

Theorem 1.3.7. Assume that A is the generator of a strongly continuous semigroup of con-
tractions (S (t)),, on H. If iR C p(A), then for a fixed £ > 0 the following conditions are
equivalent

1
limsup | (A1 — A7 | eary < 00, (1.3.2)
AER, A —oo [Al
C
1S (t) Uplle < y |Uollpay YV t>0, Uy e D(A), for some C' > 0. (1.3.3)
3

Also, the analytic property of a Cp—semigroup of contraction (S (t)), is characterized in the
following theorem due to [23].

Theorem 1.3.8. Assume that A is the generator of a strongly continuous semigroup of con-
tractions (S (t)),, on H. Assume that

iR C p(A).
Then, (S (t)),s, is analytic if and only if

limsup [A|[|(iA] — A) 7|z < oo
AER,|A|—o0

1.4 The multiplier geometric control condition

In this section, we recall the definition of the multiplier geometric control condition denoted
by MGC.

Definition 1.4.1. Let 2 C R™, n > 2 be a bounded open set with the boundary I' =T UT".
We say that the partition (I'g, I';) of the boundary I' satisfies the multiplier geometric control
condition MGC (see Fig. 1.1 for an illustration) if there exists a point zy € R™ and a positive
constant 0 such that

h-v>6" on Iy and h-v<0 on Iy, (1.4.1)

where h(z) = x — xo. d
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Figure 1.1: An example where the MGC boundary condition holds.
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Chapter 2

Stability results of a singular local
interaction elastic/viscoelastic coupled
wave equations with time delay

The purpose of this chapter is to investigate the stabilization of locally coupled wave equa-
tions with non-smooth localized viscoelastic damping of Kelvin-Voigt type and localized time
delay. Using a general criteria of Arendt-Batty, we show the strong stability of our system in
the absence of the compactness of the resolvent. Finally, using frequency domain approach
combined with the multiplier method, we prove a polynomial energy decay rate of order ¢~
This chapter is published in [7].

2.1 Introduction

2.1.1 Description of the chapter

In this chapter, we investigate the stability of local coupled wave equations with singular
localized viscoelastic damping of Kelvin-Voigt type and localized time delay. More precisely,
we consider the following system:

(g — [auy + b(x) (K1 + Koty (2,8 — 7)), + c(@)y
=0, (x,t) € (0,L) x (0,00),
Yit — Yow — c(z)uy =0, (x,t) € (0,L) x (0,00),
w(0,t) = u(L,t) = y(0,t) = y(L,t) = 0, t>0 (2.1.1)
(u(z,0), u(x,0)) = (uo(x), ur (), z€(0,L)
(y(,0), 4:(x,0)) = (yo(), y1 (), (0, L),
u(x, t) = folx,t), (z,t) € (0,L) x (—,0),

\

where L,7,a and k; are positive real numbers, x; is a non-zero real number and
(wo, u1, Yo, Y1, fo) belongs to a suitable space. We suppose that there exist 0 < a < <y < L
and a non-zero constant ¢y, such that

L x € (0,P), ), TE (o, ),
b(x) = { 0. e (L) and c(z) = { e
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Figure 2.1 describes system (2.1.1).

Viscoelastic region & time delay

0 o 3 7 L

Coupling region

Figure 2.1: Local Kelvin-Voigt damping and local time delay feedback.

System (2.1.1) consists in two wave equations with only one singular viscoelastic damp-
ing acting on the first equation, the second one is indirectly damped via a singular coupling
between the two equations. The notion of indirect damping mechanisms has been introduced
by Russell in [100] and since then, it has attracted the attention of many authors (see for
instance [9], [10], [11], [19], [34], [2], [78] and [109]). The study of such systems is also
motivated by several physical considerations like Timoshenko and Bresse systems (see for
instance [1], [8], [84] and [86]). In fact, there are few results concerning the stability of coupled
wave equations with local Kelvin-Voigt damping without time delay, especially in the absence
of smoothness of the damping and coupling coefficients (see Subsection 2.1.2). This motivates
our interest to study the stabilization of system (2.1.1) in this chapter.

2.1.2 Previous Literature

The wave is created when a vibrating source disturbs the medium. In order to restrain
those vibrations, several damping can be added such as Kelvin-Voigt damping which is
originated from the extension or compression of the vibrating particles. This damping is a
viscoelastic structure having properties of both elasticity and viscosity. In the recent years,
many researchers showed interest in problems involving this kind of damping where different
types of stability, depend on the smoothness of the damping coefficients, has been showed
(see [17], [18], [62], [63], [66], [76], [80], [91] and [98]). However, time delays appear in several
applications such as in physics, chemistry, biology, thermal phenomena not only depend on
the present state but also on some past occurrences (see [44] and [72]) . In the last years,
the control of partial differential equations with time delays have become popular among
scientists, since in many cases time delays induce some instabilities see [36, 38, 39, 42].

However, let us recall briefly some systems of wave equations with Kelvin-Voigt damp-
ing and time delay represented in previous literature.

Coupled wave equations with Kelvin-Voigt damping and without time delay

In 2020, Hayek et al. in [65] studied the stabilization of a multi-dimensional system of weakly
coupled wave equations with one or two locally Kelvin-Voigt damping and non-smooth co-
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efficient at the interface. They established different stability results. In 2021, Hassine and
Souayeh in [64] studied the behavior of a system with coupled wave equations with a partial
Kelvin-Voigt damping, by considering the following system

(uy — (up + bo(x)usy), + v, =0, (x,t) € (—1,1) x (0,00),
Uy — CUgy — Uy = 0, (x,t) € (—1,1) x (0, 00),
u(0,t) = v(0,t) = 0,u(1,t) = v(1,t) =0, t >0, (2.1.2)
u(z,0) = up(x), u(z,0) = uy (), re(—1,1),

L v(2,0) = v(x), ve(x,0) = vy (), x € (—1,1),

where ¢ > 0 and by € L*>°(—1,1) is a non-negative function. They assumed that the damping
coeflicient is piecewise function in particular they supposed that by(x) = dljo1)(x), where d is
a strictly positive constant. So, they took the damping coefficient to be near the boundary
with a global coupling coefficient. They showed the lack of exponential stability and that the
semigroup loses speed and it decays polynomially with a rate as t=12. In 2021, Akil, Issa
and Wehbe in [103] studied the localized coupled wave equations, by considering the following
system:

([ uy — (aug 4 b(2)ug), + c(x)y = 0, (z,t) € (0, L) x (0, 00),
Yot — Yoo — c(@)uy = 0, (z,t) € (0, L) x (0,00),
uw(0,t) = u(L,t) = y(0,t) = y(L,t) =0, t>0,

(u(x,0),u(x,0)) = (up(z), us(x)), x € (0,L),
(y(,0), (2, 0)) = (yo(), y1(2)), z € (0,L),

where

and c(x) =

by, = € (a1,a3), co, T € (aa,ay),
b(z) =

0, otherwise 0, otherwise

where @ > 0, bp > 0, ¢cg > 0 and 0 < a; < as < az < ag < L. They generalized the
results of Hassine and Souayeh in [64] by establishing a polynomial decay rate of type ¢t~

Wave equations with time delay and without Kelvin-Voigt damping

The delay equations of hyperbolic type is given by
— Au(z,t — 1) =0. (2.1.3)

with a delay parameter 7 > 0. This system is not well posed since there exists a sequence
of solutions tending to infinity for any fixed ¢ > 0 while the norm of the initial data remains
bounded (see Theorem 1.1 in [42]). In 2006, Nicaise and Pignotti in [88] studied the multidi-
mensional wave equation considering two cases. The first case concerns a wave equation with
boundary feedback and a delay term at the boundary

(uy(z,t) — Au(x,t) =0, (x,t) € Q x (0, 00),
u(z,t) =0, (x,t) € I'p x (0, 00),
Qu(x,t) = —pug(z, t) — poug(z, t — 7), (x,t) € Iy x (0, 00), (2.1.4)
(u(z,0),u(z,0)) = (uog(x), ur(x)), x €,
L w(z,t) = folz, t), z,t) € 'y x (—71,0).
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The second case concerns a wave equation with an internal feedback and a delayed velocity
term (i.e. an internal delay) and a mixed Dirichlet-Neumann boundary condition

(uy(x,t) — Au(z, t) + pug(z, t) + pou(z,t —7) =0, (z,t) € Q x (0,00),
u(z,t) =0, (xz,t) € I'p x (0, 00),

§ %(z,t)=0 (z,t) € T x (0, 00), (2.1.5)
(u(z, 0), u(x,0)) = (o), 1r (2)), req,

L ui(x,t) = fo(z,t), z,t) € Qx (—1,0),

where 2 is an open bounded domain of RY with a boundary I" of class C? and I' = I'p U 'y,
such that TpNTy = 0. Under the assumption s < 1, an exponential decay is achieved for the
both systems (2.1.4)-(2.1.5). If this assumption does not hold, they found a sequences of delays
{7}k, T — 0, for which the corresponding solutions have increasing energy. Furthermore, we
refer to [29] for system (2.1.5) in more general abstract setting. In 2010, Ammari et al. in [21]
studied the wave equation with interior delay damping and dissipative undelayed boundary
condition in an open domain 2 of RY, N > 2. The system is described by:

(uy(z,t) — Au(x,t) + au(z,t —7) =0, (x,t) € Q x (0,00),
u(z,t) =0, (z,t) € Ty x (0,00),
Qu(x,t) = —ku(z,t), (x,t) € T'1 x (0,00), (2.1.6)
(u(z,0), u(,0)) = (uo(x), ua(x)) , €,
L wg(z,t) = folz, t), x,t) € Q x (—1,0),

where 7 > 0, a > 0 and x > 0. Under the condition that I'; satisfies the I'-condition introduced
in [75], they proved that system (2.1.6) is uniformly asymptotically stable whenever the delay
coefficient is sufficiently small. In 2012, Pignotti in [93] considered the wave equation with
internal distributed time delay and local damping in a bounded and smooth domain 2 C
RY N > 1. The considered system is given by the following:

ug(x,t) — Au(z, t) + axou(z, t) + kug(z, t —7) =0, (x,t) € Q x (0,00),

u(z,t) =0, (xz,t) € I' x (0,00), 2.17)
(u(x,0),u(x,0)) = (up(z), us(x)), x €,
u(z,t) = f(x,t), (x,t) € Q x (—71,0),

where kK € R, 7 > 0, a > 0 and w is the intersection between an open neighborhood of the
set To={ze€l; (x—ax)- v(zx)>0}and Q. Moreover, x,, is the characteristic function of
w. We remark that the damping is localized and it acts on a neighborhood of a part of €.
She showed an exponential stability results if the coefficients of the delay terms satisfy the
following assumption |k| < kg < a.

Several researches were done on wave equation with time delay acting on the boundary see
([39],[37], [108], [59], [58], [102], [107]) and different type of stability has been proved.
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Wave equations with Kelvin-Voigt damping and time delay

In 2016, Messaoudi et al. in [85] considered the stabilization of the following wave equation
with strong time delay

(1) — Au(z, t) — ppAug(x, t) — ppAug(x,t —7) =0, (2,t) € Q x (0,00),

u(z,t) =0, (x,t) € I' x (0, 00),
(u(x70)>ut(m70)) = (UO(I)>UI(I))7 r €},
w(z,t) = folx,t), (x,t) € Q x (—71,0),

where p; > 0 and py is a non zero real number. Under the assumption that |us| < w1,
they obtained an exponential stability result. In 2016, Nicaise et al. in [89] studied the
multidimensional wave equation with localized Kelvin-Voigt damping and mixed boundary
condition with time delay

(up(x,t) — Au(x,t) — div(a(z)Vu) =0, (x,t) € Q x (0, 00),
u(z,t) =0, (x,t) € Ty x (0,00),
Qu(x,t) = —a(z) P (z,t) — kue(z,t — 1), (z,t) € Ty x (0, 00), (2.1.8)
(u(z,0),u(,0)) = (uo(x), ur(x)) z €Q,
L w(z,t) = folx, t), z,t) €Ty x (—7,0),

where 7 > 0, K € R, a(z) € L>®(Q) and a(x) > ay > 0 on w such that w C 2 is an open
neighborhood of I';. Under an appropriate geometric condition on I'; and assuming that
a € CH(Q), Aa € L=(Q), they proved an exponential decay of the energy of system (2.1.8).
In 2019, Anikushyn et al. in [41] considered an initial boundary value problem for a viscoelastic
wave equation subjected to a strong time localized delay in a Kelvin-Voigt type. The system
is given by the following:

;

uy — 1 Au — coAu(z,t — 1) — diAuy — doAwy(z,t — 7) =0, (2,t) € Q % (0,00),
u(z,t) =0, (x,t) € 'y x (0, 00),

%(w,t) =0
(u(x,O),ut(x,O)) = (U0($)7U1(I))7 ARSI
\ UJ(I?t):fO(xat)a x,t) € )X (—T,O).

Under appropriate conditions on the coefficients, a global exponential decay rate is obtained.
In 2015, Ammari et al. in [22] considered the stabilization problem for an abstract equation
with delay and a Kelvin-Voigt damping. The system is given by the following:

g (t) + aBB*u(t) + BB*u(t — 7) =0, t € (0,00),
(u(0), u(0)) = (uo, ur),
B*u(t) = fO(t)7 te <_7-7 0)7

for an appropriate class of operator B and a > 0. Using the frequency domain approach, they
obtained an exponential stability result.
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Thus, to the best of our knowledge, it seems to us that there is no result in the existing
literature concerning the case of coupled wave equations with localized Kelvin-Voigt damping
and localized time delay, especially in the absence of smoothness of the damping and coupling
coefficients. The goal of the present chapter is to fill this gap by studying the stability of
system (2.1.1).

This chapter is organized as follows: In Section 2.2, we prove the well-posedness of our
system by using semigroup approach. In Section 2.3, by using a general criteria of Arendt-
Batty, we show the strong stability of our system in the absence of the compactness of the
resolvent. Next, in Section 2.4, by using frequency domain approach combining with a specific
multiplier method, we prove a polynomial energy decay rate of order ¢!,

2.2 Well-posedness of the system

In this section, we will establish the well-posedness of system (2.1.1) by using semigroup
approach. To this aim, as in [88], we introduce the following auxiliary change of variable

n(x,p,t) == w(z,t —pr), x€(0,5),pec(0,1),t>0. (2.2.1)
Then, system (2.1.1) becomes
w — (Sp(u,ug,m)), + @)y, = 0, (x,t) € (0,L) x (0,00), (2.2.2)
Yt — Yoz — C(2)uy = 0, (x,t) € (0, L) x (0, 00), (2.2.3)
i (z, p,t) +n,(x, p,t) =0, (x,p,t) € (0,8) x (0,1) x (0,00), (2.2.4)

where Sy(u, u,n) := auy + b(z) (K1t + Koty (2, — 7)). Moreover, from the definition of b(-),
we have
S1(u, ug,m) = aug + Kty + Kane(+, 1,1), in (0, 3),

Sp(u,up,m) = { » n (5.1 (2.2.5)

With the following boundary conditions

{ w(0,t) = u(L,t) = y(0,t) = y(L,t) =0, >0, (226)
1(0,p,t) =0, (p,t) € (0,1) x (0,00),
and the following initial conditions

u(z,0) = ug(x), u(z,0) = uy(x), x € (0,L),

y(x,0) = yo(x), Yi(z,0) =y (), z€(0,L), (2.2.7)

n(@,p,0) = folz, —pr), (x,p) € (0,8) x (0,1).
The energy of system (2.2.2)-(2.2.7) is given by

E(t) = Eyi(t) + Ex(t) + Es(t), (2.2.8)
where
L 2 L
B =5 [l +auafde. Bat) =5 [ (1l + o) do and

8l
TIK
Es(t):—|22‘/ / 0.(-, p, 1) Pdpda.
0 0
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Lemma 2.2.1. Let U = (u,u,y,y:,n) be a regular solution of system (2.2.2)-(2.2.7). Then,
the energy F(t) satisfies the following estimation

d LT
th( ) < — (k1 — |/<¢2|)/0 |t | “da. (2.2.9)

Proof. First, multiplying (2.2.2) by %, integrating over (0, L), using integration by parts with
(2.2.6), then taking the real part, we obtain

L
2d / |, |Pdw + R {/ Sp(u, ug,n )umdx} + 3?{/ c(-)ytu_tdx} = 0.
t 0

From the above equation and the definition of Sy(u, u;,n) and ¢(-), we deduce that

B B o
%El( t) = —Ky |um|2dx - R {/@/ N (- 1,t)u_mdx} — R {co/ ytu_tdx} ) (2.2.10)
0 0 «@

Using Young’s inequality in (2.2.10), we get

%El( t) _—(Hl ‘H2|>/ |ux|2d$~|—| 2|/ n.(-, 1,0)|%do — R {co/ tu_td:v}. (2.2.11)

Now, multiplying (2.2.3) by %, integrating over (0, L), using the definition of ¢(-), then taking
the real part, we get

d gl
Deriving (2.2.4) with respect to z, we obtain
TNt (4, , 1) + Np(, p t) = 0. (2.2.13)

Multiplying (2.2.13) by |k2|7z(-, p,t), integrating over (0,5) x (0,1), using the fact that
Ne(+,0,t) = uy, then taking the real part, we get

d K
Ta) = '2'/ L OP =, 0,0P) da
(2.2.14)
|z

- _T (’nw(u 17t)|2 o |ut$’2) dx
0

Finally, adding (2.2.11), (2.2.12) and (2.2.14), we obtain (2.2.9). The proof is thus com-
plete. U

In the sequel, we make the following assumptions
k1 >0, ke € R" and |ka| < K. (H)

Under the hypothesis (H) and from Lemma 2.2.1, the system (2.2.2)-(2.2.7) is dissipative in
the sense that its energy is non-increasing with respect to time (i.e. E’(t) < 0). Let us define
the Hilbert space H by

H = (HY(0,L) x L*(0,L))* x W,
where

W= L*((0,1); HL(0,8)) and HL(0,8) := {7 € H'(0,5) | 7(0) = 0}.
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The space W is a Hilbert space of H}(0,)-valued functions on (0, 1), equipped with the
following inner product

B
(', n®)w = / / nin2dpdz, Yn',n* € W.
o Jo
The Hilbert space H is equipped with the following inner product
L L L Bl .
O.UY), = / (auxug% +ovt +yyp + 221> dz + 7|k / / a(, p)n3 (-, p)dpdz,  (2.2.15)
0 o Jo

where U = (u,v,y,z,1m(-,p)", Ut = (u}, vy, 24 0t (-, p))T € H. Now, we define the linear
unbounded operator A : D(A) C H —— H by:
U= (u,v,y,2,n(,p)" € H |ye H*0,L)NHL0,L), v,z € HO0,L)

D(A) - (Sb(u7va77)):r S LQ(()?L)? np('ap) € W’ 7](-,0) - U(> in (O’ﬂ)

and

(2.2.16)

PN
e < 2

|

©

n(-, p) —77',(-, p)

Now, if U = (u,us,y,y:,nm(-,p))", then system (2.2.2)-(2.2.7) can be written as the fol-
lowing first order evolution equation

U, = AU, U(0) = U, (2.2.17)
where Uy = (uo, U1, Yo, Y1, fo(-, —p7)) " € H.

Remark 2.2.1. The linear unbounded operator A is injective (i.e. ker(A) = {0}). Indeed, if
U € D(A) such that AU = 0, then v, z,n,(-, p) = 0 and since 7(-,0) = v(-), we get (-, p) = 0.
Consequently, (Sy(u,v,7)), = @tz = 0 and y,, = 0. Now, since u(0) = u(L) = y(0) = y(L) =
0, then u =y = 0. Thus, U = (u,v,y,2,1m(-,p))" = 0. O

Proposition 2.2.1. Under the hypothesis (H), the unbounded linear operator A is m-
dissipative in the energy space H.

Proof. For all U = (u,v,y,2,7(-,p))" € D(A), from (2.2.15) and (2.2.16), we have

ROAU, Uy = R {/OL avxu_xdx} +R {/OL (Sy(1 v,n))xﬁd:ﬁ} LR {/OL zx%da:}
e [“veztr} = {isl [ [ e ot e}

Using integration by parts to the second and fourth terms in the above equation, then using
the definition of Sy(u,v,n) and the fact that U € D(A), we get

R(AU,U)y = —K1 [vg|“de — RS ko [ me(-, DUgdr p — —— —|n: (-, p)|*dpdz,
0 0 2 Jo Jo dp
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the fact that n(-,0) = v(-) in (0, 8), implies that

_ |z P |ka| (7 2 ’ —
RAU,U)y = — (k1 — B |V |*dx — 3 n:(-, 1)|*de — RS ko | n.(-, 1)Tzdx 5 .
0 0 0

Using Young’s inequality in the above equation and the hypothesis (H), we obtain
B
R(AU,U),, < — (k1 — |@|)/ lva[2dz < 0, (2.2.18)
0
which implies that A is dissipative. Now, let us prove that A4 is maximal. To this aim, let

F= (725214 2, p)" € H, welook for U = (u,v,y, z,1(-,p)) " € D(A) unique solution
of

—AU =F. (2.2.19)
Equivalently, we have the following system
—v = fh (2.2.20)
—(Sp(u,v.m))e +e()z = [ (2.2.21)
-z = f (2.2.22)
~Yor — (v = fY (2.2.23)
T np(hp) = LCp), (2.2.24)

with the following boundary conditions
uw(0) =u(L) =y(0) =y(L) =0, n0,p)=0 and n(-,0)=wv(-)in (0,3). (2.2.25)
From (2.2.20), (2.2.24) and (2.2.25), we get
o
W@, p) =7 / P, 5)ds — £, (2.p) € (0, 8) x (0,1). (2.2.26)

Since, f' € H},L) and f°(-,p) € W. Then, from (2.2.24) and (2.2.26), we get
n,(-sp),n(-, p) € W. Now, see the definition of Sy(u,v,n), substituting (2.2.20), (2.2.22) and
(2.2.26) in (2.2.21) and (2.2.23), we get the following system

[Sb (u, fl,T/l fo(z,s)ds — fl)} +c()fP = —f2 (2.2.27)
0 T
Yow — ()1 = — [, (2.2.28)
uw(0) =u(L) =y(0) =y(L) = 0, (2.2.29)
where
1 s 1
1 _ : - i
S, (u, —fl,T/ (e, 8)ds — fl) _ ) o Kify +Tli2/0 fo(eys)ds — kof,, in (0,5),
0 g, in (8,L).

Let (¢,1) € HE(0,L) x H}(0,L). Multiplying (2.2.27) and (2.2.28) by ¢ and 1) respectively,
integrating over (0, L), then using formal integrations by parts, we obtain

L L B8
. /0 W /0 F8de + ¢, / " Pade + (k1 + o) /0 [1Gade

Cns /0 ’ ( /O 1 f§<.,s>d8) Frds

29

(2.2.30)



CHAPTER 2. STABILITY RESULTS OF A SINGULAR LOCAL INTERACTION...

and . . .
/O Yotbpdr = /0 fipdr — Co/a fbdz. (2.2.31)
Adding (2.2.30) and (2.2.31), we obtain
Bl(u,y), (6,9)) = L(6,¥), V(6,4) € HY(0,L) x HY(0,L), (2.2.32)
where . 5
Bl(w ) (00) = [ wnde+ [y
and

L _ _ v _ B 1 o
£(6,0) = /0 (3 + 1*T) do + co / (53 — 'T) do — 7rs /0 ( /0 £, s)ds) Gude

B8
T (k1 + o) / [oudz.
0

It is easy to see that, /8 is a sesquilinear, continuous and coercive form on (H2(0, L) x HL(0, L))?
and £ is an antilinear and continuous form on Hj(0,L) x Hj(0,L). Then, it follows by
Lax-Milgram theorem that (2.2.32) admits a unique solution (u,y) € H}(0, L) x H(0, L). By
using the classical elliptic regularity, we deduce that system (2.2.27)-(2.2.29) admits a unique

solution (u,y) € H3(0, L) x (H*(0,L) N H(0, L)) such that (Sy(u,v,n)), € L*(0, L) and since
T

ker(A) = {0} (see Remark 2.2.1), we get U = (u, —fhy, —fg,T/p o, 8)ds — f1> € D(A)
0

is a unique solution of (2.2.19). Then, A is an isomorphism and since p(A) is open set
of C (see Theorem 1.1.13), we easily get R(A] — A) = H for a sufficiently small A > 0.
This, together with the dissipativeness of A, imply that D (A) is dense in ‘H and that A is
m-dissipative in H (see Theorems 1.2.6, 1.2.9). The proof is thus complete. U

According to Lumer-Phillips theorem (see Theorem 1.2.8), Proposition 2.2.1 implies
that the operator A generates a Cp-semigroup of contractions e* in H which gives the
well-posedness of (2.2.17). Then, we have the following result:

Theorem 2.2.1. Under the hypothesis (H), for all Uy € H, system (2.2.17) admits a unique
weak solution
Uz, p,t) = “Us(,p) € CO(Ry, H).

Moreover, if Uy € D(A), then system (2.2.17) admits a unique strong solution
Ulw,p,t) = e Un(a, p) € CO(Ry, D(A)) N CHR,, H).

2.3 Strong Stability

In this section, we will prove the strong stability of system (2.2.2)-(2.2.7). The main result of
this section is the following theorem.

Theorem 2.3.1. Assume that (H) is true. Then, the Cy-semigroup of contractions (etA)

is strongly stable in H; i.e., for all Uy € H, the solution of (2.2.17) satisfies

t>0

lim ||6tAU0||H =0.
t—+oo
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According to Theorem 1.3.3, to prove Theorem 2.3.1, we need to prove that the operator A
has no pure imaginary eigenvalues and o(A) N iR is countable. The proof of Theorem 2.3.1
will be achieved from the following proposition.

Proposition 2.3.1. Under the hypothesis (H), we have
iR C p(A). (2.3.1)

We will prove Proposition 2.3.1 by a contradiction argument. Remark that, it has
been proved in Proposition 2.2.1 that 0 € p(A). Now, suppose that (2.3.1) is false,
then there exists w € R* such that iw ¢ p(A). According to Remark 1.3.5, let
{Om U= (o, 20", p) 1)} o, € R* x D(A), with

A" = wasn — oo and |A"] < |w (2.3.2)

and
U™ |2 = || 0", g™, 2 (o)) T = 1.0 > 1, (2.3.3)

such that
(A" — A)U" = F" := (fl’”,fQ’”,f?””,f4’”,]"5’"(-,,0))T —0 in H, as n—o0. (2.34)

Equivalently, we have

Nt — " = fB 0 in Hy(0,L), (2.3.5)

iIN'" = (Sp(u”, 0" n™), + ()2 = =0 in  L*(0, L), (2.3.6)
iyt — 2" = P 0 in Hy(0, L), (2.3.7)

N2 =yt — (" = =0 in  L*(0, L), (2.3.8)

iN'n" (., p) + 77177;1(.%) = fo"(,p) =0 in W. (2.3.9)

Then, we will prove condition (2.3.1) by finding a contradiction with (2.3.3) such as ||[U"||3 — 0.
The proof of proposition 2.3.1 has been divided into several Lemmas.

Lemma 2.3.1. Under the hypothesis (H), the solution U™ = (u™,v", 4", 2", n"(-, p))" € D(A)
of system (2.3.5)-(2.3.9) satisfies the following limits

B
lim/ v 2dz = 0, (2.3.10)
n—oo 0
B
lim [ [v"[*dz =0, (2.3.11)
n—oo 0
B
lim / [ul|*dx = 0, (2.3.12)
n—oo 0
B rl
lim/ / 102 (-, p)Pdpdx = 0, (2.3.13)
n—oo 0 0
B
lim [ |n%(-,1)|*dz =0, (2.3.14)
n— o0 0
B
lim 1S1 (u™,v™, ™) [*dz = 0. (2.3.15)
n—oo 0
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Proof. First, taking the inner product of (2.3.4) with U™ in H and using (2.2.18) with the
help of hypothesis (H), we obtain

p 1 1
/ s € e ROAU U = RO U
K1 — |k K1 — |k
0 11 ? b (2.3.16)
< —1F" U
K1 — |I<,2|

Passing to the limit in (2.3.16), then using the fact that |U"|| = 1 and ||F™|| — 0, we obtain
(2.3.10). Now, since v" € H}(0, L), then it follows from Poincaré inequality that there exists
a constant C}, > 0 such that

10" [ z20,8) < Cpllvy [l 22(0,)- (2.3.17)
Thus, from (2.3.10) and (2.3.17), we obtain (2.3.11). Next, from (2.3.5) and the fact that

3 L
/ |fEm2dr < / |fEm2de < a || F™||3,, we deduce that
0 0

[wipar < 2o [ i [l
ul|fde < vl|*dx CMdx
0 (A™)2 Jo (A™)2 Jo

< oo [ erPa s 2
vl|*dx :

= oy T

Passing to the limit in (2.3.18), then using (2.3.2), (2.3.10) and the fact that ||F™|4 — 0, we

obtain (2.3.12). Moreover, from (2.3.9) and the fact that "(-,0) = v™(-) in (0, 8), we deduce

that

(2.3.18)

s\ p F\ T
n*(z,p) = v"e NP —1-7'/ AT 5 (1 5)ds, (x,p) € (0,8) x (0,1). (2.3.19)
0

B
From (2.3.19), and the fact that p € (0,1) and / / |27, 8) Pdsdr < 77 o M| F3,, we
o Jo

obtain

B rl B8 B8 r1 pp
| [ imcofdps < 2 [Crpdeses [ [l opasap
0 0 0 0 0 0
B B r1 pl
2 b [ [ g Pasdpds
0 0 0 0
B 1 B8 rl
= 2/ vy [Pda + 277 (/ pdp)/ / |5 (-, ) Pdsd (2.3.20)
0 0 0 0
B 8 rl
= 2/ |v2|2dx+7'2/ / |f§’”(-,s)|2dsdx
0 0 0

B8
< 9 / o2+ 7ol FP -
0

IN

Passing to the limit in (2.3.20), then using (2.3.10) and the fact that ||F"| — 0, we obtain
(2.3.13). On the other hand, from (2.3.19), we have

1
N (-, 1) = vme T 4 7'/ el (L) ds,
0
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consequently, by using the same argument as proof of (2.3.13), we obtain (2.3.14). Next, it is
clear to see that

B
/ \Sl(u”,v",n”)Ide = / lauly + Kivl + Kany (-, )| dx
0

< 3a/ |u”|2d:t:+3/<;1/ vz d:c+3/€2/ 5 (-, 1)Pda.

Finally, passing to the limit in the above estimation, then using (2.3.10), (2.3.12) and (2.3.14),
we obtain (2.3.15). The proof is thus complete.

O
Now, we fix a function g € C* ([, 3]) such that
gla) =—g(6) =1 and set m[mé lg(z)| = M, and m[mé} lg'(z)] = My. (2.3.21)
re|la rE|Q,

Remark 2.3.1. To prove the existence of a function g, we need to find an example. For this
aim, we can take

oz >—1+% then g € CX(a. 8, gle) = —9(8) = 1. My = Land My = 2
we can take g(z) = cos <%> : O

Lemma 2.3.2. Under the hypothesis (H), the solution U™ = (u™,v", y", 2", n"(+, p))" € D(A)
of system (2.3.5)-(2.3.9) satisfies the following inequalities

1
2

E 8
|Z”(5)|2+|2"(Q)IQSM¢/ 2" [*dz + 2| X" | M, (/ IZ”Ile‘) + 2M[[F" 3, (23.22)

1
2

B B
RO + 2 ) < My [ lzpde 200+ ddy ([P ) 201 (2329

and the following limits

nh_>r210|v ()] =0 and l_1£100|v (B)| =0, (2.3.24)
lim |(Si(u",v",n") ()] =0 and lim [(S;(u", 0", ")) (87)| = 0. (2.3.25)

Proof. First, from (2.3.7), we deduce that
Iy — 2= 3 (2.3.26)

Multiplying (2.3.26) and (2.3.8) by 2¢z™ and 2gy? respectively, integrating over («, ), using
the definition of ¢(-), then taking the real part, we get

B B B
%{22’)\”/ gyﬁﬁdm}—/ g(|z"\2)xdaﬁ:§R{2/ gfi””z_"dm} (2.3.27)
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B B B
%{2@')\"/ gz”y_gda:}—/ g(\ymz)xdx—%{%o/ gv"ﬁdaj}
B
2%{2/ gf4’”ﬂda:}.

Using integration by parts in (2.3.27) and (2.3.28), we obtain

b5 8 B B
[—g 12" }a: —/ g’|z"|2dx—§]%{2i)\"/ gyZz”ch}—l—?R{Q/ gfg’”z"dx}

218 A, 9 , B B
(=g lyal’], = —/ Jyz"dr — R QM"/ gz"yndr o + R 200/ guyn
B E—
+3‘E{2/ gf4’”ygdx}.

Using the definition of g and Cauchy-Schwarz inequality in the above equations, we obtain

8 8 1/ B
R+ P <y [ lpan vty ([ Cizpar) ([ pa)

8 3/ B 3
oM, (/ \fj’”|2da:) (/ |z”|2dx>
and

B 8 3 3
2 (B)P + (@) < My / 2 + 213" |0, ( / |y§j|2dx) ( / |Zn|2dx>
8 3/ B 3
+ 2|eo| My (/ IyZZ!Qdm) (/ |U"|2dx) (2.3.30)
8 3/ B :
oM, (/ |f4’”|2dx) (/ |yg|2dx) |

8 L
Therefore, from (2.3.29), (2.3.30) and the fact that / IR / &7 Pde < || U5 =1
a 0

8 L
with €7 € (0", ) and [ 1g5Pde < [ |g3Pde < 7 with € € {527, 740}, we obtain

a 0
(2.3.22) and (2.3.23). On the other hand, from (2.3.5), we deduce that

and

(2.3.28)

and

N

(2.3.29)

N|=

iIN — " = fhm (2.3.31)

Multiplying (2.3.31) and (2.3.6) by 2gv™ and 2¢S;(u",v"™, n") respectively, integrating over
(e, B), using the definition of ¢(-) and S,(u", v™, n™), then taking the real part, we get

B B B
%{21'/\"/ gu;v_”dx} —/ g(|v"!2)mdx:§)?{2/ gfj’”v_"d:c} (2.3.32)
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and

B B
?R{Qi)\”/ gv"S_l(u",v”,n”)da:}—/ g(|51(u”,v”,77”)|2)$dx

B B —
+§]%{2CO/ gz”Sl(u”,U",n”)dx} = 3%{2/ ng’"Sl(u",v”,n")dx} .
) and (2.3.33), we get

b5 5 5 5
[—g [v"] ]a:—/ g/|v"|2dx—3?{2i)\"/ gu:v”dx}—l—?)?{Z/ gf;’"v”dx}
and
n n n\ 218 g ! n o.n ,n\|l2 \n g ng (,m ,n ,n
[—g|81(u ;)| }a:—/ g |S1(u™, v, n™)|" dr — R S 20\ / gu"Si(u"; v, n")dx

B B
—5)‘%{200/ 92" S (u",v"™, ") JJ} +3“E{2/ gf2’"S_1(u",U”,n")dx}.

Using the definition of g and Cauchy-Schwarz inequality in the above equations, then using
the fact that

B L B L
[lepaes [Cpar <ot — 1 [iepae < [ iR < o
o 0 a 0

(2.3.33)

Using integration by parts in (2.3.32) an

8 L
and [ 1pnPde < [ 1P < P
ol 0

we obtain

1 1
B8 154 P B8 2
OP + @ < My [ orPde 230, (/ |u:|2dx) (/ |v"|2das)
, « 5 % « « (2334)
My ([ ) 1

8
(S, o, ) (B8] + (S, 0" ™)) () < Mgf/ Sy (u", 0" ") P de

2], (/ 1S, o™ )| dx) (/ 0] dx) (2.3.35)

4+ 2co| M, </ 15, (u v,n)|dm) + oM, (/ 1S (o, )| dm) T

Finally, passing to limit in (2.3.34) and (2.3.35), then using (2.3.2), Lemma 2.3.1 and the fact
that || F"||3 — 0, we obtain (2.3.24) and (2.3.25). The proof is thus complete. O

Remark 2.3.2. From (2.3.2), (2.3.22), (2.3.23), and the fact that ||U"||3 = 1 and ||[F"|| — 0,
we obtain

and

12" (@)], 12"(B)], lyz(a)l, ly;(B)] are bounded. (2.3.36)
O
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Lemma 2.3.3. Under the hypothesis (H), the solution U™ = (u™,v", y", 2", n"(-, p))" € D(A)
of system (2.3.5)-(2.3.8) satisfies the following limits

B B
lim [ [¢"*dz =0 and lim / [y *dx = 0. (2.3.37)
n—oo a n—oo a

Proof. First, multiplying (2.3.6) by 2", integrating over («a, 3), using the definition of ¢(-) and
Sp(u™, v™, n™), then taking the real part, we get

B B B
%{ZA”/ v”z_"dx} —?R{/ (Sl(u”,vn,n”))xz_"da:} —i—co/ 12" dx
B
=R {/ f2’"z_”dx}.

From (2.3.7), we deduce that

(2.3.38)

70 = i\ — fam (2.3.39)
Using integration by parts to the second term in (2.3.38), then using (2.3.39), we get

8 8 3
Co/ \Z"\zdiﬂzﬁ?{i)\”/ 51(u”,v",77n)y_§dx} +§R{/ S1(u",v",?7n)f§””d:c}
B B
+%{[Sl (u”’vn’nn)z_n]g} +§R{/ fQ’HZ_HdI} _ %{Z)\n/ UnZ_ndI} ]

B
Using Cauchy-Schwarz inequality in the above equation and the fact that / & 2dr <

L 8 L
[ lerde < U7 = 1 with € € (2 and [ jgpPde < [ lepPde < F wieh
0

0 (3
&y e {f*", f2™}, we obtain

8 2 8 2
co [ e < v 1E ([ onopar) e ([ par) e

+ (S, 0", ™) (8] 12" (B)] + |(Su(u™, 0™ ™)) (@)] 2" ()],

Passing to the limit in the above inequality, then using (2.3.2), (2.3.36), (2.3.25), Lemma
2.3.1 and the fact that |[|[F"||z — 0, we obtain the first limit in (2.3.37). On the other hand,
multiplying (2.3.8) by —27(A\")~!, integrating over (a, 3), using the definition of ¢(-), then
taking the imaginary part, we get

B B B
—/ |z”|2dx+%{()\")_1/ ygxz_"daj} —|—%{co()\”)_1/ v”z_”da:}
B
= -9 {()\”)_1/ f4’”z_"dx} .

Using integration by parts to the second term in the above equation, then using (2.3.39), we
obtain
/ e = / e -5 o) f opde p =3 {00 27}

-3 {CO(M)—I /j v"z_”d:r} ~ 3 {()\”)‘1/a f4’”z_”dx} ,
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Using Cauchy-Schwarz inequality in the above equation and the fact that ||U"|y = 1, we get

1
B B B 2
[zpae< [Clrpas v apert ([Cppa) w0
+ X BB + Ay ()] [2" (@)
Now, passing to the limit in (2.3.22), then using (2.3.2), the first limit in (2.3.37) and the fact

that |[F"[ — 0, we get

lim [z"(a)] =0 and lim |2"(5)| = 0. (2.3.41)

n—o00 n—-+o0o

Finally, passing to the limit in (2.3.40), then using (2.3.2), (2.3.11), (2.3.36), the first limit in
(2.3.37), (2.3.41), and the fact that ||F"|y — 0, we obtain the second limit in (2.3.37). The
proof is thus complete. O

Lemma 2.3.4. Under the hypothesis (H), the solution U™ = (u™,v", 4", 2", n"(-, p)) " € D(A)
of system (2.3.5)-(2.3.9) satisfies the following estimations

lim [u"(B)? =0 and lim |y"(8)]* =0, (2.3.42)
n—oo n—oo
lim [u2(7))*=0 and lim |y (B)|* =0, (2.3.43)
n—oo n—oo
Y Y Y Y
lim (/ ]u"!Qda:Jr/ yug|2dx+/ |y”]2da:+/ ]ygl2dx) o, (2.3.44)
e \Jp 8 8 8
s Y
lim [v"|*dz =0 and lim |2"|2dz = 0. (2.3.45)

Proof. First, from (2.3.5) and (2.3.7), we get

(B2 < 20) 2 (B) + 2007) 2 7 (B)
and
W"(B)2 < 207) 21 (B) + 200) 2 £ ()2,
B B
Using the fact that |/1(8) < 5 [ |75 Pde < pa™ |7, and |72 (B)F < 5 [ 1737 Pdo <
0 0

B|IF™||3, in the above inequalities, we obtain
[ (B)[* < 2(A") 0" (B)* + 280~ (A") 2 F 15,
and
[y"(B)1* < 2(A") 22" (B)[* + 2B(A") 2 F™ |13,

Passing to the limit in the above inequalities, then using (2.3.2), (2.3.24), (2.3.41) and the fact
that [|[F"||% — 0, we obtain (2.3.42). Secondly, since Sy(u™,v™, n") € H'(0,L) C C([0, L)),
then we deduce that ,

|(Su(u™, 0", 0™) (B7)]" = lauy (57). (2.3.46)
Thus, from (2.3.25) and (2.3.46), we obtain the first limit in (2.3.43). Moreover, passing to the
limit in inequality (2.3.23), then using (2.3.2), the second limit in (2.3.37) and the fact that
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I|E™ ||z — 0, we obtain the second limit in (2.3.43). On the other hand, (2.3.5)-(2.3.8) can be
written in (3, ) as the following form

(A2 " + au®, —iX"cy” = G in (B,7), (2.3.47)
(A" +y, +iN'cqu” = G*" in (8,7), (2.3.48)

where
Gl,n — _f2,n o i)\nfl,n o COfB,n and GZ,n — _f4,n o i)\nf?),n 4 COan- (2349)

Let V™ = (u™,u?, y™,y") ", then (2.3.47)-(2.3.48) can be written as the following

Ve = BIVE R G (2.3.50)
where
0 1 0 0 0
n —a '(A™?2 0 a tiN'cy O . a—lgin
B"= 0( ) 0 0 ’ 1= (bij)i<ij<a and G" = .
—iX'cg 0 —(A")* 0 G2n

The solution of the differential equation (2.3.50) is given by

Vi(z) = B Ay (3T +/ PG (s)ds, (2.3.51)
B

where 2" (=8 — (¢ij)1<ij<a and eB"(s—2) — (dij)1<ij<a are denoted by the exponential of the

matrices B"(x — ) and B™(s — z) respectively. Now, from (2.3.2), the entries b;; are bounded
for all 1 <4,j < 4 and consequently, the entries b;; (x — ) and b;; (s — x) are bounded. In
addition, from the definition of the exponential of a square matrix, we obtain

i B"C for ¢(e{x—03,s—x}.

k=0

Therefore the entries ¢;; and d;; are also bounded for all 1 < 4, j < 4 and consequently, e?" (@=5)
and e®"(*=®) are two bounded matrices. From (2.3.42) and (2.3.43), we directly obtain

VM) =0 in (L*(B7)Y as n— oo (2.3.52)

Moreover, from (2.3.49), we deduce that
v L L L
[1cmpis < [C1pede sy [Cipnpaesad [Cpepa (235)
8 0 0 0

and
g L L L
[1cnpis < [ipmpan s [Cpepde s [t (2350
8 0 0 0

Now, since b f3" € H(0, L), then it follows from Poincaré inequality that there exist two
constants C; > 0 and Cy > 0 such that

1 " 20,y < Cillfa "2y and  [f*" 2.y < Call f2" 22 00.)- (2.3.55)
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Consequently, from (2.3.53), (2.3.54) and (2.3.55), we get

v
/ |GV Pz < 3 (1+a H(A"Ch)? + (coCa)?) | F™|I3, (2.3.56)
B
and )
/ IGP"Pdx < 3 (1+ (A"C1)* 4+ a (coCa)?) [|F™||3,- (2.3.57)
B
Hence, from (2.3.2), (2.3.56), (2.3.57) and the fact that ||F"|| — 0, we obtain
G" =0 in (L*B,7)* as n— oo (2.3.58)

Therefore, from (2.3.51), (2.3.52), (2.3.58) and as eZ" (=8 ¢B"(=2) are two bounded matrices,
we get V™ — 0 in (L?(8,v))* and consequently, we obtain (2.3.44). Next, from (2.3.5) , (2.3.7)
and (2.3.55), we deduce that

v Y Y v
/ ]v"\zdfv < 2()\”)2/ lu™2dx + 2/ |2 de < 2()\”)2/ ]u"[2da: + 2C’1a_1||F"||3{7
B B B B

Y Y Y Y
/ ]z"|2d$ < 2()\”)2/ |y"\2da: + 2/ |f3’”|2d:v < 2()\")2/ |y"|2d$ + 202||F”H$_[.
B B B B

Finally, passing to the limit in the above inequalities, then using (2.3.2), (2.3.44) and the fact
that || F™"||3 — 0, we obtain (2.3.45). The proof is thus complete. O

Lemma 2.3.5. Let h € C*([0, L]) be a function. Under the hypothesis (H), the solution
Un = (u™, 0", y", 2", (-, p)) " € D(A) of system (2.3.5)-(2.3.9) satisfies the following equality

L
[ H @ o o P )
0

L
—Uwaw&wmwmwﬁ+mymj_%{;/(%mw@m}
0

+R {2 /OL c()h2" Gy (™, ", n")dm} +R {

a

2N [P — —
A / hv™ (K102 + Kom2 (-, 1))da7}
a Jo

L L
— 9%{2/ hfml’”v”dx} +§R{§/ hf27”§b(u”,v”,n”)dx}
0 0

L L
—1—%{2/ hf;?’"z”dx} —HR{Q/ hf4’"y_§dx}.
0 0

Proof. First, multiplying (2.3.6) and (2.3.8) by 2a~'hS,(u™, v, n") and 2hy" respectively,
integrating over (0, L), then taking the real part, we get

20\ L — —1 L 2
R hv" Sy(u"™, v"™, n")dx p —a h (|Sb(u”, v n")| )x dx
0 0

a

(2.3.59)
9 L o 2 [k —
ew {2 [Comersioeonach = v {2 [ hpsioe o)
a Jo a Jo
and
L L L
m{zm/ hz"@dx}—/ h(|y§|2)mdx—§)?{2/ c(-)hu”ﬁdx}
0 0 0 (2.3.60)

L
= %{2/ hf4’”ﬂdx}.
0
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From (2.3.5) and (2.3.7), we deduce that

N = o — f" (2.3.61)
AT = —20 — o, (2.3.62)

Consequently, from (2.3.61) and the definition Sy(u™,v"™, n™), we have
—a (07 + J27) N (s + (- 1), in (0, 6),

i)\ngb(un,vn’nn) _ S
—a (T4 7)), in (8,1).

(2.3.63)

Substituting (2.3.63) and (2.3.62) in (2.3.59) and (2.3.60) respectively, we obtain

2IA"
a

L B
- / h (|v”|2 +a! |Sb(u”,v”,n”)\2)zdx+§R{ / hv”(m@—k@@(.,l))dx}
0 0

2 [* -
—1—9?{—/ c(-)hz”Sb(u”,v”,n")dx}
0

a

L 2 L _
:3%{2/ hfi’”v”d:r} +m{a/ hfzv”Sb(u",v",n”)dz}
0 0

L L
_/ h(|z”|2+|yg|2)xdx—§]%{2/ c(.)hvn@dx}
0 0

L L
=R {2/ hf4’"y_§;dx} + R {2/ hfg’”z"dx} )
0 0

Finally, adding the above equations, then using integration by parts and the fact that
v"(0) = v"(L) = 0 and 2"(0) = 2"(L) = 0, we obtain the desired result. The proof is thus
complete. Il

and

Now, we fix the cut-off functions y1, x2 € C*([0, L]) (see Figure 2.2) such that 0 < y;(z) <1,
0 < xao(z) <1, for all z € [0, L] and

(1 if zel0al [0 if zelop]
Xl(””)_{o it ze(g L], ™9 XQ(x)_{l if xely L,

d t / — M , d ! e M /
and se zrél[(?,}é] Ix1(2)] ¥, an ;él[g,}é] Ixa(z)] Xh

Lemma 2.3.6. Under the hypothesis (H), the solution U™ = (u™,v", 4", 2", n"(-, p))" € D(A)
of system (2.3.5)-(2.3.9) satisfies the following limits

lim (/ |ygg\2dx+/ |z”|2dx> =0, (2.3.64)
L L L L
lim (a/ |u2|2d:c—|—/ |v”|2dx+/ \y;l\zd:c—i—/ \z"\zdx) =0. (2.3.65)
n—oo
ol ol Y v
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— X1
— X2

Figure 2.2: Geometric description of the functions y; and ys.

Proof. First, using the result of Lemma 2.3.5 with h = zx;, then using the definition of ¢(-),
Sp(u™, v™,n™) and x1, we get

/ P+ / "2 = — / " 2dz — ! / 1) (0", ") Pde
0 0 0 0

B
—/ (x1 + zx1) (Cfl \Sl(unwnﬂ?n)’Z + [0 + [y ]? + ‘2n|2) dx

200 g nagQ ([, N N g n-m
—R - x2S (u, v M) dr p + RS 2¢ | xx10"yRdx

2Z>\n g n - oy 2 g 2ngQ (,,m . n N
—R ox10" (K0l 4+ kon (-, 1)) dz ¢ + R . xx1 fo" S (u" v ™) dx
0 0

a

L
—|—3‘E{2/ TX1 (f v”—i—f?"z”—i—f‘l’"@) dx}.
0

Using Cauchy-Schwarz inequality in the above equation and the fact that [|[U"||y = 1, we
obtain N N N N

/ ]yﬁ]Qda:—l—/ \z"]2dx§/ |v"\2dx+a_1/ 1S1(u™, 0™, ™) |*dx

0 0 0 0

B8
+ (1+B8M,y) / (a7 Sa(u™, v ™) + [0 + |27 + |y2]?) da

07

4 col? ( / ’ |sl<u",v“,n">12da:)2 +2lcol3 < / ’ |v"!2das)2
25'”[ (/ \;zwda:) +r@\(/ 1 |dx)]

2 1
—i—? (/0 |S1(u™, "™, n")| da:) | E™||9 + 2L (%%—2) | E™ |3

Passing to the limit in the above inequality, then using (2.3.2), Lemmas 2.3.1, 2.3.3 and the
fact that ||F™|5 — 0, we obtain (2.3.64). On the other hand, using the result of Lemma 2.3.5
with h = (z — L)x2, then using Cauchy-Schwarz inequality and the fact that ||U"||z = 1, we
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L L L L
a/ |u2|2+/ ]v"\Qd:c—i—/ |yg|2dx—|—/ |z"|2dx
Y Yy Yy Y
Y
< (U (=AM [ (@b + o+ P + ) do
B
, Lo
T 2leol(L - B) ( / |v"|2da:> (/ |yz|2dx)
B8 B
eol(L ﬁ)</7| w)é(/ﬁ |2d)5 4L(1 1)||F ||
+2|c — 2" |*dx uy|“dr ) + — + " |l
’ B8 B8 \/a

Finally, passing to the limit in the above inequality, then using Lemma 2.3.4 and the fact that
I|E" |3 — 0, we obtain (2.3.65). The proof is thus complete. O

get

D=

Proof of Proposition 2.3.1. From Lemmas 2.3.1-2.3.6, we obtain |[U"|lyz — 0 as
n — 0o, which contradicts |[U™|| = 1. Thus, (2.3.1) holds. The proof is thus complete. O

Proof of Theorem 2.3.1. From proposition 2.3.1, we have iR C p(A) and conse-
quently o(A) NiR = (). Therefore, according to Theorem 1.3.3, we get that the Cy-semigroup
of contraction (e*t);>q is strongly stable. The proof is thus complete. U

2.4 Polynomial Stability

In this section, we will prove the polynomial stability of system (2.2.2)-(2.2.7). The main result
of this section is the following theorem.

Theorem 2.4.1. Under the hypothesis (H), for all Uy € D(.A), there exists a constant C' > 0
independent of Uy such that the energy of system (2.2.2)-(2.2.7) satisfies the following estima-
tion

C
E(t) < 7HU0||3:)(A)7 Vit > 0.

According to Theorem 1.3.7, to prove Theorem 2.4.1, we still need to prove the following two
conditions
iR C p(A) (2.4.1)

and

1
limsup — |[(iA] — A)* < 00. 2.4.2
AER, |A|—oo A2 H( ) H‘C(H) ( )

From Proposition 2.3.1, we obtain condition (2.4.1). Next, we will prove condition (2.4.2) by
a contradiction argument. For this purpose, suppose that (2.4.2) is false, then there exists
{0 = (u, o,y 2" 0" (-, p)) ) },o; € R* x D(A) with

", =1,vn>1, (24.3)

X' = o0asn— oo and Uy = ||(u", 0", y", 2" 0" (-, p))
such that

APEA T =A)U™ = F™ = (f10, f20, 120 12 7 (6,p) T =0 in H, as no— oo, (24.4)
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For simplicity, we drop the index n. Equivalently, from (2.4.4), we have

iu—v = A2 =0 in H(0,L), (2.4.5)

idv = (Sp(u,v,m)e + ()2 = A2f% f2=0 in L*0,L), (2.4.6)
iNy—z = ANZ2f° =0 in Hy(0,L), (2.4.7)

iIN2 — Ypo — (v = AT2f fY—0 in L*0,L), (2.4.8)
ixnCp) + 7 () = AP Cp), folp) =0 in W (2.4.9)

Here we will check the condition (2.4.2) by finding a contradiction with (2.4.3) such as |U||,, =
o(1). For clarity, we divide the proof into several Lemmas.

Lemma 2.4.1. Under the hypothesis (H), the solution U = (u,v,y,z,n(-,p))" € D(A) of
system (2.4.5)-(2.4.9) satisfies the following estimations

B
v |2dz = o(A72), (2.4.10)
0
8
Jug P = o(A™7), (2.4.11)
s
/ 12+, p)|*dpdz = o(A72), (2.4.12)
0 0
B
n:(-, D]*dz = o(A7?), (2.4.13)
0
8
1Sy (u, v, n)|*dx = o(A?). (2.4.14)

0

Proof. First, taking the inner product of (2.4.4) with U in H and using (2.2.18) with the help
of hypothesis (H), we obtain

)\—2 /\—2
——R(F Uy < —WHFHHHUHH- (2.4.15)

/11—|

A 1
/ v, |2 dr < —————R(AU,U)y =
0 K1 — |kl

K1 — |K2l

Thus, from (2.4.15) and the fact that ||F||% = o(1) and ||U||3 = 1, we obtain (2.4.10). Now,
from (2.4.5), we deduce that

B B B
/ lug|?de < 2272 / v, |*d + 2)\_4/ | fH2dw
0 0 0

B L ’
< 2)\‘2/ \vx\zdx+2)\_4/ | fH2dx
0 0

Therefore, from (2.4.10), (2.4.16) and the fact that ||f.|r20.) = o(1), we obtain (2.4.11).
Next, from (2.4.9) and the fact that n(-,0) = v(-) , we get

(2.4.16)

0, p) = ve NP 4 727 / VD [, 5)ds,  (2,p) € (0,8) x (0,1).  (24.17)
0

From (2.4.17), we deduce that

B rl B B pl
/ / \Ux(',p)\dedx§2/ |vz\2dx+72)\_4/ / |f2(-, 5)|*dsduw. (2.4.18)
0 0 0 0 0
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Thus, from (2.4.10), (2.4.18) and the fact that f°(-, p) — 0 in W, we obtain (2.4.12). On the
other hand, from (2.4.17), we have

1
Mo 1) = v, 4 722 / X [ (. 5)ds,
0

consequently, similar to the previous proof, we obtain (2.4.13). Next, it is clear to see that
B B
/ 1S1(u,v,m)|?de = / |laty + K10y + Kone (-, 1) da
0 0

B B B
< 3@2/ |uy|*da + 3/1%/ v, |*d + 3/@%/ n2(:, 1) dz.
0 0 0

Finally, from (2.4.10), (2.4.11), (2.4.13) and the above estimation, we obtain (2.4.14). The

proof is thus complete. U
- 91
— B
1 03

A d e o0 — 00—

0 € 2e o ate -3¢ B —2 ﬁ:5 B

2
~¢

Figure 2.3: Geometric description of the functions #,, #, and 65.

Lemma 2.4.2. Let 0 < € < min(
(u,0,9,2,1(-,p))" € D(A) of system

?, %) Under the hypothesis (H), the solution U =

4.5)-(2.4.9) satisfies the following estimation

/ B lv]2dz = o(1). (2.4.19)

Proof. First, we fix a cut-off function 6§; € C'([0, L]) (see Figure 2.3) such that 0 < 6;(z) < 1,
for all z € [0, L] and

1 if xeleB—¢l,

and set

0 (z)| = M, .
fél[?,’i]l ()] 0,

Multiplying (2.4.6) by A7'6,v, integrating over (0, L), then taking the imaginary part, we

obtain
L L L
/ O1|v|*dr — {)\_1 / 61 (Sp (u,v,m)), Fdx} + <& {/\_1 / c(.)lede}
0 0 0

L
:%{/\‘3/ elf%dx}.
0
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Using integration by parts in the above equation and the fact that v(0) = v(L) = 0, we get

L 1 [k 1 [k
/ 01|v)?dr = - {—/ (017 + 6,7;)Sp(u, v, n)das} -9 {—/ c(-)lede}
0 A Jo A Jo

1 L

Using the definition of ¢(-), Sy(u,v,n) and 6, then using Cauchy-Schwarz inequality, we obtain

(2.4.20)

L B
‘% {)\_1 / (017 + 6,7;)Sp(u, v, n)dx}‘ = ‘S {)\_1/ (010 + 617;) S (u, U,U)dl‘}
0 0

8 3 3 3 8 3
<[ [Meg ([ ac) o ([ 1) ] ([ 1sitwvmpar)
0 0 0
and
L 3 8 3/ B 3
‘%{)\_1/ c(-)@lzﬂd:ﬁ} = ‘%{co)\_l/ 9126611:}‘ < |ecol| A\ (/ |z|2d1:) (/ |v\2d:v) :
0 «@ «@ a

From the above inequalities, Lemma 2.4.1 and the fact that v and 2 are uniformly bounded in
L*(0, L), we obtain

g {xl /OL(Q’IE + 010) Sp(u, v, n)dﬂf} =o(A7), (2.4.21)

-$ {)\‘1 /OL c(-)elz@da:} = O(|\™Y) = o(1).

Inserting (2.4.21) in (2.4.20), then using the fact that v is uniformly bounded in L?(0, L) and
Hf2HL2(O,L) = o(1), we obtain

L
/ 01|v|*dz = o(1).
0

Finally, from the above estimation and the definition of 81, we obtain (2.4.19). The proof is
thus complete. O

5 ’BZO‘). Under the hypothesis (H), the solution U =
(2.4.5)-(2.4.9) satisfies the following estimations

Lemma 2.4.3. Let 0 < ¢ < min(
(uuvay7z7n('7p))T € D(A) of SyStem

B—2¢e B—3e
/ |z|?dz = o(1) and / [y |2dz = o(1). (2.4.22)

+e

Proof. First, we fix a cut-off function 6 € C([0, L]) (see figure 2.3) such that 0 < 6y(z) <1,
for all x € [0, L] and

0 if ze€[0,e]U[B—e¢, L]

02(1’) = .
1 if z €2 p— 2,

and set

0! (x)| = M, .
xrg[gf]l 5(7)] o,
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Multiplying (2.4.6) and (2.4.8) by 65z and 6,0 respectively, integrating over (0, L), then taking
the real part, we obtain

L L L
wRIin [ ogozae b — L [ 0800 0.m)),7d 10, 12[2d
{2/0 szx} {/0 o b(uvn))zx}+/oc()2|z| »
L
=RIN2 92‘d}
o o

L L L
%{z)\/ 9226611'} —?R{/ Ggymﬁdaj} —/ c(-)0s|v|?dx
0 0 0
L
:%{N/ 02f46dx}.
0

Adding (2.4.23) and (2.4.24), then using integration by parts and the fact that v(0) = v(L) =0
and z(0) = z(L) = 0, we get

(2.4.23)

and

(2.4.24)

L L L
/ c(.)92|z|2dx = / c(-)02|v|2dx — R {/ (05Z + 027;) Sy (u, v, n)dm}
0 0 0

L L L
—R {/ (050 + 92@)yxd:v} + R {)\_2 / QQfQEdm} + R {)\_2 / 92f46dx} )
0 0 0

From (2.4.7), we deduce that

(2.4.25)

%= —i\Jz — A3, (2.4.26)

Using (2.4.26) and the definition of S,(u,v,n) and 6s, then using Cauchy-Schwarz inequality,
we obtain

L B—e o
'9’%{/ (0’22+922_x)5‘b(u,v,77)dx}‘ = ‘3‘%{/ [0’22+92(—M%— A2f3) Sl(u,v,n)dx}’
0 5
B—e 3 B—e 3
< |y ( / |z12dx) N ( / ryxwzdx)
B—e 3 B—e 3
([ ipae) | ([ s )

L pB—e
‘ﬁR{/ (050 + 92@)yxdx}‘ = 'é]%{/ (050 + sz_x)yxdx}
0 €
B—e % B—e % B—¢ %

From the above inequalities, Lemmas 2.4.1, 2.4.2 and the fact that y,, z are uniformly bounded
in L*(0, L) and || f2||12(0,r) = o(1), we obtain

and

—R {/OL(0’22+ QQZ)Sb(u,v,n)dm} =o(1) and —%{/OL(9’26+ egm)yxda:} =o(1). (2.4.27)
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Inserting (2.4.27) in (2.4.25), then using the fact that v, 2 are uniformly bounded in L?(0, L)
and || f*||z20.) = o(1), | f*llz2(0.) = o(1), we obtain

/OL c()0s|z|?dx = /OL c(-)0s]v]?dz + o(1).

Therefore, from the above estimation, Lemma 2.4.2 and the definition of ¢(-) and 65, we obtain
the first estimation in (2.4.22). On the other hand, let us fix a cut-off function 63 € C([0, L])
(see Figure 2.3) such that 0 < 5(z) < 1, for all z € [0, L] and

03(x) = { 0.1 welDo]uls -2 1)

1 if z€fa+te f— 3¢,

Now, multiplying (2.4.8) by —A7'65%, integrating over (0, L), then taking the imaginary part,
we obtain

L L L L
—/ 03|z’ dz + S {)\_1/ ngzzzdx} +3 {/\_1/ c(-)é’ngd:z:} = -9 {)\_3/ 03f42dx} )
0 0 0 0

Using integration by parts in the above equation and the fact that z(0) = z(L) = 0, then using
(2.4.26), we get

L L L L
/ Oy |*dx = / O3] z)%dr + S {)\1/ Hgyxzdx} - {)\1/ c(~)93v2dx}
0 0 0 0
L L
N {/\3/ 03f§yzdx} -9 {A?’/ 93f4zdx} .
0 0

From the definition of ¢(-) and 63, the first estimation of (2.4.22) and the fact that v and y,
are uniformly bounded in L?(0, L), we obtain

L B—2e
S {)\1/ 9gym§dx} =9 {)\1/ Hgyxidx} =o (A7),
0 «
L B—2¢
- {)\_1/ c(-)&gvzd:v} = - {co)\_l/ 93vzd:r} =o(|\").
0 «a

Inserting (2.4.29) in (2.4.28), then using the fact that y,, z are uniformly bounded in L?(0, L)
and || £7]|z20.0y = o(1), [[f*]|z20,0) = 0(1), we get

(2.4.28)

(2.4.29)

L L
/ O]y, |*da :/ O3] z|*dx + o(|A|7H).
0 0
Finally, from the above estimation, the first estimation of (2.4.22) and the definition of 63, we

obtain the second estimation in (2.4.22). The proof is thus complete. O

Lemma 2.4.4. 0 < £ < min (%, %) Under the hypothesis (H), the solution U =

(u,v,,2,m(-,p))" € D(A) of system (2.4.5)-(2.4.9) satisfies the following estimations

[()I* + [v(8 = 3)” + alus(y)]* + a™ [ (Si(u, v,m)) (B = 3¢)* = O(D), (2.4.30)
2N+ [2(8 = 32)* + [y (M) + |y.(8 = 3¢)]* = O(1). (2.4.31)
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Proof. First, we fix a function g, € C'([8 — 3¢,7]) such that

—3e) = — —1 and set =M d ()] = My,
92(8 = 3¢) = —g2(7) and set - max |92(2)] = M, an max |g5(2)| = My,

From (2.4.5), we deduce that
iUy — Uy = A2 fr. (2.4.32)

Multiplying (2.4.32) and (2.4.6) by 2¢,0 and 2a"'g,S,(u,v,n) respectively, integrating over
(B — 3e,7), using the definition of ¢(-) and S,(u, v,n), then taking the real part, we obtain

v v v
R {22’)\/ gwﬁdm} — / 92 (]v|2) dr =R {2)\2/ ggf;@dx}
B—3e B—3e ‘ B—3e

7 . 2N [P .
R <21\ Goulzdr p + R — 920 (K10z + RoTlz(+, 1)) dx
B B

—3e —3e

and

Y

B
_a_l/ g2 (|Sl(u,v,77)|2)mdx—a/ g2 (|um|2)xdx
B

—3e B

2cy 8 — ¥
+ R {—/ 92251 (u, v, n)dx} + R {200/ QQzU_xdx}
a B—3e B

2 p p— 2 [,
a)\ ,8—38 )\ 18

Adding the above equations, then using integration by parts, we get

[_92 ‘U’ﬂﬂ{ + [_aing ’Sl<u7 v, 7]>|2} 2_35 + [_CLQQ ’u$|2];

B—3e
¥ B8 v
. /ﬁ dylvfdz — a7 /ﬂ G418 (u, v, m)Pdz — a /ﬁ AT
—3e —3e
2N [P 2 B _
—%{L/ gav (mv—z+m%(~,1>)d:€} —%{ﬂ/ gzle(uwm)dﬂf}
a B—3e a B—3e

v 92 [ 2 [P _
~R {200/ ggzu_xda?} +R {—2 / ng;;@dx} +R {—2 / 92f*Si(u, v, n)dx}
B A B—3e aX B—3e

A
g
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Using the definition of g and Cauchy-Schwarz inequality in the above equation, we obtain

[o(NI? + [0(8 = 3¢)* + alua(7)[* + a7t (S1(u, v0,m)) (8 = 3¢)[* + K(B)

v B o
< My [/ |v|2dx + a_l/ |Sl(u,v,n)|2dx + a/ |ux|2dx]
B—3e B—3e B
1 1
2|\ M, B 2 B 3 B
4 MMy, [%1 ([ ) sl ([ tpas) ] ([ 1wpar)
a p—3e B—3e B—3e
1 1 1 1
2|co| M, A 2 B 2 5 1 ~ L
+—|CO’ 92 (/ |Sl(u,v,n)|2d$) (/ |z|2dx> + 2|co| My, (/ |z|2da:) </ |ux|2dzn>
a B—3e B—3e B B

1 1

1 1 S L
oM v 2 g 2 9M B 2 B 2
222 ([ ) ([ par) e 2o ([0 ippan) ([ isitwnpa)
A B—3e B—3¢e aX B—3e B—3e
I v 3 v 3
+—292 (/ |f2|2dx) (/ |ux|2dx> )
A 8 8

where K(8) = g2(8) (alu.(87))? — a | (Si(u,v,n)) (87)*). Moreover, since Sy(u,v,n) €
H'(0,L) c C([0, L]), then we obtain

(S

| (S1(u,v,m)) (B7)]* = |au,(BT)* and consequently K (3) = 0. (2.4.33)

Inserting (2.4.33) in the above inequality, then using Lemma 2.4.1 and the fact that u,, v, z are
uniformly bounded in L*(0, L) and || f,||r20.2) = o(1), || f*||lz2(0,r) = o(1), we obtain (2.4.30).
Next, from (2.4.7), we deduce that

iINYy — 22 = N2 f2 (2.4.34)

Multiplying (2.4.34) and (2.4.8) by 2¢,z and 2¢,¥, respectively, integrating over (5 — 3¢,7),
using the definition of ¢(-), then taking the real part, we obtain

2! v v
R {Zi)\/ ggyxfda:} — / g2 (]z|2) dr =R {2)\_2/ ngj’zdx} (2.4.35)
B—3e B—3e v B—3e

ol gl gl
R {22’)\/ ggz%dx} — / 92 (]yw\2) dr — R {200/ ggv%dx}
B—3e B—3e * B—3e
8!
=R {2)\2/ g2f4y_xdx} )
B—3e

Adding (2.4.35) and (2.4.36), then using integration by parts, we obtain

Y il
(=02 P + )]s =~ | 1P + Iy -+ 3] 2 / nords

—3¢ —3e

v v
+R {2)\_2 / ngjjzdx} + R {2)\_2 / ggf4%d:r} .
[B—3¢ B—3e
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Using the definition of g and Cauchy-Schwarz inequality in the above equation, we obtain

()7 + 1208 = 3e)* + [y ()* + lya(B — 3¢)|”

v v 3/ 3
<oty [P ) o2l ([ o) ([ nPae)
B—3e B—3e B—3e
y 3/ 3 0! 3/ 3
+ 2272 M, (/ |f§’|2d$) (/ |z|2dx> + (/ |f4|2dzx> (/ |yx|2dzv> :
B—3e B—3e B—3e B—3e

Finally, from the above inequality, the fact that v, y,, z are uniformly bounded in L?*(0, L) and
1 £2 20,0y = 0(1), || f* |l 20,5y = 0(1), We obtain (2.4.31). The proof is thus complete. O

Lemma 2.4.5. Let hy € C'([0,L]) be a function. Under the hypothesis (H), the solution
U= (u,v,y,2,n(-,p))" € D(A) of system (2.4.5)-(2.4.9) satisfies the following equality

L
/ By (0 1Sy(aty 0, )2+ of? + |2 + [ga]?) de

0

[ (s + o))y {2 [ el

a a

9 (L __ 2 [t
:%{p/g th%de}_'_%{ﬁ/o ha f Sb(”?”’n)dx}

2 [t 2 [t
+§R{§/O hgfgzd:c}Jr%{F/o h2f4%d:c}.

Proof. See the proof of Lemma 2.3.5. O

2 [t — 2\ [P L
+R —/ c()hezSp(u,v,m)dr ¢ + R —/ hov™ (K1 Uy + Kallz (-, 1))dx
0 0

Let 0 < ¢ < min(%,2%2), we fix the cut-off functions 64,05 € C*([0,L]) (see Figure
2.4) such that 0 < 0,(z) < 1,0 < 05(z) <1, for all z € [0, L] and

,(x) = 1 if zel0,a+¢l, 4 0y(x) = 0 if zel0,a+¢),
W= Vo0 it zelf-3eL, 0 BTV i zelf-3e L]

— 0,
— 0

0 @ ate -3 B v L

Figure 2.4: Geometric description of the functions 64 and 65.
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Lemma 2.4.6. Let 0 < ¢ < min (g B;O‘) Under the hypothesis (H), the solution U =

20 1
(u,v,9,2,m(-,p))" € D(A) of system (2.4.5)-(2.4.9) satisfies the following estimations
a+e a+e a+e
/ lv2dx +/ |y |*dx + / |z?dx = o(1), (2.4.37)
0 0 0
L L L L
a/ |uw\2dx—|—/ |v|2dx—|—/ |yx\2dx—|-/ |z|?dx = o(1). (2.4.38)
B B—3¢ B—3e B—3e

Proof. First, using the result of Lemma 2.4.5 with hy = 26,, we obtain

a+te a+e a+e a+te
/ lv|da +/ |y |2 da +/ |22 dx = — a_l/ 1Sy (u, v, n)|*dx
0 0 0 0

B—3e
—/ (01 + 20}) (a™!|S1(w, v, 0)|* + [0 + [y * + |2[?) dz
a+te

L L
—|—3‘E{2/ xc(-)&w%dw} —5}?{2/ IC('WME(%”J?)M?}
0 a Jo
—%{%/ 2040 (K107 + Kol (- 1))d$} + §R{%/ x&fivdm}
0 0

+%{W/o 20y f Sb(U,%U)CﬂﬂE}%—ER{ﬁ/O $94f32dx}+%{ﬁ/0 04 f yxdiU}-

From the above equation, Lemmas 2.4.1-2.4.3 and the fact that v, y,, z are uniformly bounded
n LQ(O, L) and HfgiHLQ(O,L) = O(l), ”fa:r:))HLQ(O,L) = 0(1), Hf4HL2(0,L) = 0(1), we obtain

a+te a+te a+te L
/ |v]2dx +/ |y |2 dx + / |z|?dz = R {2/ xc(~)94v%dx}
0 0 0 0

2 [* — 2 [t —
—R= 0,425y (u, v, n)d R 04 %Sy (u,v,n)d 2.4.39
{/ 0e()02255 (. v, 1) x}+ {A/ o0, S, v.1) x} (2.4.39)
- R {%/B 2040 (K1Ug + Kol (-, 1))dx} + o(1).

0

a
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Using the definition of ¢(+), Sy(u, v,n) and 64, then using Cauchy-Schwarz inequality, we obtain

L B—3e
%{2/ xc(-)@w%daz}‘ = ’?R{Qco/ a:@vyjdx}‘
0 o
B—3e % B—3e %
<ol -3 ([ lPar) ([ bar)

2 [* — 2 [P
RS = [ xc()042Sy(u,v,n)dx p| = | R — 20,4251 (u, v, n)dx
0 o

a a

B—3¢ % B—3e %
< 20l —ae) ([ 1ear) ([ isitwvmpar)
a o o

2 [* 2G 9 [P J—
i W/{) 202 fSp(u, v, m)dz | = R W/o 20, f=S1(u,v,n)dx

28 —3¢) [ [P L :
A ) ([ o)

g 2\ [0
‘%{%/ 2040 (K105 + ﬁg%(',l))dx}‘ N ‘%{ﬁ/ e (/@1E+/€2%(-,1))dﬂc}‘
0 0

a a

A8 — B—3e 3 B—3e 2 B—3e 2
< 2B = 3) [ ([ tobar) 1l ( |nx<~,1>|2dm)](/o ofar)

From the above inequalities, Lemmas 2.4.1-2.4.3 and the fact that v, y, are uniformly bounded
in L2(0,L) and || f?||12(0,0) = o(1), we obtain

( %{Q/OL xc(-)94vy7dx} = o(1),

_%{2 /OL xc(-)94z§b(u,v,n)dx} — oMY,

a
4 (2.4.40)

2 [F — .
%{W/o x94f25b(u,v,77)dw} = o(|A\|7?),

(

\

—R {% /06 2040 (k13 + Kol (-, 1)) dm} = o(1).

a

\

Therefore, by inserting (2.4.40) in (2.4.39), we obtain (2.4.37). On the other hand, using
the result of Lemma 2.4.5 with h = (z — L)05, then using the definition of Sy(u,v,n) and
05, Lemmas 2.4.1-2.4.3, and the fact that u,, v, ¥, z are uniformly bounded in L?(0, L) and

1 fallz20,0) = 0(1), 11/ 2220,y = 0(1), || f2llz20,0) = 0(1), [|f*]| 220,y = 0(1), we obtain

L L L L
a/ |, |*da + / lv|2dx + / |y |2dx + / \z|2dz = T + o(1), (2.4.41)
B B—3e B B

—3¢e —3¢e
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where
T—R {2 /OL@; - L>c(.)e5uy:dx} _R {za—l /OL(:E — L)e(1052 5y (u, v, n)dx} |

Moreover, using the definition of ¢(-), Sy(u,v,n) and 05, we get

B—3e Y
I=RN {200/ (x — L)(%U%dx} + R {260/ (x — L)U%dx}
a+te B—3e

R {@ /j_gg(x _ 1)0525 (u, v, n)d:p} _ R {QCO /; (z — L)zu_xdx}

a +e —3¢

200 A _ J—

—RS— (x — L)2(k10; + Koz (-, 1))dx ¢
a B—3e

Using Cauchy-Schwarz inequality, Lemmas 2.4.1-2.4.3 and the fact that z is uniformly bounded

in L?(0, L), we obtain

( B—3¢
R {200/ (x — L)05vy_xdx} = o(1),

+e
260

R {— /a e DS, n)dx} — oMY, (2.4.42)

@ Jore

B {@ /:36(;15 L) (s + T 1))dx} — oMY,

a

Inserting (2.4.42) in the above equation, we get

- % {200 /; (z — L)v%dw} _R {2c0 /[: (z — L)zu_mdx} Lo(l).  (2.443)

—3e —3e
From (2.4.5) and (2.4.7), we deduce that
Uy = iN 0, +iN 31 and 7, =i\ E H AR (2.4.44)

Substituting (2.4.44) in (2.4.43), then using the fact that v, z are uniformly bounded in L?(0, L)
and || f3]| 20,0y = o(1), || f2]| z2(0.0) = o(1), we obtain

. .
Izﬂ?{@/ (:c—L)de:c} —3‘%{@/ (:c—L)zv_xdx}—l—o(l).
A B—3e A B—3e

Using integration by parts to the second term in the above equation, we obtain

T-% {? /; z@dx} _R {@ (2 — 1) zmggs} +o(1). (2.4.45)

—3e

Furthermore, by using Cauchy-Schwarz inequality, we get

2icy [T _ L NI, \?
RS — 2vdx ¢ | < 2|col|A| |z|*dx |v|*dx (2.4.46)
A B—3e B—3e B—3e
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and
2iCQ 1y
‘%{T = =1) Zv]ﬁ_g’e}‘ (2.4.47)
< 2[eol ML =) [z o)+ (L = B+ 3¢)|2(8 — 3¢)| [v(B — 3¢)]].

From Lemma 2.4.4, we deduce that

0(8 -39 = 0(1), [o()| =O(1), [2(8—35) =O(1) and |2()] = O(1). (2.4.48)
Using the fact that v, z are uniformly bounded in L?*(0, L) in (2.4.46) and inserting (2.4.48) in

(2.4.47), we obtain
20i [
R {ﬂ/ zm«} =0 (I\™) = o(1),
A B—3e

) (2.4.49)
Co? _ _
R o= Dyl | =0 (W) =0t
Inserting (2.4.49) in (2.4.45), we get
T =o(1). (2.4.50)
Finally, inserting (2.4.50) in (2.4.41), we obtain (2.4.38). The proof is thus complete. O
Proof of Theorem 2.4.1. The proof of Theorem 2.4.1 is divided into three steps.
Step 1. From Lemmas 2.4.1-2.4.3, we obtain
B B—e
/ ug |*dx = o(\ / / 1n:(-, p)Pdpdx = o(A?), / lv]2dz = o(1),
‘ : (2.4.51)

B—2¢ B—3e
/ |z|2dz = o(1) and / [y |2dz = o(1).

oa+e

Step 2. From Lemma 2.4.6 and (2.4.51), we deduce that

5 a—+e€ o
/Ww%xzdn,/ |%ﬁm=ou»/'m%m=mn
0

L L
/ 2z = o(1), / lwl2dz = o(1), / lyal2dz = o(1) and / 12 2dz = o(1).
5 B—3e B—2e

Step 3. According to Step 1 and Step 2, we obtain ||U||% = o(1), which contradicts (2.4.3).
Thus, (2.4.2) holds. Next, since conditions (2.4.1) and (2.4.2) are proved, then according to
Theorem 1.3.7, the proof of Theorem 2.4.1 is achieved. The proof is thus complete. U

2.5 Conclusion

We have studied the stabilization of a locally coupled wave equations with non smooth localized
viscoelastic damping of Kelvin-Voigt type and localized time delay. We proved the strong
stability of the system by using Arendt-Batty criteria. Finally, we established a polynomial
energy decay rate of order ¢~
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Chapter 3

Stability results of coupled wave
models with locally memory in a past
history framework via non-smooth
coefficients on the interface

In this chapter, we investigate the stabilization of locally coupled wave equations with local
viscoelastic damping of past history type acting only in one equation via non-smooth coef-
ficients. First, using a general criteria of Arendt-Batty, we prove the strong stability of our
system. Second, using a frequency domain approach combined with the multiplier method,
we establish the exponential stability of the solution if the two waves have the same speed
of propagation. In the case of different propagation speeds, we prove that the energy of our
system decays polynomially with rate . Finally, we show the lack of exponential stability
if the speeds of wave propagation are different with a global damping and a global coupling.
This chapter is published in [6].

3.1 Introduction

In this chapter, we investigate the indirect stability of coupled elastic wave equations with
localized past history damping. More precisely, we consider the following system:

/

Uy — (aum — () /Ooo g(8)uz(z,t — S)dS) + c(@)ye
=0, (x,t) € (0, L) x (0, 00),

Yt~ Yax — c(x)uy =0, (z,t) € (0,L) x (0, 00), (3.1.1)
u(0,t) = u(L,t) = y(0,t) = y(L,t) =0, t>0,
(u(x, —s),us(x,0)) = (uo(z, s), ui(x)), (z,s) € (0,L) x (0,00),
(y(CL’,O),yt(l‘,O)) = (yO(I)7y1(I))7 YOS (07 L)?

\

where L and a are positive real numbers. We suppose that there exist a non-zero constant ¢
and positive constants «, 3,7, and by such that 0 < a < 8 <y < L, and define

b(x) :{ - ie (0.5), (b(-))

95



CHAPTER 3. STABILITY RESULTS OF COUPLED WAVE MODELS WITH...

) o, we (ar,7),
lw) = { 0, z€(0,a)U(y L) ()

Coe

l

o

Qe - - -

)

Q¢ --------
~

*----

Figure 3.1: Geometric description of the functions b(x) and c(x).

The general integral term represents a history term with the relaxation function g that is
supposed to satisfy the following hypotheses:

g € L'([0,00)) N C'([0,00)) is a positive function such that

g(0) :=go > 0, / g(s)ds =7, b(z):=a—b(x)j>0, and (H)
0

J'(s) < —mg(s), for some m > 0,Vs > 0.

Remark that, the last assumption in (H) implies that

g(s) < goe™™*, Vs > 0. (3.1.2)

Moreover, from the definition of b(-) (see Figure 3.1), we have

b(z) == a — b(z)§ = { ZO = o= by, 12 E; i))’_ (b(-))

The notion of indirect damping mechanisms has been introduced by Russell in [100] and since
this time, it retains the attention of many authors. In particular, the fact that only one
equation of the coupled system is damped refers to the so-called class of ”indirect” stabilization
problems initiated and studied in [10, 11, 12] and further studied by many authors, see for
instance [13, 78, 109] and the rich references therein. In 1996, Liu and Zheng in [81] studied
the one-dimensional linear thermoviscoelastic system

Uy — Uy +/ 9(8) Uy (+,t — s)ds + vy, =0, in (0,7) x (0, 00),
0 (3.1.3)

0; + Vg — Opp = 0, in (0,7) x (0, 00),

where a« > 0, v > 0 and ¢ > 0; and proved that the system is exponential stable. In 2008,
Rivera et al. in [97] studied the stability of 1-dimensional Timoshenko system with past history
acting only in one equation, they showed that the system is exponential stable if and only if
the equations have the same wave speeds of propagation. In case that the wave speeds of the
equations are different, they proved that the solution of the system decays polynomially to
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zero. In 2011, Guesmia in [54] studied the asymptotic stability of the following abstract linear
dissipative integrodifferential equation with infinite memory

u(t) + Au(t) — /Ooog(s)Bu(t —s8)ds=0,Vt>0. (3.1.4)

where A : D(A) — H and B : D(B) — H are self-adjoint linear positive definite operators
with domains D(A) C D(B) C H such that the embeddings are dense and compact, H is
a Hilbert space, and g : R, —— R, is the convolution kernel function. He showed that the
stability of the system holds for a relatively large class of convolution kernels and he provided
a relation between the decay rate of the solution and the growth of the kernel at infinity. In
2012, Matos et al. in [83] studied the stability of the abstract coupled wave equations with
past history, by considering:

( o

Uy + Aju — / g(s)Aqu(t — s)ds + fv =0,
0

vy +Bu+ fu=0, in L*(R"H),

u(—t) = wup(t), t>0,

v(0) = v,

\ Ut(O) = Uy, Ut(O) = Uy,

(3.1.5)

where A;, Ay and B are self-adjoint positive-definite operators with the domain D(A;) C
D(As) € H and D(B) C H with compact embeddings in #H, g : [0,00) — [0,00) is a
smooth and summable function and £ is a small positive constant. They showed that the
abstract setting is not strong enough to produce exponential stability and they proved that the
solution decays polynomially to zero. In 2014, Fatori et al. in [45] studied a fully hyperbolic
thermoelastic Timoshenko system with past history where the thermal effects are given by
Cattaneo’s law, they established the exponential stability of the solution if and only if the

: . : : . b Tp16%
coefficients of their System satisfy the next relation yq := (7’ — p;—%) (p2 — %) — Tp;n =0. In

the case xo # 0, they established optimal polynomial stability rates. In the same year, Santos
et al. in [101] studied the stability of 1-dimensional Bresse system with past history acting in
the shear angle displacement, they showed the exponential decay of the solution if and only if
the wave speeds are the same. Otherwise, they showed that the Bresse system is polynomial
stable with optimal decay rate. In 2014, Jin et al. in [69] studied the stability of the abstract
Cauchy problem for a system of coupled equations with fading memory

;

ug(t) + Au(t) — /Otg(t — s)Au(s)ds + au(t) + BBu(t) = f(u(t)), t >0,

v (t) + Av(t) + fBu(t) = 0, t>0, (3.1.6)
u(0) = uo, u(0) = uy,
v(0) = o, vi(0) = vy,

where a > 0, § > 0, A is a positive self-adjoint linear operator in a Hilbert space H, B is
a symmetric linear operator in H, f : D(\/Z) — H denotes external forces, and g is the
memory kernel. If 3 > 0, they established a polynomial decay rate of order t~! of the full
energy, while if § = 0, they proved the same decay rate but only on the energy of u. In 2015,
Guesmia in [55] studied the asymptotic behavior for coupled abstract evolution equations with

57



CHAPTER 3. STABILITY RESULTS OF COUPLED WAVE MODELS WITH...

one infinite memory

() + Ault) — /Ooog(s)BW —s)ds+ Bu(t) =0, ¥t>0, (3.1.7)

v (t) + Av(t) + Bu(t) = 0, Vit>0,

where A : D(A) — H, A: D(A) — H, and B : D(B) —> H are self-adjoint linear positive
definite operators with domains D(A) € D(B) C H and D(A) C H such that the embeddings
are dense and compact, B:H+—s Hisa self-adjoint bounded operator, H is a real Hilbert
space, and g : R, — R, is the convolution kernel. He proved under a boundedness condition
on the past history data that the stability of the system holds for convolution kernels having
much weaker decay rates than the exponential one. In 2017, Alabau-Boussouira et al. in [15]

studied the energy decay of the coupled wave equations

u — Au+ p(z,ur) + a(z)vy =0, in Q x (0,00),
v — Av — a(z)uy = 0, in 2 x (0,00), (3.1.8)

u=uv=0, on I'x (0,00),

where Q) is a bounded subset of R", ' is a smooth boundary of Q, p(z,u,;) is a nonlinear
damping, and a € C(Q) is positive on a subset of positive measure (but may vanish in some
parts of Q). They proved that the total energy of the whole system (3.1.8) decays as fast
as the damped single equation. Also, they gave a one-step general explicit decay formula for
arbitrary nonlinearity. In 2018, Abdallah, Ghader and Wehbe in [1] studied the stability of a
1-dimensional Bresse system with infinite memory type control and /or with heat conduction
given by Cattaneo’s law acting in the shear angle displacement. In the absence of thermal
effect, under the same speed propagation, they established the exponential stability of the
system. However, in the case of different speed propagation, they established a polynomial
energy decay rate. In 2018, Cavalcanti et al. in [32] studied the asymptotic stability of the

multidimensional damped wave equation, by considering:
p(x)uy — Au+ / g(s)div[a(z)Vu(-,t — s)]ds + b(x)u; = 0, in Q x (0,00), (3.1.9)
0

where € is an open bounded and connected set of R", n > 2, p(x) is constant, a(z) > 0
is a smooth function, b(x) > 0 is a bounded function acting effectively in a region A of 2
where a = 0. Considering that the well-known geometric control condition (w,7}) holds and
supposing that the relaxation function g is bounded by a function that decays exponentially
to zero, they proved that the solution to the corresponding partial viscoelastic model decays
exponentially to zero, even in the absence of the frictional dissipative effect. Moreover, they
proved by removing the frictional damping term b(x)u, and by assuming that p is not constant,
that localized viscoelastic damping is strong enough to assure that the system is exponentially
stable. In 2019, Hao and Wang in [60] studied the stability of the abstract thermoelastic system
with infinite memory

(

uy + Au + Buy — / g(s)Au(t — s)ds — A*0 =0, t>0,
0
u(—t) = wup(t), t>0,
L w(0) = w1, 6(0) = b,

o8



CHAPTER 3. STABILITY RESULTS OF COUPLED WAVE MODELS WITH...

where a € [0,1), f € (0,1], A: D(A) — H and B : D(B) — H are self-adjoint linear
positive definite operators with domains D(A) C D(B) C H such that the embeddings are
dense and compact, and H is a real Hilbert space. They obtained the stability result and
provided a direct relationship between the decay rate of the energy and the decay rate of
kernel function g. In 2019, Hassan and Messaoudi in [61] studied the stability of an abstract
class of weakly dissipative second-order system with finite memory

t
Uy + Au — /oog(t — s)A%u(s)ds =0, t >0, (3.1.11)

u(—t) = up(t), t >0, u(0)=uy.

where A : D(A) C H —— H is a positive definite self-adjoint operator on H, H is a real
separable Hilbert space, ¢ is the convolution kernel, and « € [0,1]. They established a new
general decay rate for the solution of the system under approbritae conditions on the memory
kernel g. In 2019, Jin et al. in [70] studied the stability of an abstract Cauchy problem for a
system of coupled equations with one infinite memory, by considering:

( () + Ayu(t) — /00 g(s)Au(t — s)ds + Bu(t) =0, t >0,

{ wvu(t) + Asu(t) + Bu(t) = 0, t>0, (3.1.12)
u(—t) = uo(t), vt >0, u(0) = uy,

L v(0) = vy, v(0) =y,

where A, A; and A, are positive self-adjoint linear operators in a Hilbert space H, B is a positive
self-adjoint bounded linear operator in H, and ¢ is the memory kernel. They established a
polynomial energy decay rate of order t~!. In 2011, Almeida et al. in [16] studied the stability
of coupled wave equations with past history effective only in one equation, by considering the
following system:

(

Uy — Au + / g(s)Au(-,t —s)ds +av =0, in Q2 x (0,00),
0

vy — Av+oau =0, in Qx(0,00),
u=v=0, on I'x (0,00) (3.1.13)
U(l’,O),U(ZL‘70)) = (Uo(l'),?]o(l’)) in Qa

Ut(CL’,O),Ut(JI,O)) = (u1<l’),2}1(l’>) in Qu

\

where () is an open bounded set of R” with smooth boundary I' and o > 0. They showed that
the dissipation given by the memory effect is not strong enough to produce exponential decay.
They proved that the solution of the system (3.1.13) decays polynomially with rate t~2. Also,
in 2020, Cordeiro et al. in [33] established the optimality of the decay rate.

But to the best of our knowledge, it seems that no result in the literature exists concerning the
case of coupled wave equations with localized past history damping, especially in the absence
of smoothness of the damping and coupling coefficients. The goal of the present chapter is to
fill this gap by studying the stability of system (3.1.1).

This chapter is organized as follows: In Section 3.2, we prove the well-posedness of our system
by using semigroup approach. In Section 3.3, following a general criteria of Arendt Batty, we
show the strong stability of our system in the absence of the compactness of the resolvent. Next,
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in Section 3.4, by using the frequency domain approach combining with a specific multiplier
method, we establish exponential stability of the solution if the two waves have the same speed
of propagation (i.e. a = 1). In the case a # 1, we prove that the energy of our system decays
polynomially with the rate t~!. Finally, in Section 3.5, we show the lack of exponential stability
in case that the speeds of wave propagation are different with a global damping and a global
coupling (i.e., when a # 1 and b(z) = ¢(z) = 1).

3.2 Well-posedness of the system

In this section, we will establish the well-posedness of system (3.1.1) by using semigroup
approach. To this aim, as in [35], we introduce the following auxiliary change of variable

w(z,s,t) :=u(x,t) —u(x,t —s), (x,st)€(0,5) x(0,00) x (0,00). (3.2.1)
Then, system (3.1.1) becomes

et — (s;,(,)w,w))x +e( )y =0, (z,) € (0,L) x (0,00), (3.2.2)
Yt — Yoz — C(-)uy = 0, (x,t) € (0, L) x (0,00), (3.2.3)
wi(vy 8,t) Fws(, 8,t) —u =0, (z,s,t) € (0,5) x (0,00) x (0,00), (3.2.4)
where
S~ (u,w ::Z;Bux bo h 8w (x, 8)ds, in (0, ),
i) o | Sl =Bt | stopetesyas in 0.6 S0

Ay, in (8, L).

With the following boundary conditions

,B) x (0, 00), (3.2.5)

and the following initial conditions

u( ) ) = U ('73)? ut('ao) = ul(')’ (J},S) € (OvL) X (0,00),
y( 70) = ( )7 yt('vo) = yl(')? LS (0’[’)’ (326)
wo(+, s) == w(+s,0) =up(+,0) —up(,s), (z,s)€(0,5) x (0,00).

The energy of system (3.2.2)-(3.2.6) is given by

where

1 [F ~ 1 [F
&w=§/’@W+Mwmﬂm,&@:5A(mﬁHWGMam

b
0// 8)|we (-, 8, 1) dsdz.

60



CHAPTER 3. STABILITY RESULTS OF COUPLED WAVE MODELS WITH...

Lemma 3.2.1. Under the hypotheses (H). Let U = (u,uy,y, ¥, w) be a regular solution of
system (3.2.2)-(3.2.6). Then, the energy E(t) satisfies the following estimation

R
b / / 9wa(-, 5, 1) 2dsda. (3.2.8)

Proof. First, multiplying (3.2.2) by %, integrating over (0, L), using integration by parts with
(3.2.5), using the definition of S (u,w), b(-) and c(-), then taking the real part, we obtain

”
—E1 :—%{bo// S) Wy ,s,t)utxdsdx} %{CO/ ytu_tdm}. (3.2.9)

Now, multiplying (3.2.3) by ¥, integrating over (0, L), using the definition of ¢(-), then taking
the real part, we get

d gl
Deriving (3.2.4) with respect to z, we obtain
Wat (58, 1) + wWas (v, 8,1) —ug =0 in (0, 8) x (0,00) x (0, 00). (3.2.11)

Multiplying (3.2.11) by bog(s)wx (-, s,t), integrating over (0, 3) x (0,00), then taking the real
part, we get

E Es( / / |Wz s,t)| dsdx+§]%{b0/ / .S t)umdsdx}

Using integration by parts with respect to s in the above equation with the help of (3.2.5) and
the hypotheses (H), we obtain

—E3 bo/ / (s)|wz (-, 5, 1)] dsdx+8%{b0/ / s t)umdsdx} (3.2.12)

Finally, adding (3.2.9), (3.2.10) and (3.2.12), we obtain (3.2.8). The proof is thus complete. [
Under the hypotheses (H) and from Lemma 3.2.1, system (3.2.2)-(3.2.6) is dissipative
in the sense that its energy is non-increasing with respect to time (i.e. E’(t) < 0). Now, we
define the following Hilbert space H by:
M = (HL(0,L) x L*(0,L))* x W,,
where
Wy = Lg((0,00); HL(0,8)) and  H(0,5) = {& € H'(0,5) | (0) =0} .

The space W, is a Hilbert space of H} (0, 3)-valued functions on (0,00), equipped with the

following inner product
B poo .
:// g(s)w;wﬁdsd:v, ‘v’wl,wQEWg.
o Jo
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The Hilbert space H is equipped with the following inner product

L ~ — — — —
(U,0Y),, = / (b(-)uxu}c + ool + yeys + zzl> dx
0

bin [ [ otopn 31 s,

where U = (u,v,y,z,w(-,s))" € H and U = (ul, 0!, y!, 21, wl(-,5))" € H. Now, we define the
linear unbounded operator A : D(A) C H —— H by:

(3.2.13)

U = (u,0,y,z,0(,5))T € H | y € H(0,L) N HY0, L), v,z € H}(0, L)

D(A) = (sg(,)(u,w))x € L2(0,L), wy(-s) €W, w(-0)=0 in (0,5)
and
u v
v <Sb( )(u,w)> —c()z
Al v | = ST : (3.2.14)
& Yau + C(*)
w(-, ) —ws(+,8) +v
for all U = (u,v,y,2,w(-,s))" € D(A).
Now, if U = (u,u,y,vy:,w(-,s))", then system (3.2.2)-(3.2.6) can be written as the
following first order evolution equation
U, = AU, U(0) = U, (3.2.15)

where Uy = (uo(+,0), w1, yo, Y1, wo(-, s)) " € H.

Proposition 3.2.1. Under the hypotheses (H), the unbounded linear operator A is m-
dissipative in the energy space H.

Proof. For all U = (u,v,y,2,w(:,s))" € D(A), from (3.2.13) and (3.2.14), we have

R(AU, Uy = ?R{/OLZ( )vmu_mdx} + %{/L (Sb()(u w)) Udac} R {/DL zx%dx}
ol [Fuar) oo [ [ st
—é}e{bo/ / §)was (-, (-,s)dsdw}.

Using integration by parts to the second and fourth terms in the above equation, then using
the fact that U € D(A) , we obtain

R(AU, Uy, :—é}%{bo// 8)was (-, 8 (-,s)dsdx}: // |wx ,5)|%dsda.
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Using integration by parts with respect to s in the above equation and the fact that w(-,0) =
0 in (0, 5) with the help of hypotheses (H), we get

R (AU,U),, %/p/ $)|wa (-, 8)|Pdsdz < 0, (3.2.16)

which implies that A is dissipative. Now, let us prove that A is maximal. To this aim, let
F = (fYL 02 0204 5, s)" € H, we want to find U = (u,v,y,2,w(-, )" € D(A) unique
solution of

— AU = F. (3.2.17)
Equivalently, we have the following system
—v = fh (3.2.18)
— (Siy(ww) +e)z = f2 (3:2.19)
-z = f7 (3.2.20)
Yo — () = [ (3.2.21)
we(-8) —v = f°(-,5), (3.2.22)

with the following boundary conditions
uw(0) =u(L) =y(0) =y(L) =0, w(-,0)=0 in (0,5) and w(0,s) =0 in (0,00). (3.2.23)
From (3.2.18), (3.2.22) and (3.2.23), we get
w(z,s) = /s Pz, 6)dé — sft, (z,s) € (0,8) x (0,00). (3.2.24)
0

Since v = —f! € H}(0, L) and f°(-, s) € W, then from (3.2.22) and (3.2.24) we get ws(-,s) €
W, and w(-,s) € H}(0,5) a.e. in (0,00). Now, to obtain that w(-,s) € W,, it is sufficient

to prove that g(s)||wz (-, )HLg ds < oo where || - HL(Z)B = || - llz20,8) - For this aim, let

€1, >0 under the hypotheses (H), we have

[ ol s <~ [ @)t 9l s (3.2

Using integration by parts in (3.2.25), we obtain
“ 2 d < 1 - d 2 d 2
gy s < | [ a0 (a9l ) ds + alenllent e,

— g (€2) |wz (- 62)”1%] '

Moreover, from Young’s inequality, we have

o0 (a0l Jas = 2 / w{ [ ozt e | as

()12 ds (3.2.26)

[\
N —
=~

Q

B

?
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Inserting (3.2.26) in the above inequality, we get

2
[ ool s < / a9 s+ glen)lln )l

- —g (e2) llews (-, €2) 1172

Using the fact that wy(-,s) € W,, w(-,0) = 0 in (0, ) and the hypotheses (H) in the above
inequality, (in particular (3.1.2)) we obtain, as ¢ — 07 and €5 — oo, that

| st ds < e,
0 s

and consequently, w(-,s) € W,. Now, see the definition of Sp(y(u,w), substituting (3.2.18),
(3.2.20) and (3.2.24) in (3.2.19) and (3.2.21), we get the following system

{ (/f5 £)dé — sf)] c()f? (3.2.27)
)f!

—c(: (3.2.28)
u(0) = u(L) = y(O) = (L) = 0, (3.2.29)
where
i ([ £ - st - { b+ [ o) (| o e ) Z E;i))

Let (¢,) € H3(0,L) x H}(0, L). Multiplying (3.2.27) and (3.2.28) by ¢ and 1 respectively, in-
tegrating over (0, L), using formal integrations by parts, then using the definition of Sy (u,w),

b(-) and ¢(-), we obtain

/OLZ(-)ux@dx = /OL fZodx + cq /(: f3ode

. ) (3.2.30)
—b 5(..6)dE — sfr ) ppdsd
o g<s>(/0 £ €)de sfx>¢ sda
and . ; X
— e —
/0 yxwxdx—/o fihdx co/a frpde. (3.2.31)
Adding (3.2.30) and (3.2.31), we obtain
B((u,y), (,%)) = L(¢,4), ¥(#,9) € Hy(0,L) x Hy(0, L), (3.2.32)
where . .
() @) = [ BOwdeda+ [ e
and

L . o ~ _ .
L(¢, 1) =/O (fPo+ 1) d:z:+co/ (£36 — f19) da

by /0 i /0 " o(s) ( /0 € - sf;) Fadsz.
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It is easy to see that, /8 is a sesquilinear, continuous and coercive form on (HZ (0, L) x HL(0, L))?
and £ is an antilinear and continuous form on Hj(0,L) x H(0,L). Then, it follows by
Lax-Milgram theorem that (3.2.32) admits a unique solution (u,y) € H}(0, L) x H;(0, L). By
taking test-functions (¢, 1) € (D(0, L)), we see that (3.2.27)-(3.2.29) hold in the distributional
sense, from which we deduce that y € H?(0,L) N Hy(0, L), while (Sj,(u,w)). € L*(0,L).
Consequently, U € D(.A) is a unique solution of (3.2.17). Then, A is an isomorphism and since
p (A) is open set of C (see Theorem 1.1.13), we easily get R(Al — A) = H for a sufficiently
small A > 0. This, together with the dissipativeness of A, imply that D (A) is dense in
H and that A is m-dissipative in H (see Theorems 1.2.6, 1.2.9). The proof is thus complete. [

According to Lumer-Philips theorem (see Theorem 1.2.8), Proposition 3.2.1 implies that the
operator A generates a Cy-semigroup of contractions e in H which gives the well-posedness
of (3.2.15). Then, we have the following result:

Theorem 3.2.1. Under the hypotheses (H), for all Uy € H, system (3.2.15) admits a unique

weak solution
Uz, s,t) = eAUs(z,s) € CO(R,, H).

Moreover, if Uy € D(.A), then the system (3.2.15) admits a unique strong solution
Uz, s,t) = eUy(z,s) € CO(R,, D(A)) N CHR,, H).

3.3 Strong Stability

This section is devoted to the proof of the strong stability of the Cy-semigroup (et““) >0- 1O

obtain the strong stability of the Cy-semigroup (etA) +~g» We use the theorem of Arendt and
Batty in [24] (see Theorem 1.3.3). -

Theorem 3.3.1. Assume that the hypotheses (H) hold. Then, the Cy—semigroup of contrac-
tions (etA)t>O is strongly stable in H; i.e., for all Uy € H, the solution of (3.2.15) satisfies

lim ||6t'AU0||H =0.
t—+oo

According to Theorem 1.3.3, to prove Theorem 3.3.1, we need to prove that the operator A
has no pure imaginary eigenvalues and o(A) N iR is countable. The proof of Theorem 3.3.1
has been divided into the following two Lemmas.

Lemma 3.3.1. Under the hypotheeis (H), we have
ker(i] — A) = {0}, VA eR.

Proof. From Proposition 3.2.1, we have 0 € p(A). We still need to show the result for A € R*.
To this aim, suppose that there exists a real number A # 0 and U = (u, v, y, z,w(-,s))" € D(A)
such that

AU = i\U. (3.3.1)

Equivalently, we have the following system
v o= i\u, ( )
<Sg(_)(u,w)>x —c(-)z = i, ( )
z = iy, (3.3.4)
Yoz + () = 1Az, (3.3.5)
—ws(,s)+v = idw(s,s). ( )
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From (3.2.16) and (3.3.1), we obtain

0=REAU,U), = R(AU,U),, _% / / $)|wa(-, s)|*dsdz. (3.3.7)
Thus, we have
wy(-,8) =0 in (0,5) x (0, 00). (3.3.8)
From (3.3.8), we have
w(- s) = k(s) in (0,5) x(0,00), (3.3.9)

where k(s) is a constant depending on s. Then, from (3.3.9) and the fact that w(-,s) € W,
(i.e. w(0,s) =0), we get
w(-,s) =0 in (0,5) x (0,00). (3.3.10)

From (3.3.2), (3.3.6) and (3.3.10), we obtain
u=v=0 in (0,0). (3.3.11)

Inserting (3.3.2) and (3.3.4) in (3.3.3) and (3.3.5), then using (3.3.8) together with the definition
of Sj)(u,w) and b(-), we obtain the following system

Au+ (b(ug)s — c()idy = 0, in (0,L), (3.3.12)
ANy + Yoo +¢()iu = 0, in (0,L), (3.3.13)
u(0) =u(L) =y(0) =y(L) = 0. (3.3.14)

From (3.3.11), (3.3.12), the definition of ¢(-) and (3.3.4), we obtain
y=2=0 in («a,p). (3.3.15)
Now, from (3.3.15) and the fact that y € C([0, L]), we get
y(a) = y.(a) = 0. (3.3.16)
Next, from (3.3.13), (3.3.16) and the definition of ¢(-), we obtain the following system

NY+yee = 0, in (0,0), (3.3.17)
y(0) = y(e) = ya(a) = 0. (3.3.18)

Thus, from the above system and by using Holmgren uniqueness theorem, we obtain
=0 in (0,a). (3.3.19)
Therefore, from (3.3.4) and (3.3.19), we obtain
y=2=0 in (0,a). (3.3.20)

According to the definition of SZ;(,)(U, w) and the fact that by =a — bog, we obtain

auy, — bogu, + bo/ g(8)wy(z,s)ds, in (0, ),
0
Ay, in (B, L).
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From (3.3.8), (3.3.11) and (3.3.21), we get

Sy (u,w) = au, in (0, L) and consequently (SE(')(U’W))x = Uy, in (0,L).
Thus, from (3.3.22) and the fact that U € D(.A), we obtain
Uy € L?(0,L) and consequently u € C([0, L]).
Now, from (3.3.11), (3.3.15), (3.3.23) and the fact that y € C'([0, L]), we obtain

u(B) = us(B) = y(B) = y=(B) = 0.

(3.3.22)

(3.3.23)

(3.3.24)

Next, from the definition of b(-) and ¢(-), the System (3.3.12)-(3.3.13) can be written in (3, 7)

as the following system

N+ aug, — coidy = 0, in (B,7),
MY+ Yoo +coidu = 0, in (B,7),
u(B) = us(B) =y(B) = y(8) = 0.

Let V = (u, us,y,yz) ', then system (3.3.25)-(3.3.27) can be written as the following

V. =BV, V(5)=0.

where
0 1 0 0

—a"'22 0 atide O
0 0 0 1
—i/\CO 0 —/\2 0

B =

The solution of the differential equation (3.3.28) is given by
V(z) = PEAV(6).
Thus, from (3.3.29) and the fact that V(8) = 0, we get
V=0 in (8,7) and consequently u=u, =y=y, =0 in (3,7).
So, from (3.3.2), (3.3.4) and (3.3.30), we get,
u=v=0 in (B,7) and y=2z=0 in (B,7).
Now, from (3.3.30) and the fact that u,y € C*(]0, L]), we obtain

(3.3.25)
(3.3.26)
(3.3.27)

(3.3.28)

(3.3.29)

(3.3.30)

(3.3.31)

(3.3.32)

Next, from the definition of b(-) and ¢(-), the system (3.3.12)-(3.3.13) can be written in (, L)

as the following system

AU+ Qg 0

NY + Yua 0

=u(y) =u.(y) = 0,
y(L)=y(v) =y:(v) = 0
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From the above system and by using Holmgren uniqueness theorem, we deduce that
u=y=0 in (y,L). (3.3.37)
Thus, from (3.3.2), (3.3.4) and (3.3.37), we obtain
u=v=01in (y,L) and y=z=0 in (y,L). (3.3.38)
Finally, from (3.3.10) (3.3.11), (3.3.15), (3.3.20), (3.3.31) and (3.3.38), we obtain

U=0. (3.3.39)
The proof is thus complete. U
Lemma 3.3.2. Under the hypotheses (H), for all A € R, we have
RN — A) =H.

Proof. From Proposition 3.2.1, we have 0 € p(.A). We still need to show the result for A € R*.
For this aim, let F' = (f1, 2, f2, f4, f°(-,s)) " € H, we want to find U = (u,v,y, z,w(-,s))" €
D(A) solution of

(iN[— AU = L. (3.3.40)
Equivalently, we have the following system
iu—v = f (3.3.41)
iAv — <Sg(_)(u,w)) +c()z = f3 (3.3.42)
iy —z = f3 (3.3.43)
iINe = Ypr — (v = f1 (3.3.44)
Mo, 8) +ws(v,8) —v = [+, 8), (3.3.45)

with the following boundary conditions
uw(0) =u(L)=y(0) =y(L) =0, w(-,0)=0 in (0,5) and w(0,s)=0 in (0,00). (3.3.46)
From (3.3.41), (3.3.45) and (3.3.46), we have

w(z,s) = %(Mu — fH(1 — e + /OS o2, 8)e™e=9dg, (x,5) € (0,8) x (0,00). (3.3.47)

Due the definition of S ) (u, w), inserting (3.3.41), (3.3.43) and (3.3.47) in (3.3.42) and (3.3.44),
we obtain the following system
—Nu — <SB(‘) (u,w)) +ide()y = Fyi= f24c()fP i
Ay = Yoo — N Ju = Fyi= fr— ()N +iAf?, (3.3.48)
u(0) = u(L) =y(0) =y(L) = 0,

where here S (u,w) takes the form

SE() (U, w)

—~ b oo ) o) s '

Dot + ﬁ g(s)(1 — &™) frds + bo/ 9(8)/ fo(x, &)™ dgds, in (0, ),
= 0 0 0

aly, in (8,L),
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and -
by = a — bo/ g(s)e 4ds.
0

Let (¢,v) € Hy(0,L) x Hy(0, L). Multiplying the first equation of (3.3.48) and the second
equation of (3.3.48) by ¢ and v respectively, integrating over (0, L), then using formal inte-
grations by parts, we obtain

—\2 /0 ’ uopdr + / 3 ux¢mdx+— / / (1 —e ) flo,dsdx

(3.3.49)
B poo . _ L _
+ by /0 /O g(s) /0 M) F5(L ) ppdedsdr + iy /a 7y¢>dm: /0 Fioda
and L L . L
—)\2/0 y¢dz+/0 yx¢xd$—i)\co/a uwdx:/o Fyydzx, (3.3.50)
where R
/5(1’) _ { bO: YIS (Oaﬁ)a
a, T¢€ (B7L>
Adding (3.3.49) and (3.3.50), we get
Bl(u,y), (6,9)) = L(6.v), V(6,0) € V= HL(0, L) x H}(0,L), (3.3.51)
where
B((u,y), (¢, 4)) = Bi((u,y), (¢, ¢)) + Ba((u,y), (&, ¢))
with . .
Bil(w.0). (0.)) = [ Buuds + [y
‘ ° (3.3.52)
r L
Bal(u.9). (6.6)) = ¥ [ (B + 4o~ ideq / (T — yP)da
0 0
and .
£(6,) = / (Fi6+ Fo)da — 2 / / (1 — ) fgodsds
by / [Toe ([ e A“‘S)fi’(-,é)df) Frdsdz.
Let V' be the dual space of V. Let us define the following operators
B: V — V B,: V — V .
(wy) — Blu,y) and (wy) — Bi(u,y)’ i€ {1,2}, (3.3.53)
such that
{ (B(u,9)(0,9) = B((w,y), (6,4)), V(¢,¢) €V, (3354)
(Bz(uvy))((baw) = Bi<<u7y)7 (¢> TP))’ V((b’ ¢) € Va 0 S {172}' -

We need to prove that the operator B is an isomorphism. For this aim, we divide the proof
into three steps:
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Step 1. In this step, we want to prove that the operator B; is an isomorphism. For
this aim, it is easy to see that B; is sesquilinear, continuous and coercive form on V. Then,
from (3.3.54) and Lax-Milgram theorem, the operator B; is an isomorphism.

Step 2. In this step, we want to prove that the operator B, is compact. For this
aim, from (3.3.52) and (3.3.54) we have

1Ba((u,y), (9, 9))] S H(u7y)H(LQ(O,L))QH(¢7w)H(LQ(O,L))Qv (3.3.55)

and consequently, using the compact embedding from V into (L?(0, L))2, we deduce that B,
is a compact operator.

Therefore, from the above steps, we obtain that the operator B = B; + By is a Fred-
holm operator of index zero. Now, following Fredholm alternative, we still need to prove that
the operator B is injective to obtain that the operator B is an isomorphism.

Step 3. In this step, we want to prove that the operator B is injective (i.e. ker(B) = {0}).
For this aim, let (u,y) € ker(B) which gives

B((avmv (QW/))) =0, V(qb,?,b) SA'A

Equivalently, we have

L/\ o L o L N o L o _
| 0t + [ e -3 [ @+ e —ix [l - F)dz =0, ¥(6.0) € V.
0 0 0 0
Thus, we find that

220 = (b()iy)e + ire()T =0
N — Gy — iNe(-)T = 0,
u(0) =u(L) =y(0) =y(L) =0

Therefore, the vector U defined by
U = (@, iNI, §, i, (1 — e7™)a) T
belongs to D(.A) and satisfies
iU — AU =0,
and consequently Ue ker(iAI — A). Then, according to Lemma 3.3.1, we obtain U =0 and
consequently u = y = 0 and ker(B) = {0}.

Finally, from Step 3 and Fredholm alternative, we deduce that the operator B is iso-
morphism. It is easy to see that the operator L is a antilinear and continuous form on V.
Consequently, (3.3.51) admits a unique solution (u,y) € V. By using the classical elliptic
regularity, we deduce that U € D(A) is a unique solution of (3.3.40). The proof is thus
complete. [l

Proof of Theorem 3.3.1. From Lemma 3.3.1, we obtain the the operator A has no
pure imaginary eigenvalues (i.e. 0,(A) NiR = (). Moreover, from Lemma 3.3.2 and with
the help of the closed graph theorem of Banach, we deduce that o(A) NiR = (). Therefore,
according to Theorem 1.3.3, we get that the Co-semigroup (e4);>¢ is strongly stable. The
proof is thus complete. U
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Remark 3.3.1. We mention [8] for a direct approach of the strong stability of Timoshenko
system in the absence of compactness of the resolvent.

3.4 Exponential and Polynomial Stability

In this section, under the hypotheses (H), we show the influence of the ratio of the wave
propagation speed on the stability of system (3.2.2)-(3.2.6). Our main result in this part are
the following theorems.

Theorem 3.4.1. Assume that a = 1 and the hypotheses (H) hold. Then, the Cy-semigroup e*A
is exponentially stable; i.e., for all Uy € H, there exist constants M > 1 and € > 0 independent
of Uy such that

1€ Ul < Me|Ug|l9, t > 0.

Theorem 3.4.2. Assume that a # 1 and the hypotheses (H) hold. Then, for all Uy € D(A),
there exists a constant C' > 0 independent of Uj such that

C
E(t) < 7||U0||%)(A), t>0.

Since iR C p(A) (see Section 3.3), according to Theorem 1.3.6 and Theorem 1.3.7, to prove
Theorem 3.4.1 and Theorem 3.4.2; we still need to prove the following condition

¢ =0 for Theorem 3.4.1,

¢ =2 for Theorem 3.4.2. (Hy)

limsup — | (i — A)”

< 00, with {
AER, |A|—o00 A | ’

) e

We will prove condition (H;) by a contradiction argument For this purpose, suppose that (H;)

is false, then there exists {(A",U" := (u",v",y", 2", w"(-,5))")} ns1 C R x D(A) with
A" = o0asn — oo and [|U"|y = ||(u", 0", y", 2", w™ (-, 8) |l =1,¥n>1,  (3.4.1)
such that

(A GN T = A U™ = F™ o= (fbm, f2n, 30 fan on(os)T =0 in H, as n— co. (3.4.2)
For simplicity, we drop the index n. Equivalently, from (3.4.2), we have

iu—v = A =0 in  Hy(0, L), (3.4.3)

i\v — (SB(.)(u,w)> +e()z = NP0 in L*(0, L), (3.4.4)
iy—z = NP0 in  Hy(0,L), (3.4.5)

iINe = Yuw — () = AP =0 in  L*(0, L), (3.4.6)

Mo, 8) +ws(s,8) —v = ANfP(,8) =0 in W, (3.4.7)

Here we will check the condition (H;) by finding a contradiction with (3.4.1) by showing
|Ul|;, = o(1). For clarity, we divide the proof into several lemmas.

Lemma 3.4.1. Under the hypotheses (H), the solution U = (u,v,y, z,w(-,s))" € D(A) of
system (3.4.3)-(3.4.7) satisfies the following estimations

/ / $)|ws (-, ) *dsda = W and / / §)lwa (-, 5)[*dsdz = M(|12, (3.4.8)
/Omﬁdz:o(wf) and /O S5 (uw,w)|* dz = o(|A] 7). (3.4.9)
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Proof. First, taking the inner product of (3.4.2) with U in H and using (3.2.16), we get

1
/ | 9Ot ) Pdsde = R(AVU),, = SR (E V) < Sl Pl (3:4.10)

Thus, from (3.4.10), (H) and the fact that ||F|l = o(1) and ||U|| = 1, we obtain the first
estimation in (3.4.8). From hypotheses (H), we obtain

/ / ) |wz (-, s |dsdx<——/ / 8)|wx (-, 8)|Pdsdz. (3.4.11)

Then, from the first estimation in (3.4.8) and (3.4.11), we obtain the second estimation in
(3.4.8). Next, inserting (3.4.3) in (3.4.7), then deriving the resulting equation with respect to
T, we get

iMg (-, 8) + wep (-, 8) — iy = AN Ef2(-,8) — AfL in (0, 8) x (0, 00). (3.4.12)

Multiplying (3.4.12) by A~1g(s)u, integrating over (0, 3) x (0, 00), then taking the imaginary
part, we obtain

/ / (8)|us|*dsdz = S {/ / uxdsdx}
oo [ [ o oo
+J{A <€+1>// fuxdsdx}

Using integration by parts with respect to s in the above equation, then using hypotheses (H)
and the fact that w(-,0) =0 in (0, 3), we get

i | e = { / [ uxdsdx}
—|—\9{ / / S)we (-, )umdsdx}—\s{)\zﬂ/ / uxdsdx} (3.4.13)
+%{§/\‘(”1) /0 f;mdx}.

Using Young’s inequality and Cauchy-Schwarz inequality in (3.4.13) with the help of hypotheses
(H), we obtain

B
'gv/ lug|*dx < —/ || *dw + = // 8)|wz (-, 8)|*dsdx
0
3/ B 3
+ A (// ) |wa (-, )|2dsdx) (/ |ux|2d1’)
0

3/ B 3
)\f(€+1 ( 5 dd)( Q:Qd)
+I // 2o ) ([ s
e () ([ e
N /0|f|:c /|u|x
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From the above inequality, (3.4.8) and the fact that u, is uniformly bounded in L?(0, L) and
fr—0 in L*0,L), f5(,s) = 0 in W,, we obtain the first estimation in (3.4.9). Now, by
using Cauchy-Schwarz inequality, we obtain

/Oﬂ|5’b~0(u,w)}2d:r - /Oﬂ 2

bou,, —|—bo/ g(8)we(+, 8)ds
0

< o) /iuxmzbo/ ([ st >!ds)2da:
< ol / e |? + 2623 / | skt ) s

Finally, from the above inequality, (3.4.8) and the first estimation in (3.4.9), we obtain the
second estimation in (3.4.9). The proof is thus complete. O

2

dx

— My
— hy
hs
— b(x)
— ¢(x)

1e

o [ (’

U u

0 € @ at+e a+2 -3 -2 /3—8

_2¢------
h

Figure 3.2: Geometric description of the functions hq, hs and hs.

Lemma 3.4.2. Let 0 < ¢ < min (oz,’B*Ta). Under the hypotheses (H), the solution U =
(u,v,y,z,w(-,5))" € D(A) of (3.4.3)-(3.4.7) satisfies the following estimation

B—e
/ lv]2dz = o <|A|—%) . (3.4.14)

Proof. First, we fix a cut-off function hy € C* ([0, 8]) (see Figure 3.2) such that 0 < hy(z) <1
for all x € [0, 8] and

Y

[ 1t xele, B¢l
hl(x)_{ 0 it ze{0 4} ()

and set

B(z) = M, .
J&%’é' 1 ()] n

From (3.4.4), we deduce that

AU — (Szi) (u,w))m +c()z =22 in (0,8).
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[e.o]

Multiplying the above equation by —hl/ g(s)w(-, s)ds and integrate over (0, ), using inte-

0
gration by parts with the help of the properties of h; (i.e. h1(0) = hy(S) = 0), then using the
definition of ¢(-), we obtain

—z)\/ hlv/ dsdm—/ﬁ Spo(u,w )<h1 /OO g(s)w(~,s)>xd5d:€
+co/ hlz/ s)dsdx — A / hf/ $)w(-, s)dsdzx.

From (3.4.7), we deduce that

(3.4.15)

—iAD(+, 8) = —w5(+,8) + T+ ATf5(-,5) in (0,B) x (0,00).

Inserting the above equation in the left hand side of (3.4.15), then using the definition of ¢(-)
and hy, we get

g/ hy|v| dx—/ hlv/ $)ws(+, s)dsdx — A / hlv/ s)dsdx
0

+/ S5 (u, w)h’/ o(s)3(-. )dsdx+/ S5 (u, w)hl/ o(s)T(-, s)dsda (3.4.16)

/ hyz / s)dsdx — \ / hy f2 / s)dsdz.

Using integration by parts with respect to s with the help of w(-,0) = 0in (0, 5) and hypotheses
(H), Cauchy-Schwarz inequality, Poincaré inequality, v is uniformly bounded in L2(0, L), and
(3.4.9), we get

hlv 8)ws(+, s)dsdzx| = hlv s)dsdx

s\/g_o(/06|v| d:c) (// )|2dsd:x)2 (3.4.17)
sva ([ o) ([ [ ~genatopiss) = o(n)

Using the definition of /1, Cauchy-Schwarz inequality, Poincaré inequality, (3.4.8) and the fact

N
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that v, z are uniformly bounded in L*(0, L) and || f?||12(0,) = o(1), f° — 0 in W,, we get

AE/ hlv/ s)dsda
< i () dw) (// 2)fzl2) 'de“’f:TSf)’

co/ hlz/ s)dsdx

1

<Jalv / spae) ([ ’ [ st spasiz )

1

< leolv/3 ( / B\zﬁdaz) (/ ’ [ ot )P ass ) © B

)\e/ h1f2/ s)dsdz
<rva([) 'f“dx> </05 /0009(3)|Wx(‘,5)\2d5dx>é:’0)\(’1322‘

On the other hand, we have

/ 1 / 1 !/
|55 (w, )| ]g(s)|w (-, )] < §|h1||5(;5(u,w)l29(8) + §|h1IIW(-,S)I29(S),

15,0, g - )] < 51155, () P s) + e, 5) Pg(s).

Then from the above inequalities, the definition of Sg(,)(u? w) and hy, Poincaré inequality and
estimations (3.4.8) and (3.4.9), we obtain

/ " 8w, | atsretsyisds

< M, ( / - uw|d:c+c// $)|ws (-, s |d8d$>_0()‘| 0;

B

(

(3.4.19)

5 (U, w)h /Oo g(8)wg (-, s)dsdx

_2/ IS uw|dm+// $)|wa (-, ) [Pdsdz = o(|\|7F),

where C,, > 0 is a Poincaré constant. Inserting inequalities (3.4.17)-(3.4.19) in (3.4.16), we

obtain
B £
/ mlofde = o (1A).
0

Finally, from the above estimation and the definition of /;, we obtain the desired result (3.4.14).
The proof is thus complete. U
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Lemma 3.4.3. Let 0 < € < min (a, ﬁ_TO‘) Under the hypotheses (H), the solution the solution
U= (u,v,y,z,w(-s))" € D(A) of (3.4.3)-(3.4.7) satisfies the following estimation

p-2e a—1[|\ [P
/ |y |*da < %/ |t ||y |dz + o(1). (3.4.20)

+e

Proof. First, we fix a cut-off function hy € C* ([0, L]) (see Figure 3.2) such that 0 < hy(z) < 1,
for all z € [0, L] and

0 if z€[0,0]U[B—¢e, L],
1 if z€fa+te f—2¢,

tate) = { (o)
From (3.4.6), iA"'ho¥zz is uniformly bounded in L?(0,L). Multiplying (3.4.4) by i\~ ho¥ss,
using integration by parts over (0, L) and over (o, 3 — ¢), the definitions of ¢(-) and hy, and
using the fact that || f2||12(0,) = o(1), we get

L L i L
/ hyvyzdx +/ hov, Jpdx — —/ Do (Sg(_)(u,w)) VendT
0 0 A Jo @

. B—e
ico _ _ o(1)

(3.4.21)

«

From (3.4.3) and (3.4.5), we obtain

v = iMup — AF1 and  — %z — gy A f3,

Inserting the above equations in (3.4.21) and taking the real part, we get

L L i L L
co/ holys|?dz + R {7)\/ hgug:ywdx} - {/\/ (SB(_)(u,w)> hgymdx} =-R {/ h’zvyggdx}
0 0 0 x 0

I c [P, ico [P . o(1)
(3.4.22)

Using the fact that y, is uniformly bounded in L*(0, L), ||f1|lz2(0,0) = o(1) and || f2|| z20.0) =
o(1), we get

k 1 B—e 1
5)?{)\5/0 hgf;%dx} = % and — %{icox\(fﬂ)/ h2f§y_1dx} = |/O\T4J21. (3.4.23)

Using Cauchy-Schwarz inequality, the definition of hs, y, and z are uniformly bounded in
L*(0, L), and estimation (3.4.14), we get

L B—e
—éR{/ h’gv%dx} —0 (|A|-§) and %{z%o/ hgzy:dx} — O (I\™) = o(1). (3.4.24)
0 a
Inserting (3.4.23) and (3.4.24) in (3.4.22), then using the definition of h,, we get
B—e ) - B—e - i B—e
haly.|“d A hou,Jpdr p — R — Si- (u, hoYzzd
CD/Q 2|Ya|"dz + {Z /a 21y ar} {A/a (Sg (u,w)) , hag x} (3.4.25)
= o(1).

76



CHAPTER 3. STABILITY RESULTS OF COUPLED WAVE MODELS WITH...

From (3.4.4), iA"'hy (Sg(_)(u,w)> is uniformly bounded in L*(0, L). Multiplying (3.4.6) by

T

ATt (%(u w)) , using integration by parts over (0, L) and over (a, 8 — ¢), the definitions of
C('), h2 and SB() (U,W), and the fact that ||f4||L2(O,L) = 0(1)’ we get

r L o i L -
/ h’Qsz(.)(u,w)dx—i-/ hgszl;(.)(u,w)da: - X/ hoVea <Sl;(,)(u,w)> dx
0 0 0

xT

. e (3.4.26)
1Co — _
+ : (hyv + havy) Si (u, w)dx = o(|Al 9.
From (3.4.5), we have
Ze = i\ — A2
Using the above equation and the definition of Sgo(u, w) and hsy, we get
L _ B—e -
/ hazy Sy (u, w)dz = / ho (iAy, — A7 f2) Spo (u,w)dz
0 a
- B—e B—e 00
= i)\bo/ hoyszdx + i)\bo/ hgyx/ g(8)wz (-, s)dsdx (3.4.27)
a a 0

-~ B—e B—e )
—boA " / ho f3Tgdr — X hy / hof3 / g(8)wz (-, s)dsdzx.
@ @ 0

From (3.4.7), we have

iINT (-, 8) = Was(, 8) + iNT; + AN fL = XCf5(-s) in (0,8) x (0, 00).

From the above equation and by using integration by parts with respect to s, we get

B—e [e's) B—e )
i)\bo/ thx/ g(8)w (-, s)dsdx = bo/ hgyx/ —4'(s)wz (-, s)dsdx
« 0 e 0

B—e B—e o
+i\bog / hoylizdx + bogh ™" / hoya frdx (3.4.28)

B—e %) .
- bo)\e/ hgyx/ g(8)f2(-, s)dsdx.
a 0

Inserting (3.4.28) in (3.4.27), then using the fact that by = a — byg, we get

L _ B—e B—e
/ thCCSB(.)(u, w)dr = i)\a/ hoyUpdr + bo/
0 a

[0}

- / ()@l 5)dsdz
0

B—e o B—e
+ bog)\_g/ hay, frdx — bo)\_g/

«

hoy. /Ooog(s)f_;’(-, s)dsdx (3.4.29)

-~ B—e B—e o0
— oA ~* / ho f3zdz — X\ 'by / ho f3 / 9(8)wz (-, 8)dsdz.
o « 0

Using Cauchy-Schwarz inequality, the facts that y,, u, is uniformly bounded in L?*(0, L), and
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estimation (3.4.8), || F||% = o(1), we get

( B—e ) B—e o
bo/ thx/ —¢'(8)wy (-, 8)dsdx = o (w—%) , bo’gA—f/ hoye fl = 0 (|AH) ,
o 0 @

B—e 00 o . B—e
— boxf/ thm/ 9(s)f3(-,8)dsdx = o (J]A|7F), — bOA—E/ ho f3zdx = o(|\|7F),
o 0 67

p—e > 3¢
- Hbo/ hzf;?/ g(s)a (-, s)dsdz = o (1A 7F).
\ « 0

Inserting the above estimations in (3.4.29), we get

L _ B—e
/ hozy Sy (u, w)dz = i)\a/ hoy,tzdzx + o <|/\|_§> . (3.4.30)
0 «
From (3.4.3), we have
iIN o, = —uy — i FL

Then from the above equation and the definition of Sl;(,)(u, w) and hy, we get

o [P o i -\ —(0+1) P~ e

iy oSy (u,w)dz = — ) Uy S (U, w)dx — QA foSp (u,w)dz. (3.4.31)

Using Cauchy-Schwarz inequality, the definition of h,, the fact that u, is uniformly bounded
in L?(0, L) and || f}|| = o(1), and estimation (3.4.9), we get

o «

B—e

- L
- / Sy (u,w)dz = o <|/\|_%> and — i~ f;SI;O(u,w)dx =0 <|)\|_35Z_1>

Inserting the above estimations in (3.4.31), we get
B—e

.C —_— ¢
i ho0, 5y (1, w)da = o <|)\| ) . (3.4.32)

«

Now, using the definition of /, and Sy (u,w), (3.4.9), and the fact that v and 2 are uniformly
bounded in L*(0, L), we get

L _ B—e _ ’
/ hy2 Sy (u, w)dz = / hy2 S (u,w)dx = o <])\|_5> ,
0 «a
(3.4.33)

B—e
.C — _3
ZXO/Q hyvSi (u,w)dz = o <|)\| 2 ) .

Inserting (3.4.30), (3.4.32) and (3.4.33) in (3.4.26), using the definition of hs, then taking the
real part, we get

B—e i B—e . ,
R {i)\a/ hgyxu_xdx} —R {X/ hoVps (Sl;o(u,w))x d:v} =0 (\)\]7) ) (3.4.34)
Now, adding (3.4.25) and (3.4.34) and using the fact that £ > 0, we get

B—e iMNa — 1 B—e
/ haoly.*dz = R {M/ hQUx%dx} +o(1).

Co

Using the definition of i, in the above equation, we get the desired estimation (3.4.20). The
proof is thus complete. U
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Lemma 3.4.4. Let 0 < ¢ < min (a,ﬁ_Ta). Under the hypotheses (H), the solution U =
(u,v,5,z,w(-,8))" € D(A) of (3.4.3)-(3.4.7) satisfies the following estimation

oo Bla— 1A [P~°
/ |z|2dx < %/ |tz |y dz + o(1). (3.4.35)

+2¢e
Proof. First, we fix a cut-off function hs € C'([0, L]) (see Figure 3.2) such that 0 < hs(z) <1,
for all = € [0, L] and

ha() ={ o zelatduls 21,

h
1 if z€fa+2e[— 3, (ha)

Multiplying (3.4.6) by —i\~'hsz, using integration by parts over (0, L), the fact that z is
uniformly bounded in L?(0, L) and || f*|| = o(1), and the definition of ¢(-), we get

L Z L 'l L CO ,3—28
/ hs|z|*dx — —/ hyZy dx — —/ hgzyxdxm—/ havzdz = o (JA|7“*Y) . (3.4.36)
0 A 0 A 0 A a+e

From (3.4.5), we have

—%z_x = 7, +aiAT D3,

Inserting the above equation in (3.4.36), we get

L L L o
/ hs|z|?dx = / hsly.|2da — ix~(FD / hs f3y.da
’ 0 ) (3.4.37)

i L o B—2¢ .
+ i / hyZy.dx — ZX / hsvzdx + o (\)\]*( +1)).
0 a+e

Using the fact that || f2]|12(0,.) = o(1), y» and z are uniformly bounded in L*(0, L), and the
definition of h3, we get

L L
—i)\_(”l)/ hs f3yde = o (|)\|_(Z+1)) : %/ hiZy.dx = o(1) and
0

0

o (3.4.38)
—i—/ hsvzdx = o(1).
A a+e
Using (3.4.20) and the definition of hs3, we get
g 2 pze 2 3la —1] pe
hsly.|*dx < 3 |y |“dz < o |A| U] |y |dz + o(1). (3.4.39)
0 a+te 0 @

Inserting (3.4.38) and (3.4.39) in (3.4.37) and using the definition of i3, we get the desired
estimation (3.4.35). The proof has been completed. O

Now, we fix a function y € C*([8 — 3¢,7]) by

—3¢) = — =1, and set max r)| =M, and max "(x)| = M.
X(8— 36) = —x() max [x(@) =My andmax (@) = My ()

Remark 3.4.1. It is easy to see the existence of x(x). For example, we can take

1
to get x(8 —3¢) = —x(7) =1, x € C*([f = 3¢,7]), My =1 and My = ——=.
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Lemma 3.4.5. Let 0 < ¢ < min (cv,ﬁ_Ta). Under the hypotheses (H), the solution U =
(u,v,9, z,w(-,8))" € D(A) of (3.4.3)-(3.4.7) satisfies the following estimations

(V)P 1o(B=32)1* = O(IAD,  [2(7)?+12(8—32) *+]ya(7) * +]ya(8—32) [P = O(1). (3.4.40)
Proof. First, deriving Equation (3.4.3) with respect to x, we obtain
iXuy — v, = A OfE in (B —3e,7).

Multiplying the above equation by 2x@, integrating over (5 — 3¢, ), then taking the real part,
we obtain

gl gl ol
R {Qi)\/ Xuﬁdx} - / xX([v]?)dz = R {2)\5/ Xf;@dzz:} : (3.4.41)
B—3e B—3e B—3e

Using integration by parts in (3.4.41), we obtain
v v ¥
(X)), = —/ X |v?dz — R {m/ Xux@da:} +R {2)\5/ Xf;@d:c} . (3.4.42)
B—3e B—3e B—3e
Using the definition of y and Cauchy-Schwarz inequality in (3.4.42), we obtain

,
lw(Y)]>+ Jv(B —3e)]? < My - lv|2dx

v 5/ 3
+2|A| M, (/ |ux]2dx) (/ |v\2dzc> (3.4.43)
B—3e B—3¢
v 3/ 3
+ 2|\ M, (/ |f;|2dg;) (/ |v|2dx) :
B—3e B—3e

Thus, from (3.4.43) and the fact that u,, v are uniformly bounded in L*(0, L) and || 2|/ 12(0,2) =
o(1), we obtain the first estimation in (3.4.40). From (3.4.5), (3.4.6) and the definition of ¢(-),
we have

Z)‘yx — R = Aiéf:? il’l (6 - 357 7)
and
Iz — Ygz — COU = Aief4 n (ﬂ - 357 ’Y)

Multiplying the above equations by 2xZ and 2x7, respectively, integrating over (5 — 3¢,7),
taking the real part, then using the fact that y,, 2 are uniformly bounded in L?(0, L) and
/2120,y = o(1) and || f2]|12(0,) = o(1), we obtain

ol gl
R {Qi)\/ nyzdm} - / x(|2|*)zdz = o(|X|7) (3.4.44)
B—3e B—3e

and

g gl vy
R {Qi)\/ Xz%d:v} - / X([ye]?)edz — R {2(:0/ va_xd:c} =o(|]A\7).  (3.4.45)
B—3e B—3¢e B—3e

Adding (3.4.44) and (3.4.45), then using integration by parts, we obtain

Y
(Xl + v )] s = —/ﬁ 3 X’(|z|2+|y$|2)dx—|—§R{2co/ﬁ

Y

va_xdx} + 0(|/\|_€).

—3¢e
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Using the definition of y and Cauchy-Schwarz inequality in the above equation, we obtain

(D + 12(8 = 3e)” + [y (I + [y2(8 — 3)|”

v g 3 2! 3
< My (|2]* + |yz|*)dz + 2co M, (/ ]v|2da:> (/ \yx|2dx> (3.4.46)
B—3e B—3¢e B—3¢e
oA,

Finally, from (3.4.46) and the fact that v, y,, z are uniformly bounded in L?(0, L), we obtain
the second estimation in (3.4.40). The proof is thus complete. O

. Under the hypotheses

Lemma 3.4.6. Let § € C''([0, L]) be a function with 6(0) = (L) =
(3.4. ) satisfies the following

(H), the solution U = (u,v,y,2,w(-,s))" € D(A) of (3.4.3)-

estimation

L
/ 4 (\v\z +at
0

2
S| + I+ o) do

(3.4.47)
L L L ,
+ R {Qal/ c(.)ezSg(,)(u,w)da:} —-R {2/ c(-)&v%dq;} =0 <|>\|*§> .
0 0
Proof. First, from (3.4.3), we deduce that
iNU; = —T5 — A fL (3.4.48)

Multiplying (3.4.4) by 2a‘1955(,)(u, w), integrating over (0, L), taking the real part, then using
(3.4.9) and the fact that || f?||12(0,) = o(1), we get

L L 9
R {Zi)\a_l/ QUSE(_)(u,w)dm} — a_l/ 0 (’SE(_)(u,w)‘ ) dx
0 0 T

) (3.4.49)
+R {Qa-l/o c(.)ez%(u,w)dx} = o(|A|7).

Using the definition of 5j ) (u,w) and the fact that by = a — by, we obtain

L L B
3‘%{22’)@1/ Qvﬁ(u,w)dx} = %{22’)\/ Hvu_xdx} - §R{2Ma1b0§/ Gvu_xd:c}

0 0
+§R{22)\a 1bo/ 01}/ dsdx}

Inserting (3.4.48) in the above equation and using the fact that v is uniformly bounded in
L*(0, L), || f2llz20,0) = o(1), we get

L L B
3‘%{27)\&_1/ Hvﬁ(u,w)daj} = —/ 9(’U‘2)xd$+§ﬁ{2a_lb0§/ va_xda:}

0 0 0
+§R{2Ma 1bo/ 01)/ , dsdx}+0(|)\|_€).
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Now, inserting the above equation in (3.4.49), we obtain

_/0L0(|U‘2+a1 SE(‘)(U’W)‘Q)Idx—i—?R{ - /LC(-)Hz?()(u w)d:z;}

B8 3.4.50
= —%{Qa_lboﬁ/ Hv@dx} {22)\a—1b0/ 01}/ dsda:} ( )
0

+o (A7)

From (3.4.7), we deduce that
INTZ (-, 8) = Waa(,8) — Ty — ACf3(-,8) in (0, B) x (0, 00). (3.4.51)

Inserting (3.4.51) in the right hand side of (3.4.50), then using integration by parts with respect
to s with the help of hypotheses (H) and the fact that w(-,0) = 0, we get

L 2 L L
- / 0 (\U\Q +a™! ‘Sl;(.)(u,w)‘ > dx + R {2a_1/ c(-)GzSB(.)(u,w)dm}
0 e 0

%{%0/ / dsdaz} %{Cﬁ\%/oﬁ@v/ooog(s)ﬁ(-,s)dsdx} (3.4.52)
+o(|A|—’f).

Using Cauchy-Schwarz inequality, the fact that v is uniformly bounded in L?(0, L), the defini-
tion of g and (3.4.8), we obtain

—§R{2a‘1b0/ 6’1}/ )dsd:r} =0(|A|‘5),
{2@1)\ by / 91}/ dsdx} =o(]A7).

Inserting (3.4.53) in (3.4.52), then using integration by parts and the fact that 0(0) = (L) = 0,
we obtain

L
/ 0/ <|v|2—|—a_1
0

Next, multiplying (3.4.6) by 2hy,, integrating over (0, L), taking the real part, then using the
fact that y, is uniformly bounded in L*(0, L) and || f*||z2(0,) = o(1), we obtain

R {m /OL Qz%d:v} — /OL 0(|yz|?)dr — R {2/0L c(-)@v%dm} = o(|\|7H). (3.4.55)

From (3.4.5), we deduce that

S;)(,)(u,w)r) dr + R {2a_1 /UL c(-)@z%(u,w)dw} =o(1I75). (3:454)

iy = —Z5 — A Of3. (3.4.56)

Inserting (3.4.56) in (3.4.55), then using the fact that z is uniformly bounded in L?(0, L) and
/2] 12(0,) = o(1), we obtain

_ /OL 0|2 + |ya)udz — R {2/0L c(-)evy:dx} — o\ ). (3.4.57)
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Using integration by parts in (3.4.57) and the fact that 6(0) = (L) = 0, we obtain

L L
/ 0 (122 + [ya|?)ude — 3%{2/ c(-)«%%dx} — o\, (3.4.58)
0 0
Finally, adding (3.4.54) and (3.4.58), we obtain the desired estimation (3.4.47). The proof is
thus complete. O

Let 0 < € < min (oz,B%a), we fix cut-off functions hy,hs € C'([0,L]) (see Figure 3.3)
such that 0 < hy(z) < 1,0 < hs(z) < 1, for all z € [0, L] and

1 if zel0,a+ 2, 0 if zel0,a+2,
hy(z) = ) and hs(x) = )
0 if ze€[f—3elL], 1 if zelf—3e L]
and set Jnax |hy(z)| = My, and Jnax. |hs ()| = My,
—
— h5
b(x)

— )

o) N
|

bo ¢ |
|
|
|
¢

|
| |
| |
: :
0 @ a+2p-3 p v L

Figure 3.3: Geometric description of the functions h4 and hs.

Lemma 3.4.7. Let 0 < ¢ < min (a,%). Under the hypotheses (H), the solution U =
(u,v,y,z,w(-,s))" € D(A) of System (3.4.3)-(3.4.7) satisfies the following estimations

a+2e B—e
/ ([ + |ya|* + |2?) dz < Ky |a — 1H>\]/ |uz||yz|dx + o(1), (3.4.59)
0 a

L L B—e
a/ |ux‘2d:c—|—/ (ol + 9ef? + 1217 dq;gK2|a—1||)\|/ | lyaldz + o(1),  (3.4.60)
B B a

—3e

4 4
where K; = ol (14 (8 —3e) My,) and K, = m(l + (L — a + 2e) Myy).

Proof. First, using the result of Lemma 3.4.6 with § = xh, and the definition of SZ;(.)(u,w)
and ¢(+), we obtain

a+2e a+2e 9
2 2 2 -1
[ ol oy e == [ s e

B—3e
— / (hy + zhl) (\v|2 +at |556(u, cu)}2 + |y)® + |z\2) dx

+2e

B—3e _ B—3e ,
R {2a_lco/ xhyz Sy (u, w)dm} + R {200/ :L‘h4vy_xdx} +o <|)\|_§> :
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Using Cauchy-Schwarz inequality in the above equation, we obtain

a+2¢e a+2e 9
/O (1o + lyal* + |2I) dmga—l/o S5 (u,w)|” der

B—3e

+ (1+ (8 —3¢) My, /

a+2¢e

B—3e % B—3¢e %
+2¢0(B — 3g)a™? (/ ]z\zdx) (/ | Sy (u, w)|2d:1:>
B—3e % B—3e %
v2a(a =30 ([ wiae) ([ ) o (75).

Thus, from the above inequality, Lemmas 3.4.1-3.4.4 and the fact that y,, 2z are uniformly
bounded in L?*(0, L), we obtain (3.4.59). Next, using the result of Lemma 3.4.6 with 0 =
(# — L)hs and the definition of S (u,w) and c(-), we obtain

(10l + ™ | S ) + ol + 121 do

L L B
a/ ug |*da +/ (|v|2 + |22 + |yw|2) do = —a_l/ ‘S%(u,w)‘zdx
B8 B—3e B—3e

B—3e
[+ @ - D) (10 a7 S )l + |2 do

+2e

B—3e B—3e
B {Qalco/ (x — L)h5zS_6B(u, w)dx} + R {200/ (x — L)hw%dw}

+2¢ +2e

_R {Qa_lboco /5 :(x 1) <—§u$ + /0 " o) s)ds) dm}
™ {200 /;35(9; - L)zu_xd:v} LR {200 /ﬁigg(:ﬂ - L)v%dw} |

Using Cauchy-Schwarz inequality in the above equation, Lemmas 3.4.1-3.4.4 and the fact that
Yz, z are uniformly bounded in L?(0, L), we obtain

L L
a/ |ux|2da:—|—/ (10 + 2 + yuP) da
B—3e

. (3.4.61)
4 g
< (14 (L —a—2e) M) \a—lH)\]/ |tz yz|dx + T 4 o(1),

[col
v gl
{200/ L)v%dm} - {260/ (x — L)zu_xdx} : (3.4.62)
B—3e B—3e
From (3.4.3) and (3.4.5), we have

Ty = iN 175 + NV and 7 =i\l 4 i D f3 (3.4.63)

where

Inserting (3.4.63) in (3.4.62), then using the fact that v, 2 are uniformly bounded in L?(0, L)
and || fz]lz20,0) = 0(1), [[2[r20,1) = 0(1), we obtain

ol gl
I=%x {2002')\_1 / (x — L)Uz_Idx}—% {2002'/\_1 / (x — L)zv_xdx}+o(|/\|_(€+1)). (3.4.64)
B—3e B—3e

84



CHAPTER 3. STABILITY RESULTS OF COUPLED WAVE MODELS WITH...

Using integration by parts to the second term in (3.4.64), we obtain

Y
I="%R {2002')\_1 / z@d:z} - R {2coi)\_1 [(z — L)z@]g_sa} + o(|A] 7). (3.4.65)
[B—3¢
From Lemma 3.4.5, we deduce that

v = O, [0(8—=3e)| = O\, |2(9)|=0(1) and |2(5 —3¢)| = O(1). (3.4.66)

Using Cauchy-Schwarz inequality, (3.4.66) and the fact that v,z are uniformly bounded in
L?(0, L), we obtain

R {2602')\_1 /;36 z@d:r} =0 (]AI™") = o(1),
R {200ix " (2 = D)=}y } = O (IAI7F) = o(1).

Inserting the above estimations in (3.4.65), we get
Z = o(1).

Finally, from the above estimation and (3.4.61), we obtain the desired estimation (3.4.60).
The proof is thus complete. O

Proof of Theorem 3.4.1. The proof of Theorem 3.4.1 is divided into three steps.
Step 1. Under the hypotheses (H), by taking ¢ = 1 and ¢/ = 0 in Lemmas 3.4.1-3.4.4, we
obtain

B—e
/ / 8)|wz (-, 8)|*dsdx = of / |ug|*dx = o(1), / lv]2dx = o(1),

S o s (3.4.67)
/ yelPdz = o(1) and / 2di = o(1).
a+te a+2e
Step 2. Using the fact that @ = 1 and (3.4.67) in Lemma 3.4.7, we obtain
€ a+te
/ |v]2dz = o(1), / lv]2dz = o / lug |*dx = o(1), / |y |*dz = o(1),
’ : ’ (3.4.68)

L a+2¢e L
/ lyal2dz = of1), / 2[2%dz = o(1) and / 122dz = o1).
B—2¢ 0 B—3¢

Step 3. According to Step 1 and Step 2, we obtain ||U||z = o(1), which contradicts (H).
Therefore, (H;) holds, and so by Theorem 1.3.6, we deduce that system (3.2.2)-(3.2.6) is
exponentially stable. U

Proof of Theorem 3.4.2. The proof of Theorem 3.4.2 is divided into three steps.
Step 1. Under the hypotheses (H) and a # 1, using the fact that y, is uniformly bounded in
L?(0,L) and (3.4.9) in estimation (3.4.20), we get

B—2¢e . B—3e .
/ lyal2dz = o A5+)  and / 2[2dx = o( A5+,

+e +2e
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Taking ¢ = 2 in the above estimations, we obtain

B—2¢ B—3¢
/ ly.|*dz = o(1) and / |z|2dz = o(1). (3.4.69)

+& —+2e

Taking ¢ = 2 in Lemmas 3.4.1, 3.4.2, we obtain

B—e
/ / 8)|ws (-, 8)|*dsdx = o(\ / uy|?de = o(A72), / lv[2dz = o(|A|71). (3.4.70)

Step 2. Using the fact that a # 1, y, is uniformly bounded in L?(0, L) and (3.4.70) in Lemma
3.4.7, we obtain

a+2e
[ P+l 4 12) do = o), (3.4.71)
0
L L
a/ || dx +/ (Jv]* + |yu|> + |2]?) dz = o(1). (3.4.72)
B B—3e

Using (3.4.69) and (3.4.70) in (3.4.71) and (3.4.72), we obtain

€ a+te
/ |v]2dz = o(1), / lv[2dz = o / lug |*dx = o(1), / ly.|2dz = o(1),
0 € 0

L a+2e L (3473)
/ lyal2dz = of1), / 2[2%dz = o(1) and / 12[2dz = o1).
B—2¢ 0 B—3¢

Step 3. According to Step 1 and Step 2, we obtain ||U||3; = o(1), which contradicts (H).
This implies that

lim sup —||(Z)J A) 7l < o0
AER, [A—oo A2

Finally, according to Theorem 1.3.7, we obtain the desired result. The proof is thus complete.
O

3.5 Lack of exponential stability with global past his-
tory damping in case of different speed propagation
waves (a # 1)

This section is independent from the previous ones, here we prove the lack of exponential

stability with global past history damping and global coupling. For this aim, we consider the
following system:

— / T (et — s)ds 4y =0, (2.1) € (0, L) x (0, 00)
ytt_yx:p_ut:07 (x7t) € (O,L) X (0700)7
w(0,) = w(L,t) = y(0,t) = y(L,t) = 0, t>0, (3.5.1)
(u(x, —s),u(x,0)) = (uo(, s), ur (), (z,5) € (0,L) x (0, 00),
(y(x,0), ye(x,0)) = (yo(x), y1(x)), z € (0,L),
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and the general integral term represent a history term with the relaxation function g that is

supposed to satisfy the following hypotheses
g € LY([0,00)) N C*(]0,00)) is a positive function such that
g(0) :==go > 0, /Oog(s)ds =9, a:=a—¢g>0, and
0
g (s) < —mg(s), for some m >0, Vs > 0.
Now, as in [35], we introduce the following auxiliary change of variable
w(z, s, t) == u(z,t) —u(z,t —s), (x,st) € (0,L)x(0,00)x (0,00).

Then system (3.5.1) becomes

Uy — QlUgy — / 9(8) Wz (v, 8,t) + 1 = 0, (z,t) € (0, L) x (0,00),
0

Ytt — Yz — Ut = 07 (l’,t) € (Oa L) X (07 OO),
wi(vy8,t) Fws(, 8,8) —u, =0, (z,8,t) € (0,L) x (0,00) x (0, 00),

with the following boundary conditions

u(0,t) = u(L,t) = y(0,t) = y(L,t) =0, t >0,
w(-,0,t) =0, (z,t) €(0,L) x (0,00),
w(0,s,t) =w(L,s,t) =0, (s,t)€ (0,00) x (0,00),

and the following initial conditions
u(, —s) = uo(+, s), w(+,0) =ui(+), (z,s) € (0,L) x (0,00),

y(-,0) = yo("), ¥ (-, 0) = v (), z € (0, L),
wo(,8) :=w(-s,0) =up(-,0) —up(-,s), (x,s)€(0,L)x(0,00).

The energy of system (3.5.3)-(3.5.7) is given by

1
Eq(t) = / (Il + @l + el? + g ?) d + = / / 9w (-5, 1) s,

(3.5.2)

(3.5.3)

(3.5.4)
(3.5.5)

(3.5.6)

(3.5.7)

(3.5.8)

Under the hypotheses (H¢) and by letting U = (u,v,y, z,w) be a regular solution of system

(3.5.3)-(3.5.7), then we get with the help of (3.5.6) that

/ / 8)|wz (-, 5, 1) Pdsdz < 0,

which implies that the system (3.5.3)-(3.5.7) is dissipative in the sense that its energy is non-

increasing with respect to time. Now, we define the following Hilbert space Hg by

He = (HL(0,L) x L*(0, L))" x L2((0, 00); HE (0, L)),

and it is equipped with the following inner product

L L 00
(U’Ul)Ha:/O (5uxu_}c+vﬁ+yxy_;+z;> dx+/0 /0 9(8)w, (-, $)wl(-, s)dsd,
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where U = (u,v,y,2,w(-,5))" € Hg and U = (ul, v, y!, 21, wl(,5))" € Hg. We define the
linear unbounded operator Ag : D(Aq) C Hg — Hg by:

U= (u,v,y,z,w(-s))" €Hg|ye H*0,L)NHLO0,L), v,z¢€ HLO0,L)

R (6u )y et S)ds>$ € L2(0,L), w.(-s) € L2((0,00): H)(0, L)),
w(-,0) =
and U
Aa 3 _ (Eum + /0°° g(s)zwa;(-,s)ds)x _
w(i 5) Yoz + U
—ws(+, 8) +v

Now, if U = (u, us, y, ys, w(-, 8)) ", then system (3.5.3)-(3.5.7) can be written as the following
first order evolution equation

U= AgU, U(0) = Uy, (3.5.9)
where Uy = (uo(+,0), u1, Yo, y1,wo(+, 5)) " € He.

Theorem 3.5.1. Under the hypotheses (H¢). If a # 1, then for any 0 < € < 2, we can not
expect the energy decay rate 2% for every Uy € D(Ag).

Proof. Following Huang [67] and Pruss [94] (see also Theorem 1.3.6), it is sufficient to show
the existence of sequences (\,), C R% with A, — oo, (U,), C D(Ag) and (F,), C He such
that (i\,I — Ag) U, = F,, is bounded in Hg and

lim A, 24| U, |3, = oo (3.5.10)
n—oo

For this aim, take

nmwx

F, = (0,0,0,sin <T> ,0) and U, = (Un, i\yUn, Yn, IAYn, Wn)

such that ) )
( nw
Ay = = = 5——— such that n® > ———
L 2nna—1) 0" T a1y
ualw) = Agsin ("7, g (2) = B,sin (77, -
L L
| wnlz,s) = An(1— ¢~ sin (@»

L
where A, and B, are complex numbers depending on n and determined explicitly in the

sequel. Note that this choice is compatible with the boundary conditions. So, its is clear
that A, > 0, lim )\, = oo, F,, is uniformly bounded in H and U,, € D(Ag). Next, detailing

n—0o0

iU, — AgU, = F,, we get

iALPN, + (N2 L? — 7°n?) B, = —L?,
(3.5.12)

(n°m*(a — gr,) — A\oL*) A, +iL*X\, B, = 0,
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where gy, = / g(s)e~*ds. From the first equation of (3.5.12), we get
0

i i(L2\2 — 7?n?)B,
A, = n . 3.5.13
N T2\, (3.5.13)

Inserting (3.5.13) in the second equation of (3.5.12), we get

(AL? = (a — g, )n°n?) L?

B, = .
—nt(a — g, )7+ L2m2n? X2 (a+ 1 —gy,) + LA (A2 — \2)

Consequently, the solution of (3.5.12) is given by

i i(L2\2 — m*n?)B, B,
A, = — n d B,=Bi,(1+—— |, 3.5.14
N + L2\, an 1, + Mdn. + Ban ( )

where
L? LA )\f;

Iy DT e - )
(—mian® + L*n?)2 (a + 1)m? 4+ LA(A2 — X))\,
n?m? (n?m? — L2)\2) '
Now, inserting A, given in (3.5.11) in the above equation, then using asymptotic expansion,
we get

Bl,n =

B3,n =

1 —
Bin=a—-14+0(n"?), By,= Ta’m +0(n™), Bs,=0(n"). (3.5.15)

On the other hand, using hypotheses (H¢) and integration by parts, we obtain

Ay, = —igo — z/ g’(s)e‘“"sds.
0

It is clear from Riemann-Lebesgue Lemma that the second term in the above equation goes to
zero as A, — oo. Thus, we obtain

Angn, = —igo + o(1). (3.5.16)
Substituting (3.5.15) and (3.5.16) in (3.5.14), we get

i(a — 1)

A,=0(1) and B, =|(-—
@ ( goL

+ 0(1)) nr.
Therefore, from the above equation and (3.5.16), we get

—1)?
2al@) = M Busin (77 ) = (<agoL2> N 0(1>) i in (122

1
L 2 L ((a—1)
2 2_2
(/0 2] dx) - 5( e +0(1)>n7r.
L : (L ((a—1)?
U= ( [ e - (o) we 2,
0 0
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then for all 0 < € < 2, we have
NN Uy ~ A — 00 as n— oo,

hence, we get (3.5.10). Consequently, we cannot expect the energy decay rate t~2¢. The proof
is thus complete. Il

Remark 3.5.1. In [16] and [33], the authors proved the lack of exponential stability of a
coupled wave equations system with past history damping by taking a particular relaxation
function g(s) = e such that s € R, and p > 1. O

3.6 Conclusion and Future Works

We have studied the stabilization of a locally coupled wave equations with local viscoelastic
damping of past history type acting only in one equation via non-smooth coefficients. We
proved the strong stability of the system by using Arendt-Batty criteria. We established
the exponential stability of the solution if the waves have the same speed propagation (i.e.
a = 1). In the case a # 1, we proved that the energy of our system decays polynomially with
the rate t~!. Lack of exponential stability result has been proved in case that the speeds of
wave propagation are different with a global damping and a global coupling (i.e. a # 1 and
b= c=1). According to Theorem 3.5.1, we can conjecture that the energy decay rate t~! is
optimal but this question remains open. Moreover, it would be interesting to

1. study system (3.1.1) in the multidimensional case,

2. obtain the decay rates of system (3.1.1) for a much wider class of relaxation functions g,
like in [54, 55| and using the recent results from [99],

3. study system (3.1.1) with local internal past history damping, in other words, by only
assuming that b is positive on a non empty subinterval of (0, L) that could be away from
the boundary.
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Chapter 4

On the Stability of Bresse system with
one discontinuous local internal
Kelvin-Voigt damping on the axial
force

In this chapter, we investigate the stabilization of a linear Bresse system with one dis-
continuous local internal viscoelastic damping of Kelvin-Voigt type acting on the axial force,
under fully Dirichlet boundary conditions. First, using a general criteria of Arendt-Batty, we
prove the strong stability of our system. Finally, using a frequency domain approach combined
with the multiplier method, we prove that the energy of our system decays polynomially with
different rates. This chapter is published in [5].

4.1 Introduction

In this chapter, we investigate the stability of a Bresse system with only one discontinuous local
internal Kelvin-Voigt damping on the axial force. More precisely, we consider the following
system in (0, L) x (0, c0):

p1ow — ki1(pe + ¢ + lw)y — lks(w, — lp) — ld(z) (Wi — lpy) = 0,

prwy — [ks(wy — o) + d(z) (Wi — lor)], + Uk (@ + 9 + lw) =0,
with the following Dirichlet boundary conditions

0(0,t) = (L, t) =(0,t) =¢(L,t) = w(0,t) =w(L,t) =0, t>0, (4.1.2)

and the following initial conditions

{ 90(9570) = Q00($), @t(xao) = Spl(x)a 1/1(%0) = 1/]0(95)7 LS (O,L),

(4.1.3)
U (x,0) = ¥1(x), w(z,0) = wo(x), wi(z,0) =wi(x), x € (0,L),

where pq, po, k1, ko, k3,1 and L are positive real numbers. We suppose that there exist 0 < a <
[ < L and a positive constant dy, such that

, ) (4.1.4)
0 if ze€(0,a)U(p,L).
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— d(z)

do

=Y
o ------
e ------
~e

Figure 4.1: Geometric description of the function d(x).

The Bresse system is a model for arched beams (see Fig. 4.2 for an illustration), see [74, Chap.
6]. It can be expressed by the equations of motion:

p1pu = Qg + LN,
Py = M, — @, (4'1'5)
P1Wy = Nx - lQa

where N = k3(w, — lp) + d(z)(ws, — lpy) is the axial force, @ = ki(p, + ¢ + lw) is the shear
force, and M = kg, is the bending moment. The functions ¢, ¥, and w are respectively
the vertical, shear angle, and longitudinal displacements. Here p; = pA, ps = pl, k1 = kG A,
ks = EA, ky = EI and [ = R™!, in which p is the density of the material, £ the modulus of
the elasticity, G the shear modulus, k the shear factor, A the cross-sectional area, I the second
moment of area of the cross section, R the radius of the curvature, and [ the curvature.

There are several publications concerning the stabilization of Bresse system with different
kinds of damping (see [1], [4], [14], [40], [43], [46], [47], [48], [56], [57] [79], [86], [90] and [106]).
We note that by neglecting w (I — 0) in (4.1.5), the Bresse system reduces to the following
conservative Timoshenko system:

p1ow — k1 (pe + ). =0,
P — kotbee + ki(pz + 1) = 0.

There are also several publications concerning the stabilization of Timoshenko system with
different kinds of damping (see [9], [25], [26] and [105]).

In the recent years, many researchers showed interest in problems involving Kelvin-
Voigt damping where different types of stability, depending on the smoothness of the damping
coefficients, has been showed (see [17], [18], [62], [63], [66], [76], [80], [91] and [98]). Moreover,
there is a number of new results concerning systems with local Kelvin-Voigt damping and
non-smooth coefficients at the interface (see [7], [103], [50], [51], [52], [65] and [104]).

Among this vast literature let us recall some specific results on the Bresse systems.
In 2017, Guesmia in [56] studied the stability of Bresse system with one infinite
memory in the longitudinal displacement (i.e. third equation) under Dirichlet-Neumann-

Neumann boundary conditions, he established some stability results under a smallness
condition on [ and on fooo g(s)ds, where [ is the curvature and g is the memory kernel. In
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Figure 4.2: The circular arch

2018, Afilal et al. in [4] studied the stability of Bresse system with global frictional damping
in the longitudinal displacement, by considering the following system on (0, 1) x (0, 00):

pripw — ki (r + 1 + lw), — lky(w, — lp) =0,
P2t — koWue + ki(02 + ¢ +1w) =0, (4.1.6)
prwg — ks(wy — 1p) + ki (@p + 0 + lw) + 6w, = 0,

with the initial conditions (4.1.3) where L = 1 and under mixed boundary conditions of the

form:
{ 0(0,1) = 1, (0,¢) = w,(0,¢) =0, in (0,00),
0. (1,t) = (1,t) = w(l,t) =0, in (0,00),

where ¢ is a positive real number, they assumed that:
l#g+mm Vm e N. (4.1.7)

They proved under (4.1.7), the strong stability of system (4.1.6) provided that the curvature [
satisfies:

paks + prko 2 p1ki
I —<—+m7r) + ———, VmeZ. 4.1.8
7 paks 2 pa(k1 + k) ( )
Also, they established under (4.1.7) and (4.1.8), the exponential stability of system (4.1.6) if
k k
and only if =25 Otherwise, they established polynomial energy decay rate of order
P P2 M1
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t~3. In 2019, Fatori et al. in [46] proved under
[L is not a multiple of (4.1.9)

the strong stability of system (4.1.6) on (0, L) x (0,00) under Dirichlet-Neumann-Neumann
boundary conditions provided that:

kipr — po(ks +k)I> >0 or

plpg(kfg, —+ k’l) <@n2 1 @m2> 71'2 (4110)

k kD) —k —
0<p2( 3 + 1) 10/ # ks Py 03 72’

for all m € N and n € N*. Also, they established under (4.1.9) and (4.1.10) the exponential
stability of system (4.1.6) on (0, L) x (0, 00) if and only if

L1 ky
— = — and k; = ks. 4.1.11
P2 ko ! ° ( )

Moreover, they used the previous results (i.e. strong and exponential stability of (4.1.6)
on (0,L) x (0,00)) to obtain under (4.1.9), (4.1.10) and (4.1.11) the exponential stability
of Bresse system with indefinite memory in the longitudinal displacement under Dirichlet-
Neumann-Neumann boundary conditions.

In 2019, El Arwadi and Youssef in [43] studied the stabilization of the Bresse beam
with three global Kelvin-Voigt damping under fully Dirichlet boundary conditions, they
established an exponential energy decay rate. In 2020, Gerbi et al. in [49] studied the
stabilization of non-smooth transmission problem involving Bresse systems with fully Dirichlet

or Dirichlet-Neumann-Neumann boundary conditions, by considering system (4.1.5) on
(0, L) x (0,00) with

N = k3(wy —l@) +D3(wer —lpy), Q = ki(@z+1v+Iw)+Di(pu+p+lwy), M = kythy+ Doty
where Dy, Dy and D3 are bounded positive functions over (0, L). They established:

e Analytic stability in the case of three global Kelvin-Voigt dampings (i.e. D; € L*(0, L),
D;>dy>0in (0,L),7=1,2,3).

e Exponential stability in the case of three local Kelvin-Voigt dampings with smooth co-
efficients at the interface (i.e. D; € WH>(0,L), D; > dy > 0 in ) # w := (o, 3) C (0, L),
i=1,2,3).

e Polynomial energy decay rate of order t~! in the case of three local Kelvin-Voigt
dampings with non-smooth coefficients at the interface (ie. D; € L*(0,L),

3
Di Z d6 > 0in (Oélﬁﬁi) C (OvL)v 1= 172737 and ﬂ(awﬁl) = w)'

i=1

e Polynomial stability energy decay rate of order =% in the case of one local Kelvin-
Voigt damping on the bending moment with non-smooth coefficient at the interface (i.e.
Dy =D3=0, Dy € L*(0,L) and Dy > dy > 0 in w).
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But to the best of our knowledge, it seems that no result in the literature exists concerning
the case of Bresse system with only one discontinuous local internal Kelvin-Voigt damping on
the axial force, especially under fully Dirichlet boundary conditions and without any condition
on the curvature [. The goal of the present chapter is to fill this gap by studying the stability
of system (4.1.1)-(4.1.3).

This chapter is organized as follows: In Section 4.2, we prove the well-posedness of our
system by using semigroup approach. In Section 4.3, following a general criteria of Arendt
Batty, we show the strong stability of our system in the absence of the compactness of the
resolvent. Finally, in Section 4.4, by using the frequency domain approach combining with a
specific multiplier method, we prove that the energy of our system decays polynomially with
the rates:

o Bk
p1 p2
o Mgk
P P2

4.2 Well-posedness of the system

In this section, we will establish the well-posedness of system (4.1.1)-(4.1.3) by using semigroup
approach. The energy of system (4.1.1)-(4.1.3) is given by

1

L
E(t) = 5/ (p1 lel® + p2lte? + pr]wel® + Ealps + 9 + lw]? + kol |* + Es|w, — lp|?) da.
0

Let (i, o1, ¥, ¢, w, wy) be a regular solution of system (4.1.1)-(4.1.3). Multiplying the equations
in (4.1.1) by @y, ¥y and w; respectively, Then using the boundary conditions (4.2.14) and the
definition of d(z) (see (4.1.4) and Figure 4.1), we obtain

L B
B(t) = — / d(2) g — lor[2d = —dy / g — lpr|2da < 0. (4.2.1)
0 a

From (4.2.1), system (4.1.1)-(4.1.3) is dissipative in the sense that its energy is non-increasing
with respect to time. Now, we define the following Hilbert space H by:

M = (HL(0,L) x L*(0, L))’

The Hilbert space H is equipped with the following inner product and norm

L ~ ~ ~ —_ —_ —_—
(U, Uy = / {kl(vi + 0% 4+ 10°) (vl 4+ 3 + 105) + prv*v? + ko3 + povtut
0

+ ks (02 — oY) (03 — L) dx + p1v6;} dx

and

L
U1, = [ Dhalod 4 103+ o+ Ralul + gl
0 (4.2.2)

+ k3o — W' + pr |0 } da.
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Where U = (v, 0%, 03, 04,05, 0%) T € H and U= (v1, vt 02, 03 vt 05, 08) T € H. Now, we define
the linear unbounded operator A:D(A) C H+—— H by:

U= (v!, 02030105, 09T € H | v!,03 € H2(0, L) N H} (0, L)

D=9 2 0t 08 € B0, 1), [kat® + d(x)(0 — 10?)] € L2(0, L) (4.2.3)

and
02
k ld
! 2wl 0P+ 10%), + — (00— ) + () (v — 1v?)
02 P1 P, P1
5 v
v
Al ol = ko s M ) : (4.2.4)
v° P2 P2 s
v
6
1 5 1 6 2 Ik
— [ks(v) — ') + d(2) (08 — W?)] — —(v, +v* + ")
P1 foom
for all U = (v!,v? 0%, 0% 05, 05T € D(A).
In this sequel, || - || Wlll denote the usual norm of L?*(0, L).

Remark 4.2.1. From Poincaré inequality, we deduce that there exists a positive constant c;
such that

killo, + 07 + 107 + k[0 + ksllo) — 0HP < e (flogl® + ozl® + [102]1%)

for all (v!,v3,0%) € (HE(0,L))*. Moreover, we can show by a contradiction argument that
there exists a positive constant ¢y such that

2 (loall? + [[02112 + [02117) < kallog 4+ v + W°||* + ko || |7 + ksllod — (o',

for all (v!,v3,0°) € (HE(0,L))*. Therefore, the norm defined in (4.2.2) is equivalent to the
usual norm of H. 0

Now, if U = (¢, ¢s, %, s, w,w;) ", then system (4.1.1)-(4.1.3) can be written as the following
first order evolution equation

U =AU, U(0) = Uy, (4.2.5)
where Uy = (0, ¢1, o, 1, wo, w1) T € H.

Proposition 4.2.1. The unbounded linear operator A is m-dissipative in the Hilbert space

H.
Proof. For all U = (v}, v%,v%,v%,0%,0%) " € D(A), we have

L B
RAU,U)y = —/ d(x) |vS - lv2|2dx = —do/ |08 — lvz‘2 dr < 0. (4.2.6)
0 o

which implies that A is dissipative. Let us prove that A is maximal. To this aim, let F' =
(fYL 22 4 5, 9T € H, we look for U = (vt 02,03, 0%, 0%, 0v%) T € D(A) unique solution of

— AU = F. (4.2.7)
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Detailing (4.2.7), we obtain

—? = fh (4.2.8)
—k1 (v, + 0% +10°) = lks(v] — ") —ld(z) (S — 10*) = p1f? (4.2.9)
—t = f3 (4.2.10)
—kov? ki (vE F 0P 1) = pof? (4.2.11)
—% = f (4.2.12)
— [ks (v — l0") + d(z) (v — W?)] + ki (v, +0° +10°) = pif°, (4.2.13)
with the following boundary conditions
v (0) = v (L) = v*(0) = v3(L) = v*(0) = v*(L) = 0. (4.2.14)

By inserting (4.2.8) and (4.2.12) in (4.2.9) and (4.2.13), system (4.2.8)-(4.2.13) implies:

—ky (vg +0° + 10°) = lks(v) — ') = pof? + ld(z) (= f2 + 1), (4.2.15)
—kov2, + Ky (vl +0° + 10°) = pa f4, (4.2.16)
— [ks (02 = ") + d(z)(— 2 + lfl)Lc + 1k (v + 03 + 0°) = py 5. (4.2.17)

Let (¢, ¢2,¢%) € (HE(0,L))°. Multiplying (4.2.15), (4.2.16) and (4.2.17) by ¢!, ¢ and ¢°

respectively, integrating over (0, L), then using formal integrations by parts, we obtain

B((v',v%,0%), (6", 8%, 6%)) = L((6", 8%, 6)), V(6. ¢% ¢°) € (HL(0,L))°, (4.2.18)

where
L o L o
B((v',v3,0%), (¢", ¢*, ¢*)) = / (U;+v3+1v5)¢;da¢—1k3/ (V5 — ") plda
0 0
L L
k S02dx + k U0 4+ ) p2d
+2/vagb$x+ 1/0(Ux+v+v)gbx
L L
—I—k‘g/o (vi—lvl)gb_idxq%kl/o (vl + 03 + W®)P3dx
and
L
?) Tdx +1 —fe+1fheld Y62d
L((6', ¢, ) /fcb x+/ d(x)(— 2 + 113 x+pz/of¢x
L L
" / A() (£ — 1) + py / .

It is easy to see that B is a sesquilinear and contmuous form on (HZ(0, L)) x (HL(0, L))* and
L is an antilinear and continuous form on (HZ(0,L))”. In fact, from Remark 4.2.1, we deduce
that there exists a positive constant ¢ such that

B((0!, 0%, 0%), (01, 0%,0%)) = hllud+ 0 + 1P]2 4 kalJo2 |2 + kolfo — 10?2
(lfobl2 + 22 + e22) (4.2.19)

J(CRENI M

IV
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Thus, B is a coercive form on (HL(0,L))* x (HL(0,L))°. Then, it follows by Lax-
Milgram theorem that (4.2.18) admits a unique solution (v',v%,0%) € (HE(0,L))’. By
taking test-functions (@', ¢?,¢*) € (D(0,L))°, we see that (4.2.15)-(4.2.17) hold in the
distributional sense, from which we deduce that (v!,v%) € (H2(0,L)N HL(0,L))*, while
[k3v? 4+ d(x)(v8 — 1v?)], € L*(0,L). Consequently, U = (v!, —f1 03, —f3 0% —f%)T € D(A) is
the unique solution of (4.2.7). Then, A is an isomorphism and since p (A) is open set of C (see
Theorem 1.1.13), we easily get R(A — A) = H for a sufficiently small A > 0. This, together
with the dissipativeness of A, imply that D (A) is dense in H and that A is m-dissipative in
H (see Theorems 1.2.6, 1.2.9). The proof is thus complete. U

According to Lumer-Philips theorem (see Theorem 1.2.8), Proposition 4.2.1 implies that the
operator A generates a Cy-semigroup of contractions e in H which gives the well-posedness
of (4.2.5). Then, we have the following result:

Theorem 4.2.1. For all Uy € H, system (4.2.5) admits a unique weak solution
U(t) = Uy € CO(RL,H).
Moreover, if Uy € D(A), then the system (4.2.5) admits a unique strong solution
U(t) = Uy € C°(Ry, D(A)) N CHRy, H).

4.3 Strong Stability

In this section, we will prove the strong stability of system (4.1.1)-(4.1.3). The main result of
this section is the following theorem.

Theorem 4.3.1. The Cj-semigroup of contractions (etA)
all Uy € H, the solution of (4.2.5) satisfies

>0 is strongly stable in H; i.e., for

lim || U = 0.
t—o00

According to Theorem 1.3.3, to prove Theorem 4.3.1, we need to prove that the operator A
has no pure imaginary eigenvalues and o(A) N iR is countable. The proof of Theorem 4.3.1
has been divided into the following two Lemmas.

Lemma 4.3.1. For all A € R, i\ — A is injective i.e.
ker(iA] — A) = {0}, VA eR.

Proof. From Proposition 4.2.1, we have 0 € p(A). We still need to show the result for A € R*.
For this aim, suppose that A # 0 and let U = (v}, v%, 0%, v*,v%,0%) " € D(A) such that

AU = i\U. (4.3.1)

Equivalently, we have the following system

v? =i\, (4.3.2)

ki (vr + v + 10°), + lks(v2 — ) + 1d(z) (8 — 1v?) = idpyv?, (4.3.3)
vt = i\?, (4.3.4)

kov? — ki (vl + 03 + [0°) = idpov?, (4.3.5)

V% = i\v®, (4.3.6)

[ks(v) = l0') + d(z) (v — 10?)] = ki (v, + 0 4+ 10°) = idpy0®. (4.3.7)
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From (4.2.6), (4.3.1) and the definition of d(z), we obtain
L 2 g 2
0=RENU,U), =R(AU,U), = _/ d(z) [0S — | dz = —dO/ |08 — | dz. (4.3.8)
0 «

Thus, we have

v~ =0 in (o, ). (4.3.9)
Inserting (4.3.2) and (4.3.6) in (4.3.9) and using the fact that A # 0, we get

v2—Ilv' =0 in (a,p). (4.3.10)

Now, inserting (4.3.9) and (4.3.10) in (4.3.3) and (4.3.7), then inserting (4.3.2), (4.3.4) and
(4.3.6) in (4.3.3), (4.3.5) and (4.3.7) respectively, we deduce that

N0+ kvl 4+ 07+ 10°), =0 in (a,f), (4.3.11)
X202 4 kv — ki (vl 0+ 10°) =0 in (a,p), (4.3.12)
PN — k(v +0° +10°) =0 in (a,B). (4.3.13)

Deriving (4.3.13) with respect to z, we get
PN 0) = ki (v) +0° +10°), =0 in (o, B).
Inserting (4.3.11) in the above equation, we get

pA2(v3 +1v') =0 in (o, 3) and consequently as A # 0, we get v° + ' =0 in (a,p).

(4.3.14)
Now, adding (4.3.10) and (4.3.14), we obtain
v> =0 in (a,3) and consequently v'=0 in (a,f). (4.3.15)
Inserting (4.3.15) in (4.3.11), we get
v2=0 in (o, ). (4.3.16)
Now, system (4.3.2)-(4.3.7) can be written in (0,a) U (3, L) as the following:
P A0+ (vl 4+ 0P + 1%, 4 T3 (02 — 1v') =0 in (0,a) U (B, L), (4.3.17)
P2 A0 + kav?, — Ky (vp +0° +10°) =0 in (0,0) U (B, L), (4.3.18)
PNV + kg (V2 — oY), — Lk (v +0* +10°) =0 in (0,a) U (B, L). (4.3.19)

Let V = (v}, vl 0303 02 02 ). From (4.3.15), (4.3.16) and the regularity of v, i € {1,3,5},

we have V(a) = 0. Now, by deriving system (4.3.17)-(4.3.19) with respect to z in (0, @), we
deduce that

Ve =AW in (0,a), (4.3.20)
where
0 1 0 0 0 0
L 0 -1 0 —l+h
1
0 0 0 1 0 0
Ay = ky k1—pa)? Uy (4.3.21)
0 ks no 0 & 0
0 0 0 0 0 1
0 (B 41) Ik 0 VBrki-pX 0
3 k3 k3
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The solution of the differential equation (4.3.20) is given by
V(z) = eV (). (4.3.22)
Thus, from (4.3.22) and the fact that V(a) = 0, we get
V=0 in (0,«). (4.3.23)
From (4.3.23) and the fact that v*(0) = v3(0) = v°(0) = 0, we get
v' =0 in (0,a), v*’=0 in (0,a) and v =0 in (0,a). (4.3.24)
From (4.3.24), (4.3.2), (4.3.4), (4.3.6) and the fact that A # 0, we obtain
U=0 in (0,aq). (4.3.25)
From (4.3.25) and the regularity of v, i € {3,5}, we obtain
v’(a) =0 and v’(a) =0,
consequently, from (4.3.15) and (4.3.16), we get
v' =0 in (o, ), v*=0 in (o, 8) and v =0 in (a,p),
consequently, from (4.3.2), (4.3.4), (4.3.6) and the fact that A # 0, we obtain
U=0 in (a,B). (4.3.26)

Now, let W = (v}, v}, 03,02, 0%,02)T. From (4.3.26) and the regularity of v?, i € {1,3,5}, we

) Yax? ) Y

have W () = 0 and system (4.3.17)-(4.3.19) in (3, L) implies:
W, =AW in (5,L),
where A, is defined before (see (4.3.21)). Thus, we have
W(z) = e =W (5) =0,
consequently, from (4.3.2), (4.3.4) and (4.3.6), we deduce that
U=0 in (B,L). (4.3.27)
Finally, from (4.3.25), (4.3.26) and (4.3.27), we obtain
U=0 in (0,L).
The proof is thus complete. O
Lemma 4.3.2. For all A € R, we have

RGN — A) =H.
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Proof. From Proposition 4.2.1, we have 0 € p(A). We still need to show the result for A € R*.
For this aim, let F' = (fL, f2, f3, 4, 5, f%) 7 € H, we want to find U = (v}, 0% v3,0%,0°,0%) " €
D(A) solution of

(iN[— AU = F. (4.3.28)
Detailing (4.3.28), we obtain
i —o? = f' 0 (4.3.29)
k lk ld
ixv? — = (vl 40P 10°) — (0 — vt — ﬂ(vg‘ —?) = f%  (4.3.30)
p1 Toom p1
ix® —vt = f2 (4.3.31)
ivt — @vix + ﬁ(U; +0*+10°) = f (4.3.32)
P2 P2
i’ —o® = f° (4.3.33)
1
iM® — = [ks (v — ') + d(z)(08 — ?)] + lﬁ(vi +v*+ %) = %  (4.3.34)
P1 foom
with the following boundary conditions
v (0) = v} (L) = v*(0) = v*(L) = v*(0) = v°(L) = 0. (4.3.35)

Inserting v? = iAo' — f1 v* = id® — f3 and v® = i\v® — f° in (4.3.30), (4.3.32) and (4.3.34)
respectively, we obtain

k Ik Ald
At -2 (v +v° +10°) — (W) — ') — iNd(z) (3 —I') = ¢' (4.3.36)
P1 Toom P1
—A\%? — @vir + ﬁ(v; +0* 4+ %) = g% (4.3.37)
P2 P2
1 Ik
— A2 — - [ka(v3 — 1oY) + ird(z) (02 — )] + p—l(v; P+ 1% = ¢, (4.3.38)
1 1

where y
g min 24 S i € LD
1

=N+ f e H(0, 1), (4.3.39)

93 = i)\f5 + f6 + pl_l [d(:r:)(—f;? + lfl)}x S H_l(O’L)'

For all U = (v!,0%,0%)7 € H = (H&(O,L))g, we define the linear operator L : H — H' :=
(H1(0.L))" by:

k lk Ald
~= (v +0° +10°) — =22 — ') — iNd(z) (v> — Ivh)
P1 P1 P1
LU = —@vix + ﬁ(vi + 0% + °) : (4.3.40)
P2 P2
1 Ik
v [ks(v) — ') +iXd(z) (v — Wh)] + p—l(v; + 0% + v°)
1 1

Let us prove that the operator L is an isomorphism. For this aim, take the duality bracket
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(-, Y m of (4.3.40) with W := (p1b!, patp?, p19p3) T € H, we obtain
(LU, U)gr g = (—ky (v +0° + W°) —lks(v) — ') — iMld(x)(v] — '), ")

H=1(0,L),H}(0,L)
3 1 3 5 2
+ <—/€20m + ki (v, + 07 +10”), 9 >H—1(0,L),H3(0,L)

+ <— [kg(?]i — ') +iXd(z) (V2 — lvl)b + ki (v 4 0° + 10°), w3>H—1(O,L),H5(0,L) :

Consequently, we obtain
L o L o
(LU, Uy g = ky / (vi +v* + WP )pldr — lkg/ (V2 — lwh)epldx
0 0
L o L L o
- i)\l/ d(x)(v3 — lwhepldr + kg/ v32dz + Ky / (vh 4+ v* + [W°)p2da
0 0 0

L L L
+ k3 / (V3 — lw")3dx + i)\/ d(z)(v? — lw")p3dr + lky / (v} + v® + WP )p3de,
0 0 0

defines a continuous sesquilinear form which is coercive on H. Indeed, from Remark 4.2.1, we
deduce that there exists a positive constant ¢’ such that

R (LU, Upwr e = Fallvy +0° + 101 + Ko U3 + ksllog — o

> (flogll* + o2l* + llo21?)
2

— (Ul,US,U5)T

H
= [Vl

Therefore, by using Lax-Milgram theorem, we deduce that L is an isomorphism from H onto H'.

Now, let U = (v!,0%0%)" and G = (g}, 4% ¢®)", then system (4.3.36)-(4.3.38) can be
transformed into the following form:

(I - XL HUu=L"G. (4.3.41)

Since I is compact operator from H onto H' and L.=! is an isomorphism from H' onto H, the
operator I —\2L~! is Fredholm of index zero. Then, by Fredholm’s alternative, (4.3.41) admits
a unique solution U € H if and only if I — A\?LL~! is injective. Let V = (v},v3,v%)"T € H such
that

V- XNL'WV=0 <= \V-LV=0 (4.3.42)
Equivalently, we have
— A — kM (vi + V34 1v°) — @(vfc — vt — iNd(z) (V> —Iv') = 0, (4.3.43)
P1 Toom P1

k k
A -2 LWLV VD) = 0, (4.3.44)

P2 P2

1 lk
T o [(ks 4+ iAd(z))vy — L(ks +iAV'] + p—l(v; +ViHEIV) = 0. (4.345)

1 1

It is easy to see that if V = (v!,v? v3)T is a solution of (4.3.43)-(4.3.45), then the vector W
defined by
W = (vi, it v3 idvd Ve iav®) T
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belongs to D(.A) and satisfies
IAW — AW = 0.

Thus, by using Lemma 4.3.1, we obtain W = 0 and consequently I —A\2L~! is injective. Thanks
to Fredholm’s alternative, (4.3.41) admits a unique solution U € H and

vhvd € H*(0,L), [ksvd + d(z)(idvd — f5 —I(idt — f1)], € L*(0, L).

Finally, by setting v? = iAo' — 1, v* = i\® — f3 and v® = iM® — f5, we deduce that
U € D(A) is a unique solution of (4.3.28). The proof is thus complete O

Proof of Theorem 4.3.1. From Lemma 4.3.1, we obtain that the operator A has no
pure imaginary eigenvalues (i.e. 0,(A) NiR = @). Moreover, from Lemma 4.3.1 and Lemma
4.3.2, 1A — A is bijective for all A € R and since A is closed, we conclude with the help of the
closed graph theorem that i\l — A is an isomorphism for all A € R, hence that o(A) NiR = .
Therefore, according to Theorem 1.3.3, we get that the Cy-semigroup (e4); is strongly
stable. The proof is thus complete. ]

4.4 Polynomial Stability

In this section, we will prove the polynomial stability of system (4.1.1)-(4.1.3) with different
rates. The main results of this section are the following theorems.

Theorem 4.4.1. If
ki ko

p1 - p2
then, for all Uy € D(.A), there exists a constant C' > 0 independent of Uy such that

C
E(t) < THUOH%(A), t>0.
Theorem 4.4.2. If
ki, ko
— 7A D
P11 P2
then, for all Uy € D(.A), there exists a constant C' > 0 independent of Uy such that

C
E(t) < NG

Since iR C p(A) (see Section 4.3), according to Theorem 1.3.7, to prove Theorem 4.4.1 and
Theorem 4.4.2, we still need to prove the following condition

1Uollay, > 0.

¢ =2 for Theorem 4.4.1,

¢ =4 for Theorem 4.4.2. (H)

lim sup ﬁ |G — A)~

AER, |A|—o00

Yo < 00 with {

We will prove condition (H) by a contradiction argument. For this purpose, suppose that (H)
is false, then there exists { (A", U™ := (v'",0®" 03" vt o5n 06m) 1)L C R* x D(A) with

A" = ocoasn — oo and ||U"[|y = [[("", 03", 03" ot 05 08 Tl = 1,Vn > 1, (4.4.1)
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such that
()\n)f(z)\nl o A)Un — " — (an, fQ,n’ fS,n’ f4,n7f5,n’f6,n)—|— 50 in Hasn— oo. (442)

For simplicity, we drop the index n. Equivalently, from (4.4.2), we have

it —v? = AT ( )

iAp1v® = ki (v) + 07 + %), — lks (0 — ') = ld(2) (08 — %) = pATf2 (44.4)
it —ot = AT (4.4.5)

iApov* — kovd + ki (vl 0P F10%) = pp AT ( )

i’ —® = AT, ( )

iAo — [ks(v = ') + d(@) (vg — W?)] 4 Uk (v +0° +10°) = p A f0 (44.8)

By inserting (4.4.3) in (4.4.4), (4.4.5) in (4.4.6) and (4.4.7) in (4.4.8), we deduce that

Moot + ky(vh + 07 + 0°), + lks(v2 — ') + 1d(x) (08 — Iv?) = A, (4.4.9)
N pov® + kov? — Ky (vl + 0 + Iv®) = A2, (4.4.10)

2 5 5_ 7,1 6 _ 7,2\] _ 1, ,3 5y _ 13
N1’ + [ks(v) — lo') +d(z) (S — 10*)] = lky(vy +0° + 10°) = b, (4.4.11)

where

W= —p A —ip AT

Here we will check the condition (H) by finding a contradiction with (4.4.1) by showing |U]|,, =
o(1). For clarity, we divide the proof into several Lemmas. From the above system and the
fact that ¢ € {2,4}, ||U||ls = 1 and || F||% = o(1), we remark that

{||v1||=0(|A|1), =0 (A, 1% =0 (A7), vzl =0 (A,
03,1l =0 () and ||[ks(v) — lv") 4 d(z) (v — 1*)] || = O (|A]).

{ Bl = —p N g N R = A ipp A and

(4.4.12)

Also, from Poincaré inequality and the fact that ||F'||3 = o(1), we remark that

LA S fell = o(1), I S 12 =o(1) and [[f2] S [I£2]] = o(1). (4.4.13)

Lemma 4.4.1. If (kl = ];—; and (= 2> (% #+ 2—3 and (= 4). Then, the solution U =

(vt 0%, 03, 01, 05, 09) T € D(A) of (4.4.3)-(4.4.8) satisfies the following estimations

B B
/|vg—lv2}2dx:$, / |vi—lv1‘2dm:%

B B
/|Ug|2d:p:O(1) and / |U§|2dxzo)f21).

Proof. First, taking the inner product of (4.4.2) with U in ‘H and using (4.2.6), we get

(4.4.14)

L B
d 6 _1021*d :d/ 6 102 dr = —R(AU,U),, = \“R(F,U
[ et = e =y [ e = RO =X REOY,

< ANE Ul
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Thus, from (4.4.15) and the fact that | F'||3; = o(1) and ||U||3; = 1, we obtain the first estimation
n (4.4.14). Deriving (4.4.7) with respect to = and multiply (4.4.3) by [, then subtract the
resulting equations, we deduce that

iNvg = Io') = (vg = W?) = X (f7 = 1f).

From the above equation, we obtain

5 112 6 22 5 112
/ |vx—lv‘dxgﬁ/ |vx—lv‘dx+)\2e+2/ |fx—lf‘dx
2 (P16 4 s AP
Sﬁ/a ”Um—l’l}| dx+)\2@+2||fx|| +>\2@+2”f || :

From (4.4.16), the first estimation in (4.4.14) and the fact that ¢ € {2,4}, ||f!|| = o(1) (see
(4.4.13)), || f2]] = o(1), we get the second estimation in (4.4.14). Now, it is easy to see that

B B B B
/ |08 |2da = / 08 — 1v* + W?Pde < 2/ [0S — 1v?)?dx + 212/ |v?|?dx.

From the above estimation, the first estimation in (4.4.14) and the fact that v? is uniformly
bounded in L*(0, L), we get the third estimation in (4.4.14). From (4.4.7), we deduce that

[ s [ gty [l e

Finally, from the above estimation, the third estimation in (4.4.14) and the fact that
Ilf3]] = o(1), we obtain the fourth estimation in (4.4.14). The proof is thus complete. O

(4.4.16)

Forall 0 < e < , we fix the following cut-off functions
o f; € C?*([0,L]),j €{1,---,5} such that 0 < f;(z) <1, for all z € [0, L] and

[ 1if zefa+je, B - el
fj(x)_{o if xe[07044-(3'—1)€]U[ﬁ+<1_j)€>L]'

e q1,q2 € C' ([0, L]) such that 0 < qi(z) <1, 0<qgq(z) <1, for all z € [0, L] and

1 if  ze[0,m],
0 if ZEE[’}/Q,L],

0 if =xze [0,’}/1],

qi(x) = 1 if  z €[y,

and  qa(z) = {

with0<a<y <yp<p<L.

Lemma 4.4.2. If (kl = ';—; and (= 2> or (% # % and (= 4). Then, the solution U =

(vt 0%, 03, 01, 05, v8) T € D(A) of (4.4.3)-(4.4.8) satisfies the following estimations

B—e B—e
/ 052dz = o(1) and / A2z = o(1). (4.4.17)

+e a+e
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Proof First, multiplying (4.4.8) by —iA~'f;06 and integrating over (o, ), then using the fact
that v° is unlformly bounded in L*(0, L) and || f¢|| = o(1), we obtain

B ; —
p1 / f1[0%2de = _X/ fi [ks(v) — ') + d(z)(vg — )] vSdx

1k 1
4 ia o(1).

B
1, .3
;) fi (v} + 0% 4 WP bde + e

«

using the fact that (vl + v® + [v°), v® are uniformly bounded in L?(0, L), we get

1 L —
~ f1 (v, +v° + w°)vbde = o(1),

[0}

consequently, as ¢ € {2,4}, we obtain

8 - -
” / fio*Pde = / 6y [ka(0? — 10") + d(2) (08 — 1v?)] PBde +o(1). (4.4.18)

s

'

=1

Using integration by parts and the fact that f;(«) = f1(8) = 0, then using the definition of
d(x), we get

G o ;B —
I, = %/ fi [ks(v) — ') + do(vS — 10?)] vida + %/ fl [ks(v) — ') + do(vS — w?)] v5da,
using Lemma 4.4.1 and the fact that v® is uniformly bounded in L?*(0, L), ¢ € {2,4}, we get

_ o1
I, = pE (4.4.19)

Inserting (4.4.19) in (4.4.18) and using the fact that ¢ € {2,4}, we obtain

B
,01/ fi[v®2dz = o(1).

From the above estimation and the definition of f;, we obtain the first estimation in (4.4.17).
Next, from (4.4.7), we deduce that

B—e B—e B—e
/ w2 < 2 / W82 + 20 / £ 2da.
ate ate ate

Finally, from the above inequality, the first estimation in (4.4.17) and the fact that || f5|| = o(1),
¢ € {2,4}, we obtain the second estimation in (4.4.17). The proof is thus complete. O

Lemma 4.4.3. If (’f— =k and (= 2) or (’;— 4% and (= 4). Then, the solution U =
(vt 0%, 03, 01, 05, v8) T € D(A) of (4.4.3)-(4.4.8) satisfies the following estimations

B—2¢e B—2¢e
/ |v;|2 dr =o0(1) and / ‘)\vl‘Q dr = o(1). (4.4.20)

+2¢ a+2e
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Proof. First, multiplying (4.4.8) by povl, integrating over (a + ¢, 3 — ), using the fact that
v}l is uniformly bounded in L?(0, L) and || f%|| = o(1), we get

+e a+te

B—e o B—e o
iApy / fovbolde +/ —f5 [ks(v) — ") + d(z) (vS — lvz)]x vidx

J . s

vV vV
=1y =I3

B—e B—e .

+ Uk / fy ‘v;f dx + Uk / fo(v® + [0 vlde = o(A79),
oa+te€ a+e

using the fact that v} is uniformly bounded in L?(0, L), |[v3| = O(|A]7Y), [|v®°]| = O(JA|™Y) (see

(4.4.12)), we get

B—e o
Ik, / fo(v® + l°)vlde = o(1),

+e
consequently, as £ € {2,4}, we obtain

B—e
Ik, / fo [0} dz + Io + I3 = o(1). (4.4.21)
a+e

Now, using integration by parts and the definition of f, then using Lemma 4.4.2 and the fact
that ||v']] = O(J]A|™1), we get

p—e _ B—e _ p—e _

I, = —z')\pl/ fovSoldr — i)\pl/ fovvlde = —z')\pl/ fovbolde +o(1).  (4.4.22)
a+e a-+e a-+e

Now, it is easy to see that

B—e _ B—e _
—z')\p1/ fovSuldr = —z’)\pl/ fo(vS — l0* + Ww*)vlde
a+te a+te

B—e o B—e o
= —i/\pl/ fo(v® — lv?)vldr — i)\pll/ fov?olde,

+e a+e
using Lemma 4.4.1 and the fact that |[v}]| = O(|A|7), we get
Be Be )
—i)\p1/ fovSuldr = —i/\pll/ fov?vldz + o(|A|"2).
a+te a+te
Inserting v? = idv' — A7“f! in the above equation, we get
Be B ge )
—iAp1 / fovSulde = Ip; / fo| Nl |2da + A" p, / fofloldz + o(|\|72),
a+e a+te ate
using the fact that ||[o']] = O(|A|7') and ||f!]] = o(1), € € {2,4}, we get
B—e o B—e ,
- i)\pl/ fovbolde = Ip; / fo| \wh|2da + o(|A|72). (4.4.23)
ate ate
Inserting (4.4.23) in (4.4.22) and using the fact that ¢ € {2,4}, we get
B—e
Iy = Ipy / b2z + o(1). (4.4.24)

+e
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Next, using integration by parts and the definition of fy, we get

B—e o
I3 = / f [ks(v) — o) + do(v8 — l0?)] vida

+e

. (4.4.25)
+ / fy [ks(v) — ') + do(v — 10*)] vk, da,
a+te
using Lemma 4.4.1 and the fact that v} is uniformly bounded in L*(0, L), |[vl || = O(JA]) (see
(4.4.12)), £ € {2,4}, we get
I3 = o(|A] 2. (4.4.26)
Inserting (4.4.24) and (4.4.26) in (4.4.21) and using the fact that ¢ € {2,4}, we get
B—e 9 B—e
uﬁ/ fa |vg|” do + lpl/ fo| \wt|?dx = o(1). (4.4.27)
a+te a+te

Finally, from the above estimation and the definition of fy, we obtain (4.4.20). The proof is
thus complete. O

Lemma 4.4.4. If kl = ’;—z and ¢ = 2. Then, the solution U = (v}, v% v3,v*,0°,0%) " € D(A)
of (4.4.3)-(4.4.8) satlsﬁes the following estimations

B—3e 9 B—4e 9
/ 03" dz = o(1) and / |\ dz = o(1). (4.4.28)

+3e a+4e

Proof. First, take £ = 2 in (4.4.9) and multiply it by p; 'fsv3, integrating over (a -+ 2¢, 8 — 2¢),
using the definition of d(z) and fact that v2 is uniformly bounded in L*(0, L), ||f!|| = o(1),
| /2]l = o(1), we obtain

k 5725 ﬁ*QS - k 18—25
= fs |vi|2 dx = —)\2/ fyvlvdde — — favl v3da
P1 Ja+2e a+2e P1 Ja+2e
ey (P72 ok [0 —
- fav2v3de — —3/ fy(v? — lv')v3dx (4.4.29)
P1 Jat2e P1 Ja+2e
ldy [P7%

fs(vS — lv?)wdde + o(|A| 7).

P1 Jat2e

Using Lemma 4.4.1 with ¢ = 2, the definition of f3 and the fact that v2 is uniformly bounded
in L?(0, L), we get

B—2¢ o p-2e —
_&/ fsvPv3dr = o(1), ks fs(vy — lv')vide = o(A7%) and

P1 +2e P1 Ja+2e (4 4 30)
iy [P — h
——0/ (08 — 102)03da = of A7),
P1 Ja+toe
Inserting (4.4.30) in (4.4.29), we get
k B—2¢ B—2¢ k B—2e
-1 f3 ‘03}2 de = —)\2/ faolvdde — — fyvl vddx 4 o(1). (4.4.31)
P1 Jat2e a+2e P1 Ja+2e
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Now, taking ¢ = 2 in (4.4.10), we deduce that
A2p903 + kovd, — ki (V1 + 03 4+ [05) = —po A2 fL 4 ip AL f3 (4.4.32)
Multiplying (4.4.32) by p,'fsv!, integrating over (o + 2¢, 3 — 2¢), we obtain

B—2¢ o ]{32 B—2¢ o kl B—2¢ . o
)\2/ fyvivdde + — fyvivd dr — — faus (vl + 03 + 105)dx = o(|A| 7). (4.4.33)

x Yz
+2¢ P2 Ja+toe P2 Ja+toe

Using integration by parts to the first two terms in the above equation, we get

B—2¢e o kf2 B—2¢ _ P2 —
_)\2/ fav'vdde — —/ fav,,v3de = )\2/ fyvtvda

+2e P2 Ja+2e e +2¢ (4 4 34)
]{72 B—2¢ o kl B—2¢ _ o o
+ = fivtvddr + — favl (vl + v3 4+ wd)dz + o(|A\|71).
P2 Ja+t2e P2 Ja+2e

Using Lemma 4.4.3 and the fact that v3, (v] +v® +1v°) are uniformly bounded in L*(0, L) and
[0°[] = O(AITY), we get

B—2¢ o ]{32 B—2¢ o
)\2/ fivlvddr = o(1), —/ fivivddr = o(1) and

a+2e P2 Ja+2e
(4.4.35)

kl B—2¢

favl (vl 4 3 + [v5)dx = o(1).
P2 Ja+2e

k k
Inserting (4.4.35) in (4.4.34), then using the fact that — = — we get
P2 P

B—2¢ o kl B—2e o
—)\2/ fav'vdde — — faul v3de = o(1).

zxVx
+2e P1 Ja+2e

Inserting the above estimation in (4.4.31), then using the definition of f3, we obtain the first
estimation in (4.4.28). Next, multiplying (4.4.32) by f,;v3, integrating over (a+3e, 5—3¢), using
integration by parts and the definition of f; and the fact that |[v3|| = O(|A|7Y), || f3]] = o(1)
and || f4|| = o(1), we get

B—3e 9 B—3¢ p=3
p2/ fy | M| da = /{;2/ fulv2|2d + /{:2/ flvdvidr

+3e a+3e a+3e

B—3e _ o
+k / fy(vl + 03 + WP vPdx + o(A72).
a+3e

From the above estimation, the first estimation in (4.4.28) and the fact that (v} + v® + [v%) is
uniformly bounded in L?(0, L) and [|v3|| = O(|A\|7!), we obtain

B—3e 9
,02/ fy |[M®|" da = o(1).
a+3e

Finally, from the above estimation and the definition of f,, we obtain the second estimation
desired. The proof is thus complete. O
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Lemma 4.4.5. If % £ ';—; and ¢ = 4. Then, the solution U = (v}, v% v3,v*0°,0%) T € D(A)
of (4.4.3)-(4.4.8) satisfies the following estimation

B—3e
/ Mt Pdz = o(A7?). (4.4.36)

+3e

Proof. For clarity, we divide the proof into five steps:
Step 1: In this step, we will prove that:

B—2¢ 9 B—2¢ 9 B—2e o
lpl/ f3 [ Ao!| dx—lkl/ 3 |v, ] dz-é}e{uﬁ/ fgvsv;da:}

+2e a—+2e +2¢

B—2¢e o
—R {l2k31/ f3v5v;dx} =o(A7?).
a+2e

For this aim, take ¢ = 4 in (4.4.9) and multiply it by Ifsv!, integrating over (a + 2¢, 8 — 2¢),
using the fact that |[vt| = O(JA|™Y), ||fY| = o(1) and || f?|| = o(1), then taking the real part,
we get

B—2¢ B—2e o
I / fy [t [* da + R {Hﬁ / fa(v, +0° + ZU5)xU1d$}
a+2¢e a+2¢e

(4.4.37)

-~

=1y (4438)
B—2e o B—2e o
+ R {Zng/ fy(v> — lvl)vldx} + R {lzdo/ fy(v8 — lv2)vldx} =o(A™?).
a+2e a+2e
Using integration by parts and the definition of f3, we obtain

B—2e o
I,=-R {lkl / fi (v, +0° + lv5)v1d3:}
a+2e

B—2¢e o
- {lkl / fa(vr +v* + lv5)v§:d$}

+2e

B—2¢ B—2¢
_ G (o) do—w {uﬁ / fgvmda;} (4.4.39)

2 a+2e +2¢e

—RI12k o flodvtde S — 1k Hgf L2
1 30U ax 1 3 ‘UI‘ dx
a+2e a+2e

B—2¢e o B—2¢e o
—R {lkl/ fgv?’v}cdfp} - R {Zle/ fgv5v}cd:p} )
a+2¢e a+2e

Using integration by parts and the fact that f}(a + 2¢) = f{(8 — 2¢) = 0, then using Lemma
4.4.3, we obtain

lkl e / 112 lkl e .12 -2
- — f dr = — f dx = o(A\7*). 4.4.40
2 a+2e ’ <‘v ‘ )$ ! 2 a+2e ’ |,U | v 0( ) ( )

Using the definition of f3, Lemmas 4.4.1, 4.4.3 with ¢ = 4 and the fact that [[v3| = O(|]A|™!),
[v°]| = O(JA|™1), we obtain

B—2¢ . B—2¢ o
- R {lk:l/ févgvlda:} =o(A\7?), —R {Zle/ f§v5v1dx} =o(\7?). (4.4.41)

+2¢ +2e
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Inserting (4.4.40) and (4.4.41) in (4.4.39), we obtain

B—2¢ 9 B—2¢ o B—2¢ o
Iy = —lk / fy |va|” do — R {lkl / fgv%;dg;} — R {Fkl / f3v5v}cdx}
a+2e a+2¢e a+2e (4442)

+o(172).

Moreover, from Lemmas 4.4.1, 4.4.3 and the fact that ¢ = 4, we obtain

B—2¢ .
R {l2k3/ fy(v? — lvl)vld:v} =o(A7%),

+2e

o (4.4.43)
éR{FdO/ fy(vS — M)Fd;c} = o(|A\|73).
a+2e

Inserting (4.4.42) and (4.4.43) in (4.4.38), we obtain (4.4.37).
Step 2: In this step, we will prove that:

B—2e 9 B—2¢ o

2lp1/ f3 ’Avl‘ dr =R {Mpl/ févﬁvldm}
a+2e a+2e (4444)

B—2e o
—R {do/ fy(v8 — lvz)v}mdx} +o(A7?).

+2e

For this aim, multiplying (4.4.8) by fsvl, integrating over (a + 2¢, 3 — 2¢), using the fact that

v}l is uniformly bounded in L?*(0, L) and ||f®|| = o(1), then taking the real part, we get

x

B—2¢e o B—2¢e o
R {i)\pl / fgv%;dﬂc} +R {— / fs [ks(v) — l0') + d(z) () — 1v?)] ’U}Cdx}

+2e +2e 3
:;Egg Z;EG
B—2¢e B—2¢ o B—2¢ o (4445)
+ Uky / fy|vl[?de + R {lkl / fgv%;da:} + R {l2k1 / fgv%;da:}
o+2e a+2e a+2¢e
= o(A7?).
Adding (4.4.37) and (4.4.45), we obtain
B—2¢ 9
Ip1 / fs |[Mo'|"dz + I5 + Ig = o(A7?). (4.4.46)
a+2¢e

Using integration by parts and the fact that f3(a + 2¢) = f3(8 — 2¢) = 0, we obtain

B—2¢e o B—2¢ o

I, =R {i)\pl/ fgvgvld:v} - R {z’)\pl/ f:’,,vG”uldm} . (4.4.47)
a+2¢e a+2¢e

Now, it is easy to see that

B—2e o B—2e o
R {—z’)\pl/ fgvgvldx} =R {—z’/\pl/ fy(v® — lv? + lvz)vldx}

+2¢ +2e

B—2¢ o [B—2¢ o
=R {—i/\pl/ fy (v — ZUQ)vldx} - R {i/\pll/ fgv2vldx} ,
a+2e a+2¢e
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using Lemma 4.4.1 and the fact that |[v}]] = O(|A|7), we get

B—2¢ o B—2e o
R {—z’)\pl/ fgvgvldx} =R {—z’)\pll/ f3'02v1dx} +o(A7?).
a+2e a+2e

Inserting v? = iAv! — A™* f! in the above estimation, then using the fact that ||v!|| = O(|]A\|™!)
and || f!]| = o(1), we get

B—2¢e o B—2¢e
R {—i)\pl / fgvgvld:ﬂ} =Im / fa| Ao [2dx + o(A7?),
a+2e a+2e
Inserting the above estimation in (4.4.47), we obtain
B—2e B—2¢ o
I5 = l,ol/ f|\v'|2dr — R {i)\pl / févﬁvldx} + o(A7?). (4.4.48)
a+2e a+2e

Now, Using integration by parts and the fact that f3(a + 2¢) = f3(8 — 2¢) = 0, then using the
definition of d(z), we obtain

I, — R { /a e (k0% — Ih) + d(2) (08 — 102)] @dl«}

+2e

+ R { /a o f [ks(v) — ') + d(z) (v — 0?)] @d:ﬂ}

+2e

B—2e o B—2¢ o
=R {kg/ fi(v> — lvl)v;d:ﬁ} — R {do/ fa(vl — 1’02)’0916d$}
a+2e a+2e

B—2¢ o B—2e o
+R {kg/ fy(v? — lvl)v;md:v} +R {do/ fy(v8 — lvz)viwd$} :

+2¢ +2e

consequently, by using Lemma 4.4.1 with £ = 4 and the fact that v is uniformly bounded in
L*(0,L), |lvge|l = O(A]), we get

B—2e o
Is =N {do/ fy(v8 — ZUQ)U}de} + o(A7?). (4.4.49)

+2e

Thus, by inserting (4.4.48) and (4.4.49) in (4.4.46), we obtain (4.4.44).

Step 3: In this step, we will prove that:
B—2¢ .
R {z’)\pl/ fgv%ld:c} =o(A7?). (4.4.50)
a+2¢e

For this aim, take £ = 4 in (4.4.8) and multiply it by fiul, integrating over (a + 2¢, f — 2¢),
using the fact that [|[ol]] = O(|A|™), || f%]] = o(1), then taking the real part, we get

B—2¢ o B—2e _
R {i/\pl / fév%ldx} + R {—/ fy [ks(v — lo') + d(z) () — 10?)] vldx}

+2e +2e

-~

e (4.4.51)

lkl B—2e B—2¢e

o ('P) de + R {uﬁ/
2 a+2¢ v a

fi(v® + lv%ﬁdm} =o(|\7?),

+2e
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using (4.4.40), Lemma 4.4.3 and the fact that ||v3| = O(|A|7), [|v®°]| = O(JA|™!), we obtain

B—2¢
% f; <‘vl‘2>xd:v =o(A"%) and %{lkl/a

a+2¢e

B—2¢ .
fi(v® + lv5)vldm} =o(\7?).

+2e

=

Consequently, (4.4.51) implies

B—2¢e o
i {i)\pl / févﬁfuldx} +I; = o(A7?). (4.4.52)
a+2e

Using integration by parts and the fact that fi(a + 2¢) = f4(8 — 2¢) = 0, then using Lemma
4.4.1 and the fact that v! is uniformly bounded in L?*(0, L), |[v!]| = O(JA|™!), we obtain

I, =R { /a o £ [ks(v2 — o) + d(2) (08 — 1v?)] Fdx}

+2e

B—2¢ .
+ R {/ f [ks(v) — o) + d(z) (v — ?)] vidaz}
a+2e
= o(A7?).
Therefore, from the above estimation and (4.4.52), we obtain (4.4.50).

Step 4: In this step, we will prove that:

pr2e — dop1 ooz —
R {do/ fy(v8 — lvz)viwdx} = —9‘%{ /\2/ fa(v8 — lv2)vld93} +0o(A7?). (4.4.53)

+2¢ kl +2¢

de  —
For this aim, take ¢ = 4 in (4.4.9) and multiply it by k—ofg(vg — [v?), integrating over (a +
1

2¢, 3 — 2¢) and taking the real part, then using Lemmas 4.4.1 and the fact that ||f!|| = o(1),
/2]l = o(1), we get

( d B—2e o B—2¢ o
i)?{ Opl)\Q/ fv! (08 — [v2) x} —|—§R{do/ fyvl, (V6 — (2 )da:}
kl a+2e a+2e
B—2¢ B—2e
+§R{d0/ fyv? ( va)dx} +§R{dol/ fav® ( — [v? )dx}
a—+2e a+2e

B—2¢e 2 B—2e
+§R{d0lk3 / fy(v5 — w')(v8 lv2)dx} ldy / fy|v8 — [v?|*dx
kl a+2e kl a-+2e
= o(]AI %),

consequently, by using Lemma 4.4.1 and the fact that v is uniformly bounded in L?*(0, L), we

get
B—2e o o dOpl B—2e
R {do/ fyvl, (v — va)dx} = —§R{ / fav! (V8 — 102 )dx} +o(A7?).
a-+2e kl a-+2e

Thus, from the above estimation, we obtain (4.4.53).

Step 5: In this step, we conclude the proof of (4.4.36). For this aim, inserting (4.4.50) and
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(4.4.53) in (4.4.44), then using Young’s inequality, Lemma 4.4.1 and the fact that ¢ = 4, we
get

e dopl frze —
Qm{/ gpw\d._%{kj u/ gwg—w%wm}+o@4)
(0% 1 6%

+2¢ +2¢

d B—2¢
< 0p1A2u/° o8 — 1?{[v!|dz + o(A~2)
kl a+2¢e

::AHE(m“r]ﬂ¢av-4w0(v@ﬂﬂ¢ﬁw)dx+o 2)

v

B—2e B—2e
< [2)}4;(;?/\2/ f3|vd — (0[P da +%/ fy[ Av'[*dz + o(A7%),

+2¢ +2e
—o(32)

consequently, we obtain

lpy [P

P f3 ‘)\01‘2 dr = o(\7?).

2 a+2e

Finally, from the above estimation and the definition of f3, we obtain (4.4.36). The proof is
thus complete. [l

Lemma 4.4.6. If 2 # 2 and ( = 4. Then, the solution U = (v',v? 0% v*,0%,0%) " € D(A)
of system (4.4.3)- (4 A, 8) satisfies the following estimations

B—4e B—5e
/ |vg‘3|2 dxr =o(1) and / ‘)\03‘2 dr = o(1). (4.4.54)
a+4e a+5e

Proof. First, take £ = 4 in (4.4.9) and multiply it by k; 'f,;v3, integrating over (a+ 3¢, 8 — 3¢),
using the definition of d(z) and the fact that v2 is uniformly bounded in L(0, L), || f!|| = o(1),
|| /2]l = o(1), then taking the real part, we obtain

)\2P1 B—3e o B—3e B—3e B—3e .
R { ’ / fyotvddr + / fool vdde + / fulv2|2dr + l/ fuvdvdde
1 o « «

+3e +3e +3e a+3¢
Ik B—3e ld B—3e o
= fy(03 — ") o3de 4+ — fy (v — va)vgda:} =o(|A\|?),
kl a+3e kl a+3e

consequently, from Lemmas 4.4.1, 4.4.5 with £ = 4 and the fact that v3 is uniformly bounded
in L?(0, L), we obtain

B—3e B—3¢
R {/ f4vmvgdx} / fuv3)?dr = o(1). (4.4.55)
a+3e a+3e

Now, take ¢ = 4 in (4.4.10) and multiply it by k; 'fyol, integrating over (a + 3¢, 8 — 3¢) and
integrating by parts, using the fact that v} is unlformly bounded in L?(0, L) and || f3|| = o(1),
| /4] = o(1), then taking the real part, we obtain

)\2 B—3¢ o )\2 B—3e o B—3e
%{— '02/ fuudvlde — ﬁ/ fivdvlde —/ fodvl du

k2 +3e 2 +3e +3e

B—3e kl B—3e o
— / flodvlde — / fo(vl + 0%+ lv5)vidx} = o(|\|73),

+3e k +3e
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consequently, from Lemmas 4.4.3, 4.4.5 with ¢ = 4 and the fact that v3, (vl 4+ v® + [v°) are
uniformly bounded in L?(0, L) and |[v®|| = O(|A|™"), we obtain

B—3e o
R {—/ fwiv}mdx} =o(1). (4.4.56)

+3e

Adding (4.4.55) and (4.4.56), then using the definition of f;, we obtain the first estimation in
(4.4.54). Next, take £ =4 in (4.4.10) and multiply it by f5v3, integrating over (a + 4e, f — 4e)
and integrating by parts, then using the fact that ||[v3|| = O(|A|™Y), || £3]| = o(1), || f4| = o(1),

we obtain
[B—4e [B—4e [B—4e o
pg/ fs| \0?|*dx = k’g/ fs[v3|?dx + k2/ frvdvdda

+4e a+4e a+4e

B—4e .
+ k1 / fs (vl + v® 4+ 10 vdde 4+ o(A 7).
a+4e

From the above estimation, the first estimation in (4.4.54) and the fact that (vl + v® + [v9) is
uniformly bounded in L?(0, L) and [|v*|| = O(|A\|™!), we obtain

B—4e
pg/ fs|\v?|*dx = o(1).
a+4e

Finally, from the above estimation and the definition of f;, we obtain the second estimation in
(4.4.54). The proof is thus complete. O

Lemma 4.4.7. Let h € C'([0, L]) such that h(0) = h(L) = 0. If (’;—1 =2 and (= 2) or

<% + % and (= 4), then the solution U = (v}, v? v? 0%, 0%, 0%) " € D(A) of system (4.4.3)-

(4.4.8) satisfies the following estimation
L
[0 (o 0P 25 P o4
0
+ k3 ksl 4 d(z) (vS — lv2)}2> dx = o(1).

Proof. First, multiplying (4.4.9) by 2hvl, integrating over (0, L), taking the real part, then

x?

using Lemma 4.4.1, the fact that v} is uniformly bounded in L*(0, L), |[v']| = O(|A| ™), |IF!]] =
o(1) and || f2|| = o(1), we obtain

L
[0 (bt odf) o fon [
0 @ 0
L L
—1—8‘8{21(1614—/{3)/ hviv}cdx} —§R{2lzk3/ hvlv}cda:}
0 0

=0 (4.4.57)

L

hvlvlda }

p —
+ §R{2ldg/ h(vS — ZUQ)U}Cda:} = o(|\[7Fh).

(.

~~

:o(wé)
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Now, multiplying (4.4.10) by 2hv3, integrating over (0, L), taking the real part, then using the
fact that v2 is uniformly bounded in L?(0, L), [|v*]] = O(JA|™Y), [[v°]| = O(A™Y), [If3]] = o(1)
and || f4|| = o(1), we obtain

L L
/ h <|p2)\v3|2 + ko ‘02}2> dx — R {le / hvivgd:ﬂ}
0 & 0

L
_%{2/{1/ h(v3+l215)v_§dl‘} = o(|AI"™).
0

=o(1)

(4.4.58)

Let S := ksv5 +d(z)(v® — [v?), from Lemma 4.4.1, the definition of d(z) and the fact that v3 is
uniformly bounded in L?*(0, L), we get S is uniformly bounded in L*(0, L). Now, multiplying
(4.4.11) by 2k3'hS, integrating over (0, L), taking the real part, then using the fact that
1% = O(IAITY), [[0°[l = O(IAITY), [[£°]] = o(1) and [|f°[] = o(1), we obtain

2 L L L
3?{2/\ P1 / hv5§daj} + k;31/ h (|S|2) de — R {M/ hv}cgda:}
/{?3 0 0 x ]{?3 0
L L
—%{%/ h(v® + lv5)§dx} =R {2k3‘1/ h (=i A f0 —iX " pf?) §dx} : (4.4.59)
0 0

ks

-~ -~

:0(1) :O(|>\‘72+1>

Moreover, from the definition of S and d(z), Lemma 4.4.1 and the fact that v} is uniformly

bounded in L*(0, L), ||v°]| = O(J]A|™!), we obtain

(
9 9 L B L 2 2 d B _ _
?R{ )"01/ hv5de}=)\2p1/ h(|v5}2> d:v+§R{ A 0/ hv5(vg—lv2)d$}7
ks Jo 0 * N F 2

-~

:o(\)\|_%+1)

I L
3 0 0

: g
—R {M/ hvl(v6 — lvz)dx} .
3 e

N J/
-~

| ()

Inserting the above estimations in (4.4.59) and using the fact that ¢ € {2,4}, we obtain

L L
/ h (pl ‘)\USF + k3! ]S|2> de — R {2l(k1 + k3) / hviv_gda:} =o(1). (4.4.60)

0 @ 0
Adding (4.4.57), (4.4.58), (4.4.60) and using the fact that ¢ € {2,4}, then using integration by
parts, we obtain (4.4.7). The proof is thus complete. O

Lemma 4.4.8. The solution U = (v!,v* 03 01, 0%,0%) " € D(A) of system (4.4.3)-(4.4.8)
satisfies the following estimations

ki k
Jo+4e,8—4e) = 0(1) if p—l = p—2 and (=2, (4.4.61)
1 2
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J(a+ 5e, B — 5e) = o(1) if ? # ks and (=4, (4.4.62)
1 P2

where

% (07
Jon, ) ::/ (o PP 4 [ o NP e o+ i AP dx+k3/ o3P dz
0 0

L L
—|—/ <p1‘)\vl}2+k1‘vif—l—pﬂ)\v?’f—kkg‘U2‘2+p1|/\v5|2) dx—i—/{:g/ |02 |2 d,
B

Y2
foral 0 <a<y <y <pB<L.

Proof. First, take h = zq; + (z — L)qs in (4.4.7), then using the definition of d(x) and the
fact that 0 < a < vy < 7 < 8 < L, we obtain

mn 2 2 2 2 @
/ <p1‘)\v1} —|—k1‘v;‘ —|—p2{/\v3’ —|—k32|v2’ —|—,01|)\v5|2> dm—f—kg/ |vg5c|2da:
0 0
L 2 2 2 L
+/ (oo [0 o2 |07 4 R o 4 o) dx+k3/ o8 2da
V2 B

” 2 2 2 2 2
——/ (a1 + 2q)) <P1|/\Ul| + Ky [oa]” 4 p2 [ AP+ ka [02]7 + 1 | M

71

ok so? + do(0® — 1v?) 12) dz

2 2 2 2 2 2
_/ (2 + (2 = L)) (1 [A0' "+ ke |02 o |07 k[0 4y 1o
s

k! |hsv? + do (v — 10?) \2) dz

1

Y2 B
—l—k;l / a1 |ksv> + do (V8 — 10?) [P dx + k;l / Ao k30> + do(v8 — 1v?) |2 dz.
« Y

Now, take 71 = a 4 4e and 9 = 8 — 4e in the above equation, then using Lemmas 4.4.1-4.4.4
in case of % = % and ¢ = 2, we obtain (4.4.61). Finally, take 71 = o+ 5e and v, = § — be

in the above equation, then using Lemmas 4.4.1-4.4.3, 4.4.6 in case of % #+ % and { = 4, we
obtain (4.4.62). The proof is thus complete. g

Proof of Theorem 4.4.1. First, from Lemmas 4.4.1-4.4.4 and the fact that ¢ = 2,
we obtain

B B—¢ B—2e
/ |05 2dz = O(A72) = o(1), / [v5)2dz = o(1), / vl [2dz = o(1)
i o atee (4.4.63)

B—2¢e B—3e B—4e
/ |\t 2dz = o(1), / |v3|?dx = o(1) and / M 2dz = o(1).

+2e a+3¢ +4e

Now, from (4.4.61), (4.4.63) and the fact that 0 < e < ﬁl;oa’ we deduce that ||Ul|y = o(1),
which contradicts (H). This implies that

1
lim sup [GAT — A) 3 < oo

N2
AER, [A|—so0 A
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Finally, according to Theorem 1.3.7, we obtain the desired result. The proof is thus com-
plete. ]

Proof of Theorem 4.4.2. First, from Lemmas 4.4.1, 4.4.2, 4.4.3, 4.4.6 and the fact
that ¢ = 4, we obtain

B B—e B—2e
[ ipde =00t o, [Pz =on), [ pdfds = oh7?
« a+e a

+2e

g2 bode o (4.4.64)
/ |\ 2dz = o(1), / |v3|?dx = o(1) and / |IM?2dz = o(1).
a+2e a+4e a-+be
8-«

Now, from (4.4.62), (4.4.64) and the fact that 0 < ¢ < —g o Ve deduce that ||U||y = o(1),
which contradicts (H). This implies that

: L. -
lim sup F“(Z/\] — A) 7y < o0
AER, |A|—=o0

Finally, according to Theorem 1.3.7, we obtain the desired result. The proof is thus complete.
g

4.5 Conclusion

We have studied the stabilization of a Bresse system with one discontinuous local internal vis-
coelastic damping of Kelvin-Voigt type acting on the axial force under fully Dirichlet boundary
conditions. We proved the strong stability of the system by using Arendt-Batty criteria. We
proved that the energy of our system decays polynomially with the rates:

TR
P1 pa’
73 if ﬁ%@
pr - P2
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Chapter 5

Stability and instability results of the
Kirchhoff plate equation with delay
terms on the boundary or dynamical
boundary controls

In this chapter, we consider two models of the Kirchhoff plate equation, the first one with
delay terms on the dynamical boundary controls (see system (5.1.1) below), and the second
one where delay terms on the boundary control are added (see system (5.1.2) below). For
the first system, we prove its well-posedness, strong stability, non-exponential stability, and
polynomial stability under a multiplier geometric control condition. For the second one, we
prove its well-posedness, strong stability, and exponential stability under the same multiplier
geometric control condition. Finally, we give some instability examples of system (5.1.2) for
some choices of delays.

5.1 Introduction

Let © C R? be a bounded open set with boundary I" of class C* consisting of a clamped part
I'y # 0 and a rimmed part T'y # @ such that Ty N T; = 0. In the first part of this chapter, we
study the stability of a Kirchhoff plate equation with delay terms on the dynamical boundary
controls, namely we consider

( ug(z,t) + Au(z,t) =0 in Q x (0,00),
u(z,t) = dyu(z,t) =0 on Iy x (0,00),
Biu(z,t) +n(xz,t) =0 on Iy x (0,00),
Bou(z,t) — &(z,t) =0 on I'y x (0, 00),

n(x,t) — Oyue(x, t) + Pin(x, t) + Bon(z,t — 1) =0 on I'y x (0,00), (5.11)
(x,t) —ug(x,t) + é&(x, t) + &(z,t —m) =0 on I'y x (0,00),
w(z,0) = ug(x), w(z,0)=wu(x) in Q,
n(x,0) =mno(x), &(x,0)=E&(x) on I',
n(x,t) = fo(x,t) on I'i x (=7,0),
[ &(x,t) = go(z,t) on T’y X (—72,0).
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In the second part of this chapter, we study the stability of the Kirchhoff plate equation with
delay terms on the boundary controls, by considering:

( ug(z,t) + Au(z,t) =0 in Q x (0,00),
u(z,t) = dyu(z,t) =0 on Iy x (0,00),
Biu(z,t) = —f10,ui(x,t) — fa0,ug(x,t — 1) on T’y x (0, 00),
Bou(zx,t) = yyuy(x, t) + you(z,t — ) on I'y x (0,00), (5.1.2)
u(z,0) = ug(x), u(z,0) =wu(z) in €Q,
u(@,t) = fo(z,t) on I't x (=71,0),
L Dyu(x,t) = go(x,t) on T’y x (—79,0).

Here and below, 31, 71, 71 and 73 are positive real numbers, S5 and 7, are non-zero real numbers,
v = (v1,1v) is the unit outward normal vector along I', and 7 = (—us,14) is the unit tangent
vector along I". The constant 0 < p < % is the Poisson coefficient and the boundary operators
B and B, are defined by

Bif = Af + (1 — p)Cqif

and

Bof = 0, Af + (1 — p)0-Caf,
where

2 2 2 2
Cif = 2V1V2fm1ﬂc2 - Vlfwzm - szxlm and Cof = (Vl - V2)f271$2 — ln (fmlml - f$2$2> :

Moreover, easy computations show that

le = —872_1: — 8Tugfx1 + 871/11‘12 and Cgf = 3,,Tf — 3Tylfml — 87—1/2{:12. (513)

In 1993, Rao in [95] studied the stabilization of the Kirchhoff plate equation with non-linear
boundary controls (in the linear case, it corresponds to system (5.1.2) with By = 72 = 0),
under a multiplier geometric control condition he established an exponential energy decay
rate. Furthermore, in 2005, Rao and Wehbe in [96] studied the stabilization of the Kirchhoff
plate equation with dynamical boundary controls (corresponding to system (5.1.1) with
Ba = 75 = 0), under the same mulitplier geometric control condition they established a
polynomial energy decay rate of order ¢~.

Time delays appear in several applications such as in physics, chemistry, biology, thermal
phenomena not only depending on the present state but also on some past occurrences (see
[44, 72]). In the last years, the control of partial differential equations with time delays have
become popular among scientists, since in many cases time delays induce some instabilities
see [36, 38, 39, 42].

In 2006, Nicaise and Pignotti in [88] studied the multidimensional wave equation with
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boundary feedback and a delay term at the boundary, by considering the following system:

(uy(z,t) — Au(z,t) =0 in Q x (0,00),

u(z,t) =0 on I'p x (0,00),

Su(x,t) = —pug(z,t) — pow(z,t —7) on Iy x (0,00), (5.1.4)
U(,I',O) = UJ[)($), Ut(flf,O) = Ul(l') in Q)

( u(x,t) = fo(z,t) on I'y x (—7,0),

where pq and py are positive real numbers, and €2 is an open bounded domain of R™ with a
boundary I' of class C? and I' = I'p U Ty, such that Ip NTx = (. Under the assumption
le < p1, an exponential decay is achieved. If this assumption does not hold, they found
a sequences of delays {7}x, v — 0, for which the corresponding solutions have increasing
energy. In 2020, Bayili et al. in [28] studied the multidimensional wave equation with a delay
term in the dynamical control, by considering the following system:

(uy(z,t) — Au(z,t) =0 in Q x (0, 00),
u(z,t) =0 on I'p x (0, 00),

Qu(x,t) +n(z,t) =0 on T'y x (0,00),

ne(x,t) — u(x,t) + Bin(z, t) + fan(z,t —7) =0 on 'y x (0,00),
UO('x)v ut<x70) :u1<l’) n Q7
n(x,0) =no(x) on Iy,

\ 7](%?5 - T) - fg([)&',t - T) on FN X (077-)7

where (£, and [y are positive : real_numbers, and €2 is an open bounded domain in R™ with
a lipschitz boundary I' = I'p U 'y with meas(I'p) # 0 and meas(I'y # 0). Under the
assumption [y < 1, they showed that the system is not exponentially stable, but they proved
that the system has the same decay rate than the one without delay.

(5.1.5)

But to the best of our knowledge, it seems that there is no result in the existing literature
concerning the case of the Kirchhoff plate equation with dynamical boundary controls and
time delays (or with boundary controls and time delay). The goal of the present chapter is to
fill this gap by studying the stability of systems (5.1.1) and (5.1.2).

In the first part of this chapter, we study the stability of system (5.1.1). In Subsection 5.2.1,
we prove the well-posedness of our system by using semigroup approach. In Subsection 5.2.2,
following a general criteria of Arendt and Batty, we show the strong stability of our system in
the absence of the compactness of the resolvent. In subsection 5.2.3, we prove that the system
(5.1.1) is not exponentially stable. Next, in Subsection 5.2.4, by combining the frequency
domain approach with a specific multiplier method, we prove under the multiplier geometric
control condition (MGC) that the energy of our system decays polynomially with the rate ¢ 1.

In the second part of this chapter, we study both stability and instability of system
(5.1.2). In subsection 5.3.1, we prove the well-posedness and the strong stability of our
system. In subsection 5.3.2, we prove under the same (MGC) condition that system (5.1.2)
is exponentially stable. Finally, in subsection 5.3.3, if |8s| > (1 and |ys| > 71, we give some
instability examples of system (5.1.2) for some particular choices of delays

121



CHAPTER 5. STABILITY AND INSTABILITY RESULTS OF THE KIRCHHOFF...

5.2 Kirchhoff plate equation with delay terms on the
dynamical boundary control

5.2.1 Well-posedness of the system

In this section, we will establish the well-posedness of system (5.1.1) by using semigroup
approach. To this aim, as in [88], we introduce the following auxiliary variables

2z, p,t) =n(x,t —pr), x€Tly, pe(0,1),t>0, (5.2.1)
2z, p,t) = &(x,t —pra), xz €Ty, pe(0,1),t>0. -
Then, system (5.1.1) becomes
uy + A% = 0 in Q x (0,00), (5.2.2)
u=0u = 0 on I'yx (0,00), (5.2.3)
Biu+n = 0 on I'y x (0,00), (5.2.4)
Bou—¢ = 0 on I'y x (0,00), (5.2.5)
N — s + Bin + Boz(-,1,t) = 0 on Ty x (0,00), (5.2.6)
& —up + &+ 2%, 1,t) = 0 on I'y x (0,00), (5.2.7)
1zt (-, p,t) + z;(-,p, t) = 0 on I'y x(0,1) x (0,00), (5.2.8)
Tzi (- pt) + 25 (- pt) = 0 on Ty x (0,1) x (0,00), (5.2.9)
with the following initial conditions
u<70) = U()( )7 Ut(', 0) = U1(> in €,
- 0) = , 0)=¢&(:) on TIYy,
775 ) =m0(), &(-,0) =&() 1 (5.2.10)
z ('7p7 0) = fO( 7_p7—1> on I'y x (07 1)7
22('7p7 0) = gO( 7_/07—2) on I_‘1 X (07 1)
The energy of system (5.2.2)-(5.2.10) is given by
1
B = g {atww+ [ upaer [ v [ jpar
2 9] I I
! 2 ! 2
vl [ [0l dodr sl [ 12 0f doar}.
r; Jo r, Jo
where the sequilinear form a : H*(Q2) x H?*(2) — C is defined by
(I(f, g) = /{; [fx1x1gazlrl + fCE2$2g$2:E2 + 1% (fx1xlga:2m2 + fxzngzplxl) (5211)
+ 2(1 - N)fxleExlxg} dz.
We first recall the following Green’s formula (see [73]):
a(f,g) = / A*fgdr + / (Bifd, g — Bofg) dl, Vf € H*(Q), g € H*(Q). (5.2.12)
Q r
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For further purposes, we need a weaker version of it. Indeed as D(Q) is dense in
E(A% L2(Q)) :=

{f € H*(Q) | A% € L*(Q2)} equipped with its natural norm, we deduce that f € F(A?, L*(Q))
(see Theorem 5.6 in [87]) satisfies Byf € H~2(I") and Bof € H~2(I') with

a(f, g) =/QA2fEda:+<Blf,8yg> by~ B 8 ot iy VEEHA(Q). (5.213)

Lemma 5.2.1. Let U = (u, ut,n,f,zl,z2) be a regular solution of system (5.2.2)-(5.2.10).
Then, the energy F(t) satisfies the following estimation

d
SB() < (B~ 162D [ WP~ (u o) [ JePar.
I I

Proof. First, multiplying (5.2.2) by %, integrating over 2, using (5.2.12) and (5.2.3), then
taking the real part, we obtain

th/ e |* + 55@ u,u) — ?R{/ (Byud, i — Bouiy) dF} = 0. (5.2.14)
I

Now, from (5.2.4)-(5.2.7), we get

—R {/ (Biud,u; — Boutiy) dF} =R {/ n(ne + Bin + Bozt(, 1,1))dl
T I

§(& +mE+1n2?( 1, t))dF}

I
1d ) , _
=2 ), |77| AU+ By [ |nPdD +R{ By [ nz'(-,1,8)dD
Fl Fl

+~—/\ﬂdf+% m%F+%{w

5% §z2(-,1,t)df‘}.

Iy

Inserting the above equation in (5.2.14), then using Young’s inequality, we obtain
1d 1d
2 a la 24 =4 2
2dt/| o+ 2dt )+2dt | Fdr+ 53 |€|

=~ [ I %@%L meﬂ}—w ePar

I

—R {72 §z2(-,1,t)dF} (5.2.15)
INT
< -8 | |npPdr + =2 W In|2dl + 22 |62| 121(-, 1, ¢)2dT
I I I
|€2dT + = |72| |€2dT + M |22(-, 1, 1) |dT.
T T 2 Iy

Multiplying (5.2.8) and (5.2.9) by |Ba|21(+, p, ) and |y5|22(-, p, t) respectively, integrating over
I'; x (0,1), using the fact that z'(-,0,¢) = n and 2%(-,0,t) = &, then taking the real part, we
obtain

d
Es //’Z -, p, t)Pdpdl’ = |@2| 21 1,0 dF+|/82| nf*dl (5.2.16)
'y I r

2 dt
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and

d 1
2l 8 [ [ porapar = =22 [ e gpar+ 22 [ jgrar. G2
2 dt 1 JO 2 ' 2 r

Finally, by adding (5.2.15), (5.2.16) and (5.2.17), we obtain the desired result. The proof is
thus complete. O

In the sequel, we make the following assumptions

Bi,7m >0, fo,72 €R*, |Bo] < Bi and |ya] <71 (H)

Under the hypothesis (H) and from Lemma 5.2.1, system (5.2.2)-(5.2.10) is dissipative in the
sense that its energy is non-increasing with respect to time (i.e. E’'(t) < 0). Let us define the
Hilbert space H by

H = HE, () x LA(Q) x (LA(T1))* x (LT x (0,1)))*,

where

Hi () ={fe H*(Q) |f=0,f=0o0nTy}.
The Hilbert space H is equipped with the following inner product

(U,Ul)H:a(u,u1)+/vv_1dx+/ nmdf+/ £6,dT
Q T I'y

r I
+7'1’52’/ / le%dpdr—l—Tz]’yz\/ / 2?23dpdl,
r, Jo r, Jo

where U = (u,v,n,&, 24,287, Ut = (uy,v1,m,&, 21, 22)" € H. Now, we define the linear
unbounded operator A : D(A) C H — H by:

(5.2.18)

n U= (u,v,m,§ 2" 2%)" €Dr,(A%) x HE (Q) x (L*(T1))* x (L*(T'y; H'(0,1)))? |
D(A) =
Biu = -, Byu = 57 Zl('70) =1, 22('70) :g on I'y
where
Dr,(A%) = {f € H{ () | A*f € L*(Q), Bif € L*(Iy), and Bof € L*(T') }
and
v
u —A%y
v ayv_ﬁln_BQZl('7]-)
A 2’ = | v=mE—2 (D) | VU = (u,0,n,6, 2%, 22)T € D(A). (5.2.19)
2! —iz;
22 7}
_T_ng
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Remark 5.2.1. From the fact that 2% (U2, Usyes) = [Ueyzy + Uzsas|® — |Uzyey | = [Uspes|?s We

remark that
|um19[;1|2 + |u352m|2 + 2,U,§R (Ummﬂmxz) + 2<1 - ﬂ)|u$1w2|2 (5 2 20)
= (1 - :U')‘umm‘Q + (1 - u)’umazzP + ,ulum:m + uw2w2|2 + 2(1 - M)‘UI112‘2 Z O’

consequently, from (5.2.11), we get
a(u,u) > (1 — p)|ulm2@)-

Hence the sesquilinear form a is coercive on HﬁO(Q), since [y is non empty. On the other hand,
from (5.2.13) (see also Lemma 3.1 and Remark 3.1 in [95]), we remark that

a(f,g) = /QA2f§dx+/F (B:f0,g — Bofg)dl', Vf € Dr,(A?%), g € Hf (). (5.2.21)

g

Now, if U = (u,us,n,§&, 2%, 2%)7 is regular enough, then system (5.2.2)-(5.2.10) can be
written as the following first order evolution equation

U, = AU, U(0) = U, (5.2.22)

where Uy = (UOuul,nmea fo(" _pTl)ugO('7 —P7'2>>T €H.

Proposition 5.2.1. Under the hypothesis (H), the unbounded linear operator A is m-
dissipative in the energy space H.

Proof. For all U = (u,v,7,&, 2%, 2%)T € D(A), from (5.2.18) and (5.2.19), we have

RAUU), =R {a(v,u) — / A*uvdx —I—/ (0,0 — Bin — B2z (-, 1)) 7dD
Q

'

+ /F (v — 7€ — 722%(-, 1)) Zdr}

- st | ol

Using (5.2.21) and the fact that U € D(.A), we obtain

R (AU,U),, /\n| dr — R ﬁg ndl“}

—M |§\2dF—9?{w/ ()£dF} 16 |21(-,1)|2dT (5.2.23)
Iy r

2 Jr,
L 1B

: | ]dF |’72| |22( )| dar + 2 |'}/2| |§|2dF

2 Jr, 2

Now, by using Young’s inequality, we get

—%{BQ/F 1 ndF} W/ |12 ( |dF+|B2|/ In|2dT,

(5.2.24)
- {72/ 2(, 1>Zdr} = bl |22(-, DPdT + = il [€]2dT.
I 2 I 2 Iy
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Inserting (5.2.24) in (5.2.23) and using the hypothesis (H), we obtain
RAU, U)y < =(B1 = 1Bel) [ Infdl — (v = |2l) [ €7D <0, (5.2.25)
I I

which implies that A is dissipative. Now, let us prove that A is maximal. To this aim, if
F = (f1, fo, f3, f1,91,92) " € H, we look for U = (u,v,n,§, 21, 2%)T € D(A) unique solution of

— AU = F. (5.2.26)
Equivalently, we have the following system

—v = fi, (5.2.27)

Ay = fy, (5.2.28)

—vF+nE+ 7201 = fi, (5.2.30)
L

— = 2.31

T1 2, 91, (5.2.31)
L,

— = 2.32

= z, 92, (5.2.32)

with the following boundary conditions
u=0,u=0 on Iy and Byu=—n, Bou=¢, 2'(-,0) =7, 2°(,0) =€ on T;. (5.2.33)
From (5.2.27) and the fact that F' € H, we get
v=—fi € H (Q). (5.2.34)

From (5.2.31), (5.2.32), (5.2.33) and the fact that F' € H, we obtain
p
z, € L*(Iy x (0,1)) and z'(-,p) = 71/0 g1(-,8)ds +n (5.2.35)

and

22 € L*(I'1 x (0,1)) and 2°(,p) = /pgg(-, s)ds + €. (5.2.36)
0

Consequently, from (5.2.34), (5.2.29), (5.2.30), (5.2.35), (5.2.36) and the fact that F' € H, we
get

1
n= 5141—52 (—&/fl —7'152/0 91(‘,S)ds+f3> € L*(Ty) (5.2.37)
and
- — (— - 1 (- s)d +f)eL2(F) (5.2.38)
5—%+72 fi 7272/092 ,8)ds + fa 1)- 2.

Now, from (5.2.35)-(5.2.38) and the fact that g;, go € L*(T'y x (0,1)), we deduce that

21 27 € L*(Ty; H(0,1)).

126



CHAPTER 5. STABILITY AND INSTABILITY RESULTS OF THE KIRCHHOFF...

It follows from (5.2.28), (5.2.33), (5.2.37) and (5.2.38) that

((A’u=f, in Q,

u=0,u=0 on I,

1 1

q Biu=— (—ay —T / ., 8)ds + ) on Ty, (5.2.39)

1 B+ B fi 152 . 91( ) JE! n ILj

1 1

Byu = (—f1—7'272/ 92('a3)d3+f4> on I7.

L Y1+ Ve 0

Let ¢ € HE (). Multiplying the first equation in (5.2.39) by ¥ and integrating over 2, then
using Green’s formula, we obtain

a(u, ) = l(p), Ve € HE (Q), (5.2.40)

where

1
I(p) = /Q fopde - &i = /F | (—ayfl s /0 91(-,s)ds+f3) 9, 7dT

1 1
—fi—T -, 8)ds + wdl.
Tt 7 /1“1 ( fi 2’72/0 92( ) f4> 2

It is easy to see that, a is a sesquilinear, continuous and coercive form on HZ (Q) x Hf (Q2) and
[ is an antilinear and continuous form on HE (). Then, it follows by Lax-Milgram theorem
that (5.2.40) admits a unique solution v € Hf (). By taking the test function ¢ € D(Q),
we see that the first identity of (5.2.39) holds in the distributional sense, hence A%u € L*(12).
Coming back to (5.2.40), and again applying Greens’s formula (5.2.13), we find that

1 1
Biu = 55 (—auf1 - Tlﬁz/o 9i(-, 8)ds + f3> on I'y

and
1

1
P <—f1—7'272/0 92('73)d3+f4> on [I7.

Further since ' € H, we deduce that u € Dr,(A?%). Consequently, if we define
U = (u,v,n,§252%)" with w € HE (Q) the unique solution of (5.2.40), v = —fi, &
(resp. n) defined by (5.2.37) (resp. (5.2.38)) and z' (resp. 2z?) defined by (5.2.35) (resp.
(5.2.36)), U belongs to D(.A) is the unique solution of (5.2.26). Then, A is an isomorphism and
since p (A) is open set of C (see Theorem 1.1.13), we easily get R(A —.A) = H for a sufficiently
small A > 0. This, together with the dissipativeness of A, imply that D (A) is dense in
H and that A is m-dissipative in H (see Theorems 1.2.6, 1.2.9). The proof is thus complete. [

Bgu =

According to Lumer-Phillips theorem (see Theorem 1.2.8), Proposition 5.2.1 implies
that the operator A generates a Cp-semigroup of contractions e* in H which gives the
well-posedness of (5.2.22). Then, we have the following result:

Theorem 5.2.1. For all Uy € H, system (5.2.22) admits a unique weak solution
U(t) = Uy € CO(Ry, H).
Moreover, if Uy € D(.A), then the system (5.2.22) admits a unique strong solution
U(t) = Uy € C°(Ry, D(A)) N CH Ry, H).
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5.2.2 Strong Stability

In this section, we will prove the strong stability of system (5.2.2)-(5.2.10). The main result of
this section is the following theorem.

Theorem 5.2.2. Under the hypothesis (H), the Cy-semigroup of contractions (etA) >0 18
strongly stable in H; i.e., for all Uy € H, the solution of (5.2.22) satisfies -

lim || U] = 0.
t——+o0

According to Theorem 1.3.3, to prove Theorem 5.2.2, we need to prove that the operator A
has no pure imaginary eigenvalues and o(.4)NiR is countable. The proof of these results is not
reduced to the analysis of the point spectrum of A on the imaginary axis since its resolvent
is not compact. Hence the proof of Theorem 5.2.2 has been divided into the following two
Lemmas.

Lemma 5.2.2. For all A € R, ¢\l — A is injective i.e.,
ker(iA] — A) = {0}.

Proof. From Proposition 5.2.1, we have 0 € p(A). We still need to show the result for A € R*.
To this aim, suppose that A\ # 0 and let U = (u,v,n,§, 21, 22)T € D(A) be such that

AU = i\U. (5.2.41)

Equivalently, we have the following system

v o= i\, (5.2.42)
—A%u = i\, (5.2.43)
dv — i — Boz' (-, 1) = i, (5.2.44)
v—mé —12?(,1) = A, (5.2.45)
1
——z, = iAd, (5.2.46)
1
1
——z = A (5.2.47)
T2

From (5.2.23), (5.2.41) and (H), we get
0=R(IAUI}) =R (AU U)y, < =(B = [Ba]) [ [nl*dl — (31— |nel) [ [€]%dT <0.
Fl Fl

Thus, we have
n=(=0 on I. (5.2.48)

Using (5.2.46), (5.2.47) and the fact that 2'(-,0) =7, z%(-,0) = £ on I'y, then using (5.2.48),
we obtain '
(,p) =ne P =0 on I'y x (0,1), (5.2.49)

(,p) =€ ™™ =0 on Ty x (0,1). (5.2.50)
From (5.2.44), (5.2.45), (5.2.48), (5.2.49) and (5.2.50), we get

) =
) =

1
2
v=0,0=0 on I7, (5.2.51)
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consequently, from (5.2.42) and the fact that A # 0, we obtain
u=0,u=0 on I}.
Now, from (5.2.48) and the fact that U € D(A), we get
Biu=Au+ (1 —p)Ciu=0 on Iy,

Bou = 0,Au+ (1 — p)0.Cou =0 on TY.
Using (5.2.52) and the fact that Vu = d,ur + d,ur on I'1, we obtain

Uy, = Uz, =0 on I'y.

Now, from (5.1.3), (5.2.52) and (5.2.55), we get
Ciu=Cu=0 on IY,
consequently, from (5.2.53) and (5.2.54), we get
Au=0,Au=0 on IYy.
Inserting (5.2.42) in (5.2.43), we obtain
ANu—A?u=0 in Q,
u=0,u=0 on I,
uw=0,u=Au=0,Au=0 on Iy.
Holmgren uniqueness theorem (see [75]) yields

u=0 in .

Finally, from (5.2.42), (5.2.48), (5.2.49), (5.2.50), and (5.2.59), we get

U=0.
The proof is thus complete.
Lemma 5.2.3. Under the hypothesis (H), for all A € R, we have
RN —A) =H.

(5.2.52)

(5.2.53)
(5.2.54)

(5.2.55)

(5.2.56)

(5.2.57)

(5.2.58)

(5.2.59)

Proof. From Proposition 5.2.1, we have 0 € p(A). We still need to show the result for A € R*.
For this aim, for F' = (f1, f2, f3, f1,91,92) " € H, we look for U = (u,v,7n,£, 2%, 22)T € D(A)

solution of
(iAl — A)U = F.

Equivalently, we have the following system
Au—v = fi,
i+ A = fy,
ixn— 0+ Bin+ bz (1) = fs,
N —v+nE+ (L) = fi,

1

i)\zl—i-—z[l) = g,
T1

o2 Lo

N+ —z, = g,
T2
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with the following boundary conditions

u=0,u=0 on Iy and Biu=—n, Bou=E¢, 2'(-,0)=n, 2%(-,0) =¢ on T}.

From (5.2.65), (5.2.66) and (5.2.67), we deduce that

. p .
(-, p) = ne P 4 7'1/ gi(z,5)e? P ds on Ty x (0,1),
0

. p .
(e p) = e 4 / go(, 8)e” ™ Pds on Ty x (0,1).
0

Eliminating v, 2'(+,1) and 2%(-,1) in (5.2.63) and (5.2.64), we get

n=Ci(iNo,u+F;) on T'y and &= K;) (iAu+ G;,) on Ty,

where
! 1 iAT1 (s—1)
Ci = - , Fz — —ay — . AT (s—1 d :
TN By + fae A fr = Bam /0 9i(:, s)e s+ f3
1 1 '
Ki = . Gz —_ _ _ . ’L)\TQ(S*l)d .
A ix+ ™ —|—’}/26_Z)‘T2’ A fi ﬁ27'2/0 92( 75)6 s+ f4

It follows from (5.2.61), (5.2.62), (5.2.67) and (5.2.70) that

([ Nu+ A*u=i\fi + fo in Q,
u=0,u=0 on I,

Biu = —Ci\(iAd,u + F;,) on I'y,
Bou = Kij\(idu + G;) on I'y.

\

(5.2.67)

(5.2.68)

(5.2.69)

(5.2.70)

(5.2.71)

(5.2.72)

Let ¢ € HE (€2). Multiplying the first equation in (5.2.72) by @, integrating over €2, then using

Green’s formula, we obtain
)

b(u, @) =l(p), Vo eV :=HE(Q),

where
b(“? 90) = bl (U, 90) + b2(u7 90)7
with
bl (U, 80) = a(uv (10)7
bo(u, p) = —\? / updr 4+ iNCy, O,ud,pdl’ + z')\KM/ wpdl’
Q ' I't
and

I(p) = /Q (M + fa)Gde — iACiy /

Let V' be the dual space of V. Let us define the following operators

Find,Bdl — iNK / Gin@dr.
ry

1

B:V — V B,:V — V
and

u +— Bu u — Bu’ 1€ 11,2},
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such that

{ (Bu)(p) = blu, ), Vo€V, (5.2.77)

(Biu)(p) = bi(u, ), Vo €V, ie{l,2}.

We need to prove that the operator B is an isomorphism. For this aim, we divide the proof
into two steps:

Step 1. In this step, we prove that the operator By is compact. For this aim, let us
define the following Hilbert space

Hl‘io(Q) ={p€e HQ) | p=0,0=0 on Iy} with s¢€ <2,2> )

Now, from (5.2.74) and a trace theorem, we get

|ba(u, 0)| < [Jull2@ |0l a20) + 100l 2oy 1000l L2y + [Jwll L2 el 2y
S flul

HS(Q)HSOHH?(Q);
for all s € (%, 2). As V is compactly embedded into Hp (€2) for any s € (%, 2), B, is indeed a

compact operator.

This compactness property and the fact that B; is an isomorphism imply that the op-
erator B = By + B is a Fredholm operator of index zero. Now, following Fredholm alternative,
we simply need to prove that the operator B is injective to obtain that it is an isomorphism.

Step 2. In this step, we prove that the operator B is injective (i.e. ker(B) = {0}).
For this aim, let u € ker(B) which gives

b(u,) =0, Vo e V.

Equivalently, we have

a(u, @) — /\2/ updx +iAC;y [ O,ud,@dl + i)\KZ-,\/ updl' =0, Vp € V.
Q T

I

Thus, we find that

~Mu+A%u=0 in D(Q),
u=0d,u=0 on Iy

Biu = —iAC;\0,u on I'q,
Baou = iAK;u on I'.

Therefore, the vector U defined by
U = (u, idu, iACix0,u, iAK U, iACix0,ue P G NI ue " 2P) T

belongs to D(.A) and satisfies
iAU — AU = 0,

and consequently U € ker(¢iAl — A). Hence Lemma 5.2.2 yields U = 0 and consequently u = 0
and ker(B) = {0}.
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Steps 1 and 2 guarantee that the operator B is isomorphism. Furthermore it is easy to
see that the operator [ is an antilinear and continuous form on V. Consequently, (5.2.73)
admits a unique solution v € V. In (5.2.73), by taking test functions ¢ € D(f2), we see that
the first identity of (5.2.72) holds in the distributional sense, hence A%u € L?(Q). Coming
back to (5.2.73), and again applying Green’s formula (5.2.13), we find that

Blu = —CM(Z')\&,U -+ Fz)\) on Fl
and
Bou = K\(idu + G;)) on TI'y.

Further since u, d,u, F;) and G;, belong to L?(I';), we deduce that u € Dr,(A?). Consequently,
if w € V is the unique solution of (5.2.73) and if we define n and ¢ by (5.2.70) and z' (resp.
2%) by (5.2.68) (resp. (5.2.69)), we deduce that

U= (U, AU — f17 7, 57 Zla ZQ)T
belongs to D(.A) and is the unique solution of (5.2.60). The proof is thus complete. d

Proof of Theorem 5.2.2. From Lemma 5.2.2, the operator A has no pure imaginary
eigenvalues (i.e. 0,(A)NiR = @). Moreover, from Lemma 5.2.2 and Lemma 5.2.3, i\ — A is
bijective for all A € R and since A is closed, we conclude with the help of the closed graph
theorem that ¢\l — A is an isomorphism for all A € R, hence that o(A) NiR = (). Therefore,
according to Theorem 1.3.3, we get that the Co-semigroup (e4);>q is strongly stable. The
proof is thus complete. U

5.2.3 Lack of exponential stability

In this section, we will prove that the system (5.2.2)-(5.2.10) is not exponential stable. Let us
start with a technical result.

Lemma 5.2.4. Define the linear unbounded operator T': D(T) — L*(2) by
D(T) = {f € E(A*, L*(Q)) NH{ (Q) | Bif +9,f =0onTy, Bof —f=0onTly} (5.2.78)

and
Tf = A*f, Vf e D(T). (5.2.79)
Then, T is a positive self-adjoint operator with a compact resolvent.

Proof. We check that T is the Friedrichs extension of the sesquilinear, symmetric and coercive
form

alf,g) = alf.g) + / (0,70,5 + )T

I8
defined in Hf () x HE (). Indeed, by Friedrichs extension Theorem, we can write

D(T) = {f € H{,(Q) : J'Ff € L*(Q) such that a(f,g) = (Fr,g), Vg€ HE (Q)}

and
Tf =F¢, Vfe D(T).
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We now need to show that this operator T' coincides with the one defined by (5.2.78)-
(5.2.79). For that purpose, let us denote by ﬁ(T) the right-hand side of (5.2.78). By Green’s
formula (5.2.13), we directly see that D(T') C D(T') and that for f € D(T), Tf is indeed given
by (5.2.79). Let us then prove the converse inclusion. For this aim, let f € D(T), then we have

A* =F; in D'(Q).
Hence f belongs to E(A?, L*(2)) and using Green’s formula (5.2.13), we obtain
Bif = —0,f and Byf =f.

This proves that D(T) = D(T). Finally as H?, (Q) is compactly embedded in L*(Q2), T" has
clearly a compact resolvent. The proof is thus complete. O

The main result of this section is the following theorem.
Theorem 5.2.3. The Cy-semigroup (e*4);5¢ is not uniformly stable in the energy space H.

Proof. According to Theorem 1.3.6 due to Huang [67] and Priiss [94], it is sufficient to show
that the resolvent of A is not uniformly bounded on the imaginary axis. In other words, it
is enough to show the existence of a positive real number M and some sequences A\, € iR,
Un = (Un,Vn, My, 2L, 22)T € D(A) and F, = (fin, fons f3ms fams Gim, Gon) ' € H, where
n € N such that

(Al — AU, = F,,¥n € N, (5.2.80)
|Unlle > M, ¥n € N, (5.2.81)
lim || ||z = 0. (5.2.82)

n—oo

From Lemma 5.2.4, we can consider the sequence of eigenfunctions (g, )nen (that form an
orthonormal basis of L?(£2)) of the operator T' corresponding to the eigenvalues (u2),en such
that u? tends to infinity as n goes to infinity. Consequently for all n € N, they satisfy

A2, = uﬁgpn in Q,
On = 0,0, =0 on Ty,

(5.2.83)
619071 + augpn =0 on Fla
Bopn —@n =0 on I'y,
with
lénllz2@) = 1. (5.2.84)
Now, let us choose
An = i/ﬁn Up = ﬂ, Un = ©¥ny, Tn = iau(:ona &n = En
A An An (5.2.85)
2711(_7p) _ nne—iu%ﬂp and Zi(',ﬂ) — gne—w%mp'
It is easy to see that
22 (-,0) =0, = —Byu, on Ty, (5.2.86)
22(-,0) =&, = —Byu,, on 7. (5.2.87)
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Thus

.
n 1 n _in2 _in2
U, = (f—,gpm )\—&,g&n, S)\O—,nne TP £ e “‘"72”) (5.2.88)

belongs to D(.A) and is a solution of (5.2.80) with

2 2
51 + /626 1y T1 fyl + ’}/26 TnT2

Fn = (Oa 07 f3,n7 f4,na 07 O)Ta f3,n = ) Bygpn and f4,n = — On- (5289)
Ly, Ly,
Now, we have
1Ual3 > llenlliz@ =1, Vn €N,
which means that (5.2.81) holds with M = 1. Moreover, we have
IE.13 = HfS,nH%?(Fl) + Hf&n”%?(n)

(81 + |Bal)? (1 + [el)?

< M—4"6V90”%2(F1) + TH@H%WQ (5.2.90)

1
< i (10l + lenlliag, ) -

By using the trace theorem of interpolation type (see Theorem 1.4.4 in [82] and Theorem
1.5.1.10 in [53]), we obtain

10vpullZecryy S llenllmz@llenlla @), (5.2.91)
||90n||%2(r1) S lenllzr@llenllz2@)- (5.2.92)
Now, it follows from Theorem 4.17 in [3] that

lenllmr@) S ||90n||H2(Q II%IILQ
Inserting the above inequality in (5.2.91) and (5.2.92), we get

3 1
180 2nllZ2(r1y S lnllZrz @ lenll 22y (5.2.93)

1 3
lalaey S Ionllaellonl 220 (5.2.94)
Now, we notice that

mwuﬁ+/W%mQ 2 llonlliaen — 2.

D=

= <a(son, Pn) +

Since the norm defined on the left-hand side of the above equation is equivalent to the usual
norm of H%(), then we get

a(pn, on)? =

Iy

lenllzrzi) S wan-
Inserting the above inequality and (5.2.84) in (5.2.93) and (5.2.94), we obtain

HaZ/QOnHLZ (T1) ~ ’/fln‘g (5295)
lenll72ry) S liml- (5.2.96)
Finally, from the above inequalities and (5.2.90), we obtain
3
1Fall5 S lpnl” & lp] j i — 0 as n — oo.
The proof is thus complete. U
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5.2.4 Polynomial stability

In this section, we will prove the polynomial stability of system (5.2.2)-(5.2.10). The main
result of this section is the following theorem.

Theorem 5.2.4. Under the hypothesis (H) and the multiplier geometric control condition
MGC (see Definition 1.4.1), for all Uy € D(A), there exists a constant C' > 0 independent of
Up such that the energy of system (5.2.2)-(5.2.10) satisfies the following estimation

C
E(t) < ?HUOH%)(A)» Vit > 0.

According to Theorem 1.3.7, to prove Theorem 5.2.4, we need to prove the following two
conditions

iR C p(A) (5.2.97)

and

. L. _
lim sup ﬁ”(M[ — A) M < oo (5.2.98)
AER, |A|—o0

As condition (5.2.97) was checked in Subsection 5.2.2; we only need to prove the second condi-
tion. This condition (5.2.98) is proved by a contradiction argument. For this purpose, suppose
that (5.2.98) is false, then there exists {(A, Un = (Un, Uny M, Ens 21, 22) ) bus1 C R* x D(A)
with

Aal > 00 asn— oo and  ||Unlla = || (tn, Vs s &y 2ms 22) HH =1,vn>1, (5.2.99)
such that

()\n)2<2)\nl — A)Un = Fn = (an, f2,n7 fg,n, f4’n,gl’n,gg,n)—r —0 in H as n — oQ.

(5.2.100)
For simplicity, we now drop the index n. Equivalently, from (5.2.100), we have
i—v = A2f;, fi—0 in HE(Q), (5.2.101)
i+ A = A2fy, fo—0 in L*(Q), (5.2.102)
iAn — Ov+ B+ B2 (1) = A 2fs, f3 =0 in L*(T), (5.2.103)
IN — v+ 1€+ 722 (1) = AN2fy, fr—0 in L*(I)), (5.2.104)
1 .

ixz! + T—lz; = M2%g, g1 —0 in L*T; x(0,1)), (5.2.105)

S\ 2 1 2 -2 : 2
Iz +T—22p = AN g, go— 0 in L*(I'; x (0,1)).  (5.2.106)

Here we will check the condition (5.2.98) by finding a contradiction with (5.2.99) by showing
U], = o(1). For clarity, we divide the proof into several Lemmas.

Lemma 5.2.5. Under the hypothesis (H), the solution U = (u,v,n,&, 21, 2%)T € D(A) of
(5.2.101)-(5.2.106) satisfies the following estimations

/ [n2dl’ = o(\ / €|%dT = o(\ / |Biu|?dl’ = o(A\™?) and / |Byu|?dl’ = o(A72).
ry
(5.2.107)
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Proof. First, taking the inner product of (5.2.100) with U in H and using (5.2.25), we get

(Br—1B2l) [ 10PAT + (1 — o) [ €A < —R(AU, D)y = —R(F, U}y

[ E {7 U 3,
Fl F1 )\

< )\2|
from the hypothesis (H), we notice that
— B2l >0 and 1 — |y2| >0,

using the fact that || F|| = o(1) and |U||3 = 1, we obtain the first two estimations in (5.2.107).
The last two estimations in (5.2.107) directly follows from the first two estimations in (5.2.107)
and the fact that Biu = —n, Bou = & on I'y. O

f

Lemma 5.2.6. Under the hypothesis (H), the solution U = (u,v,n,&, 2%, 2%)T € D(A) o
(5.2.101)-(5.2.106) satisfies the following estimations

/ / |2'|?dpdl = o(A"?) and / |21 (-, 1)]2dT = o(A7?), (5.2.108)
/ / |2%|?dpdl = o(A™?) and / |22(-, 1)]2dT = o(A7?). (5.2.109)
Proof. First, from (5.2.105) and the fact that 2'(-,0) = n(-) on 'y, we obtain
. p .
2, p) = me AP 4 s g1(-,8)e?EPds on Ty x (0,1). (5.2.110)

A2/,
From (5.2.110), Cauchy-Schwarz inequality and the fact that p € (0,1), we get

/F/|z ?dpdl’ < 2 : |77|2dF+ )\4 /1“/ (/ g1 (-, |d3) dpdl’
T-
SQ/ ‘deF‘F)\—i/ / p/ 191 (-, 5)|2dsdpdD’
I
2 2(my)
[n*dl + =73~ pdp !g1 s)|?dsdl
' r,

(1)?
=2 [ |n|*dl + S |gl(-,5)|2dde.
l_‘1 Fl 0

The above inequality, (5.2.107) and the fact that g; — 0 in L*(T'; x (0,1)) lead to the first
estimation in (5.2.108). Now, from (5.2.110), we deduce that

1
(1) = ne P 4 )\2/ g1(-, 8)e?™ (s — 1)ds on Ty,

Lo

s)|?dsdT.

consequently, by using Cauchy-Schwarz inequality, we get
/ |21 (-, 1)]%dl" < 2
[n]”

'

Therefore, from the above inequality, (5.2.107) and the fact that g; — 0 in L*(T'; x (0, 1)), we
get the second estimation in (5.2.108). The same argument as before yielding (5.2.109), the
proof is complete. 0

IN]
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Lemma 5.2.7. Under the hypothesis (H), the solution U = (u,v,n,&, 21, 22)T € D(A) of
(5.2.101)-(5.2.106) satisfies the following estimations

/ 10, u2dT = o(A"2) and / [uf2dT = o(A~2). (5.2.111)
Fl 1_‘1

Proof. First, inserting (5.2.101) in (5.2.103), we obtain

iADu = %(&,fl —f) + (A4 Bn+ oz (1) on Ty,

From the above equation, we get

1
NGy uf2dr < - / (19, f* + | fo]?) dT
Iy

" (5.2.112)

+ (N + B7) A [n]*dl + 53 A |2'(-, 1)]*dT.
1 1

Using a trace theorem and the fact that a(fi, fi1) = o(1), we get
[ 10, S L) S ali. £) = o(1),
1N

Thus, from the above estimation, (5.2.107), (5.2.108), (5.2.112), and the fact that f3 — 0 in
L*(Ty), we get the first estimation in (5.2.111). Now, inserting (5.2.101) in (5.2.104), we obtain

i\ = %(f1 ~f) (A )€+ 72%(1) on Ty

From the above equation, we deduce that

1
MaPdD € — [ (AP + AP0+ (2 +77) | JePdr+73 [ |2 )Pdr (5.2.113)

~ \4
I )\ I Iy I

Again by a trace theorem and the fact that a(f1, f1) = o(1), we get

AT S I ille o) S alfi fr) = o(1).

I

Finally, from the above estimation, (5.2.107), (5.2.109), (5.2.113) and the fact that f; — 0 in
L*(T';), we obtain the second estimation in (5.2.111). The proof is thus complete. O

Lemma 5.2.8. Under the hypotheses (H) and (1.4.1), for all u € Dr,(A?%), we have

81R2
2 Jr,

1
—R {/ A2u(h - Vﬂ)d:p} < —Ea(u, u) + |Byu|?dl’
0

(5.2.114)

3 3 2
+ ( |Blu|2dI‘> ( |8Vu|2df) B g
INY I 2 I

where R = ||h||L=(q) and €1, e, are positive constants explicitly given below.
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Proof. In this proof, we follow the arguments of the proof of Lemma 3.1 in [95] and Lemma 3.1
in [96]. First, we assume that Byu = Au+(1—p)Ciu € H2(T'y) and Bou = 0, Au+(1—p1)0,Cau €
Hz(I,), then as u € Dp,(A2) we get u € H*(Q). Now, by the identity (3.5) in [95] (see also
[73], [96] and [20]), we get

—R {/Q A2u(h - Vﬂ)dx} = —a(u,u)
—9%{/F(3VAH (1= 1)0,Cou) (h - Vﬂ)dl“} (5.2.115)

1
+R {/ (Au+ (1 — p)Cyu) 0, (h - Vﬂ)dF} b /(h -v)e(u, u)dr,
r r
where
(1) = [Ugya [* 4 [ty | A 2R (g W) + 2(1 — 1) [y |*
From (5.2.20), we deduce that
c(u,u) > (1 — p)d(u,u) >0, (5.2.116)
where
d(”ﬂ u) = |u$1$1 |2 + |u$2$2‘2 + 2|u$112|2'

Now, since u = d,u = 0 on I'y, then using the identities (3.5) and (3.6) in [96], we have

Vu=0, Cu=0, 9,(h-Vu)=(h-v)Au, c(u,u)=|Aul* on Ty, (5.2.117)

where C; is defined in (5.1.3). Consequently, we get

/ (O Au+ (1 — p)0;Cou) (h - Vu)dl' = 0,
o

/ (Au+(1—u)Clu)8,,(h~Vﬂ)dF:/ (h - )| Auf2dT, (5.2.118)

o

5 [ 0t = [ i,

Now, by using Young’s inequality, we get

\

— e1R? 1
_§R{ . Bou(h - Vu)df} < 5 /rl |Byu|?dl’ + % N |Vu|2dT, (5.2.119)
where R = ||h||z~q) and €, is an arbitrary positive constant fixed below. Now, according to
the identity (3.9) in [96] (see also (3.7) in [95]), we notice that
|0, (h - Vu)| < [0,u] + Ry/d(u,u) on I';. (5.2.120)

Using (5.2.120), Cauchy-Schwarz and Young’s inequalities, (5.2.107), and (5.2.111), we get

a’e{/ Bluﬁy(h-Vﬂ)dF} < [ 1Bl <|&,u|+R\/d(u,u)> dr
Fl F1

g( |Blu|2dF)< Ic’)yuIQdF) (5.2.121)
Fl 1—‘1

2
1
R@/ Bruldl + o— | d(u,u)dr
'y

_.I_
2 €9 I
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for all e > 0. Now, from (5.2.116) and (1.4.1), we get

1 1-—
—/ (h-v)e(u,u)dl > i d(u,u)dl. (5.2.122)
2 Jr, 20 Jr,

Inserting (5.2.118), (5.2.119), (5.2.121) and (5.2.122) in (5.2.115), we obtain

R 1
51 Boul2dT + — | |Vu*dl
]_‘*1 251 ]_“1

—?R{/ﬂA%(h-Vﬂ)dm} < —a(u,u) + ;/m(h V)| Auf2dT +

1
11— ? : R
N (_ - _“) [ dw.wr + ( |Blu\2dr> ( |8uu|2dr) + 22 B,
262 2(5 I I' I'y 2 I

using (1.4.1) and taking g5 > 0(1 — ) ™!, we obtain

—R Au(h - Vu)dr y < —a(u,u) +
0 2 Jr,

3 3 2
+ < |61UI2dF) ( |&,u|2df) + e, |Byu|?dl.
I I 2 Iy

1
|Boul?dl + — [ |Vul*dD

25]_ r
(5.2.123)

Now, by using a trace theorem, there exists a positive constant Cy,. such that

[Vul?dT < Cip|lullF2q)

IR}
From the equivalence between the norm y/a(u,u) and the usual norm of H?(), there then
exists a positive constant C,, such that

/ [Vul?dl < Cypl|ullFr2 () < CorCega(u, u).
1N

Inserting the above inequality in (5.2.123) and taking €; = C},Ce,, we obtain (5.2.114). Finally,
the case when Byu, Bou € L?(T'1) can be easily obtained by the standard density arguments as
in Lemma 3.1 in [95]. The proof is thus complete.

O

Lemma 5.2.9. Under the hypotheses (H) and (1.4.1), the solution U = (u,v,n,§, 21, 22)7 €
D(A) of (5.2.101)-(5.2.106) satisfies the following estimations

/Q |\ul?dz = o(1) and a(u,u) = o(1). (5.2.124)

Proof. First, inserting (5.2.101) in (5.2.102), we get

—A%—irA%—%—l-% in Q.

Multiplying the above equation by (h - V), integrating over €2, then taking the real part, we

obtain
§R{—V/u(h-Vﬂ)dm+/A%(h-Vﬂ)da:}
Q Q

:%{é/ﬂflh Vud:p—l——/fgh Vudm}
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Now, by using Green’s formula and the fact that u = 0 on I'y, then using (5.2.111), we get

R {—)\2 / u(h - Vﬂ)dx} = / |\ul*dx — l/ (h - v)|Au|?dl’ = / |ul|?dx + o(1). (5.2.126)
Q 0 2 Jr, Q
Using the fact that a(u,u) = O(1) and a(fi, f1) = o(1), we obtain

{ IVullz2@) < llullm2@) S Valu,u) = O(1),
1f1llz2@) < Lfilla2@) S Valfis fr) = o(1).
Thus, from the above estimations and the fact that fo — 0 in L*(Q2), we obtain

%{%/ﬁfl(h-Vﬂ)dij%/Qfg(h-Vﬂ)da:} — oY), (5.2.127)

Inserting (5.2.126) in (5.2.125) and using (5.2.127), we obtain
/Q Dufdr = —R {/Q A2u(h - Vﬂ)d:c} +o(1). (5.2.128)
As (5.2.107), (5.2.111) and (5.2.114) yield
R {/QNU(h - Vﬂ)dx} < —%a(u,u) +o(A72),

inserting the above estimation in (5.2.128), we get

1
/Q Nafde + Sa(u,u) = of1).

The proof is thus complete. U
Proof of Theorem 5.2.4 From Lemmas 5.2.5, 5.2.6 and 5.2.9, we deduce that

[Ull3 = o(1),
which contradicts (5.2.99). O

5.3 Kirchhoff plate equation with delay terms on the
boundary controls

5.3.1 Wellposedness and strong stability

In this section, we will establish the well-posedness and the strong stability of system (5.1.2).
For this aim, as in [88], we introduce the following auxiliary variables

Zl(l',p, t) = 8uut<x>t - pTl)a UES Fla pe (07 1)a > 07

5.3.1
2z, p,t) = w(w,t — pr), x €Ty, pe(0,1),¢>0. ( )
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Then, system (5.1.2) becomes

uy + A%u 0 in Q x (0,00), (5.3.2)

u=0,u = 0 on I'gx (0,00), (5.3.3)

Biu + B10,u, + B2zt (-,1,t) = 0 on I'; x (0, 00), (5.3.4)
Bou — yiu; — 122°(-,1,t) = 0 on Ty x (0,00), (5.3.5)
1zt (-, p,t) + ;( ,p,t) = 0 on Ty x(0,1) x (0,00), (5.3.6)
T2 (- p,t) + /2,( ,p,t) = 0 on T'y x(0,1) x (0,00), (5.3.7)

with the following initial conditions

(,0) =uo(-), w(-,0)=wui(-) in Q,
21, p,0) = fo(-,—p7m1) on Ty x (0,1), (5.3.8)

Q

The energy of system (5.3.2)-(5.3.8) is given by

1 1
B0 = g {atww+ [ luaenlal [ [ 0] dpr
! 2
wnbel [ [ 1260 dpar),
Iy Jo

where a is defined in (5.2.11). If (u,u, 2%, 2?) is a regular solution of (5.3.2)-(5.3.8), then
similarly to the proof of Lemma 5.2.1, we obtain

(5.3.9)

d
B0 < =B =18a) | [0wfdl = (n = |wl) [ fu|*dT (5.3.10)
Fl 1—‘1

Hence under the hypothesis (H), system (5.3.2)-(5.3.8) is dissipative in the sense that its energy
is non-increasing with respect to time . Let us define the Hilbert space H® by

HO = HE,(Q) x L2(Q) x (L*(T'y x (0,1)))",

equipped with the following inner product

1 —
(U, U)o = a(u, ur) + /Uv_ldiv+71|ﬁz|/ / 212} dpdl’
0 r, Jo

1 E—
+7'2]72]/ / 2?22dpdl,
. Jo

where U = (u,v, 2!, 22)7, Ut = (uy,vy,21,22)"T € H°. Now, we define the linear unbounded
operator A% : D(A%) C H® — H by:

(5.3.11)

U = (u,v,2%,2%)7 € Dry(A2) x HZ, (Q) x (L2(T'y; HY(0,1)))? |

D(A%) =< Biu= —B10,v — Boz2t(,1), Bou = yv + 12%(-,1) on Ty
21(-,0) =0,v, 2%(-,0)=wv on I}
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and
v
u —A%y
A S = Lo | VYU = (w0, 2" )T € D(AY). (5.3.12)
22 o5l P
z 1 9
——z
T2 P

Now, if U = (u,us, 2%, 2%) " is solution of (5.3.2)-(5.3.8) and is sufficiently regular, then system
(5.3.2)-(5.3.8) can be written as the following first order evolution equation

U, =AU, U(0) = Uy, (5.3.13)
where Uy = (uo, u1, fo(, —p71), go(-, —p72)) " € H.

Proposition 5.3.1. Under the hypothesis (H), the unbounded linear operator A° is m-
dissipative in the energy space H°.

Proof. Similarly to the proof of Lemma 5.2.1, we show that

mm%mmwg%@—mm/ﬁmwﬂ
" (5.3.14)
—(m—|el) [ [?dl <0, YU € D(A%)

Iy
and that 0 € p(A°). O
According to Lumer-Phillips theorem (see Theorem 1.2.8), Proposition 5.3.1 implies

that the operator A° generates a Cy-semigroup of contractions e'A” in H° which gives the
well-posedness of (5.3.13). Then, we have the following result:

Theorem 5.3.1. For all Uy € H°, system (5.3.13) admits a unique weak solution U(t) =
e AUy € CO(R, H®). Moreover, if Uy € D(A°), then the system (5.3.13) admits a unique
strong solution U(t) = e’ Uy € CO(R,, D(A®)) N CH (R, H°).

Theorem 5.3.2. Under the hypotheses (H) and (1.4.1), the Cy—semigroup of contractions
(et“‘w) is strongly stable in H’; i.e., for all Uy € H°, the solution of (5.3.13) satisfies
>0

Jim_ [Tyl = 0.

Proof. Similarly to the proof of Theorem 5.2.2, we can show that
ker(iA] — A%) = {0}, VA€ER,
{ (5.3.15)

RGN — A°) =H?, VA ER,

consequently A% has no pure imaginary eigenvalues and o(A°%) NiR = (), and we conclude by
Theorem 1.3.3. U
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5.3.2 Exponential stability

Theorem 5.3.1. Under the hypotheses (H) and (1.4.1), the Cy—semigroup €A’ is exponen-
tially stable; i.e., for all Uy € HY, there exist constants M > 1 and € > 0 independent of U,
such that

1€ Ug|lge0 < Me™||Upllp0, t > 0.

Proof. Since iR C p(A") (see Section 5.3.1), according to Theorem 1.3.6, to prove Theorem
5.3.1, it remains to prove that

limsup || (A — AO)_I | om0y < 0. (5.3.16)
AER, |A|—o0

We will prove condition (5.3.16) by a contradiction argument. For this purpose, suppose that
(5.3.16) is false, then there exists {(An, Up := (tn,vn, 25, 22) 1)}, o, C R* x D(A?) with

I An] > 00 asn— o0 and ||U,l|lgo =1,V > 1, (5.3.17)
such that
(iA I — AU, = F,, := (fin, fg,n,glyn,ggm)T —0 in H° asn— . (5.3.18)

For simplicity, we drop the index n. Equivalently, from (5.3.18), we have

iM—v = fi—0 in HE(Q), (5.3.19)

i+ A% = f, =0 in L*(9), (5.3.20)
1

X'+ —z, = g1 —0 in L*Ty x(0,1)), (5.3.21)
71
1

iNP+ =22 = go—0 in L*(I; x (0,1)). (5.3.22)
T2

Taking the inner product of (5.3.18) with U in H° and using (5.3.14), we get
(Br = 1Ba]) [ 10,0 dT + (71 = |yel) | [*dD < —R(AT, U)o = R(F, U)geo < [|F [0 |U 300,
Fl F1
From the above estimation, (H) and the fact that ||F||30 = o(1) and ||U||30 = 1, we obtain
|0,v|%dl" = o(1) and lv|?dT = o(1), (5.3.23)
Fl I‘1
consequently, from (5.3.19), a trace theorem and the fact that ||F||0 = o(1), we get
|0,ul?dl’ = o(A™%) and |u|?dl’ = o(A72). (5.3.24)
Fl 1—‘1

Now, from (5.3.21), (5.3.22) and the fact that z'(-,0) = 9,v(-), 2%(-,0) = v(:) on I';, we may
write

. p .
(-, p) = Ove P 4 7'1/ gl(-,s)e“\ﬁ(s_p)ds on I'y x (0,1),
0
o

22(-, p) = ve TP 4 T2/ g2(-, 8)e?6=Pds on Ty x (0,1).
0
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From the above equations, (5.3.23) and the fact that ||F'||30 = o(1), we obtain

1 1
/ / |2'|*dpl" = o(1) and / / 12%|%dpl’ = o(1), (5.3.25)
l—‘1 0 Fl 0

|2'(-,1)|?dl"’ = o(1) and |22(-, 1)|2dT = o(1). (5.3.26)

Fl F1
Next, from the above estimations, (5.3.23) and the fact that U € D(A°), we get

and

/ |Biu|?dl’ = o(1) and / |Byu|?dl’ = o(1). (5.3.27)
I Iy

Moreover, from (5.3.24), (5.3.27) and Lemma 5.2.8, we obtain

— %{/QAQU(h : Vﬂ)dx} < —%a(u,u) +o(1). (5.3.28)

On the other hand, inserting (5.3.19) in (5.3.20), then multiplying the resulting equation by
(h - Vu) and continue with the same argument as in the proof of Lemma 5.2.9, we obtain

/Q ul?de = —R {/Q A%u(h - va)dx} +o(1), (5.3.29)

and consequently, from (5.3.28), we deduce that
/ |Mu|?dr = o(1) and a(u,u) = o(1). (5.3.30)
Q

Finally, from (5.3.25) and (5.3.30), we obtain
1Ul[30 = o(1),

which contradicts (5.3.17). The proof is thus complete. O

5.3.3 Some instability results

In this subsection, we will give some instability examples of system (5.1.2) in the cases |52 > (1
and || > ;. This is achieved by distinguishing between the following cases:

|ﬁ2| =3 and ‘72| =71, (181)

|B2] > 1 and |yo| >y and |Be| — Bi + [v2] =1 > 0. (ISz)

Theorem 5.3.3. If (IS;) or (IS,) hold, then there exist sequences of delays and solutions of
(5.1.2) corresponding to these delays such that their standard energy is constant.

Proof. We seek for a solution of system (5.1.2) in the form

u(z,t) = eMop(z), with A # 0. (5.3.31)
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Inserting (5.3.31) in (5.1.2), we get

Ao+ A% =0 in Q,
w=0,0=0 on [,
Bip = —iX(B1 + f2e"*™)Dp on Ty,

Bop = iA(71 4+ 72¢ ™)@ on T

(5.3.32)

Let 6 € Hf (Q). Multiplying the first equation in (5.3.32) by #, then using Green’s formula,

we get

-2 / o0dz+a(p, 0)+iX(By+Bae™ ™)
Q

Fl 1_‘1

for all § € HE (). Now, since |3;| > 1 and |y,| > 71, then we assume that

cos(Ary) = === and  cos(\p) = _n
2 2

Thus, we choose

Bosin(Am) = /B3 — A7 and vasin(Ar2) = /73 — 7.

Inserting (5.3.34) and (5.3.35) in (5.3.33), we obtain

2 va /32 _ ;32 7 [A2 A2 20T —
A /ngedxjta(go,@)—i—)\ B5 — Bi /F18V¢8V9dF+)\ Y5 — Vi /FlgpedI‘—O,

for all 0 € HE (). Now, taking § = ¢ in (5.3.36), we obtain

—AZ/QIsDIQdchra(so,sO)JrM/ﬂ%—5%/ |3u80|2dr+)\\/’y§—’yf/ |p[2dT" = 0.
'y I

Without loss of generality, we can assume that

loll2) = 1.

Thus, from (5.3.37) and (5.3.38), we get
N —alp, ) = M/ B3 = Bia. () = M/3 —tale) =0,

alp) = / PPl and q,(¢) = / By
I I

where

We define
W = {w € H%O(Q) | w220y = 1}.

Now, we distinguish two cases.
Case 1: If (IS;) holds, then from (5.3.39), we have

a(p,p) = A2,
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(5.3.39)

(5.3.40)
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Let us define
A = min a(w, w). (5.3.42)

weWw
Now, if ¢ verifies
a(p, p) = gélvrl} a(w,w),

then it easy to see that ¢ is a solution of (5.3.33) and consequently (5.3.31) is a solution of
(5.1.2). Moreover, from (5.3.31) and (5.3.9), we get
E°(t) = E°(0) > a(p, @) + )\2/ lp|Pdz = 2)\* >0, Vt>0.
0

Thus, the energy of (5.1.2) is constant and positive. Further from our assumptions
cos(Ary) = —1, sin(Am) =0, cos(Are) = —1, sin(Ar) =0,
system (5.3.32) becomes
Mo+ A% =0 in 9,
p=0,0p=0 on I,
Bip=0 on I,
Byp =0 on IY.

So, we can take a sequence (), of positive real numbers defined by

A2 =A2 neN,

(5.3.43)

where A2, n € N, are the eigenvalues for the bi-Laplacian operator with the boundary condi-
tions (5.3.43)2-(5.3.43)4. Then, setting

A= (2k+1)m, k€N and N\, =20+ 1w, [ €N,

we get the following sequences of delays

(2k+1)m

2041
Tk = kE,neN and 1o, = u

Ao
which becomes arbitrarily small (or large) for suitable choices of the indices n,k,l € N.

Therefore, we have found sets of time delays for which system (5.1.2) is not asymptotically
stable.

I,neN,

Case 2: If (IS,) holds, then from (5.3.39), we have

A= % [\/63 — B, (9) + /73 — viq(p)

- (5.3.44)
i\/(\/@? — Biq(0) + /75 — qu(w)) +4a(p, )
Let us define
vim g mip 45 = 0 0) + \o8 —atatw)
(5.3.45)

+\/<\/ﬁ§ — B (w) + /73 — V%Q(w))Q + da(w, w)

146



CHAPTER 5. STABILITY AND INSTABILITY RESULTS OF THE KIRCHHOFF...

Let us prove that if the minimum in the right-hand side of (5.3.45) is attained at ¢, that is

\/ B2 = Bia.(v) + /73 — rialy)
+\/(\/ﬂ§ — B (p) + /75 — W%q(w)f + da(p, )

(5.3.46)
_ 2 _ 32
— mip {/6 - St (w)
2
+4/75 —fa(w) + (\/53 = Biav(w) + /73 — qu(w)> +da(w,w) ¢,
then ¢ is a solution of (5.3.36). For this aim, take for ¢ € R
w=¢+ef with € HE (Q) such that / ©hdz = 0. (5.3.47)
Q
Thus, we have
lwliZa) = lellza@) + € l0ll72@) = 1+ 1001220y (5.3.48)
Now, if we define
= Y 0) 0)
1) = gy (VA te+0) i =t +0)
(5.3.49)

2 9
+ \/(\/53 — Biau(p +€b) + /75 —rigle + 89)> + 4a(p + €0, o + €0)

thus, from (5.3.46), we get

f(e) = £(0) =/ B3 — Bia.(v) + /75 —1ialy)
+ \/<\/B§ — Bia.(p) + /75 — 7%(1(@))2 + da(p, p),

£1(0) = 0.

Consequently, after an easy computation, we obtain

a(p,0) + /53 — 512/ 0,00,0dT" + \\/~3 — vf/ ©fdl = 0. (5.3.50)
Iy Iy

Since any function 6 € HZ () can be decomposed as

which gives

0=oap+60 with « €R and 0 e HZ, () such that / ©hdr = 0,
0
from (5.3.50) and (5.3.37), we obtain that ¢ satisfies (5.3.36). Thus, for such A > 0

AT| = arccos (—&) + 2km, k€N and Arp, = arccos (—ﬁ> +2lw, €N,
Y2

2

define a sequences of time delays for which (5.1.2) is not asymptotically stable. The proof is
thus complete. O
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