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Introduction

Problem statement

For over seventy years, non-destructive testing (NDT) of materials has been an
area of continued growth. Structural health monitoring (SHM) is an important par-
ticular case of NDT allowing to permanently inspect a structure in service for flaws.
Examples of SHM applications include aircraft structures, bridges, offshore wind
energy plants, pipes and rails. Detecting flaws and analyzing their severity in time
is critical for transportation safety, safe use of infrastructure and industrial objects.

Ultrasound is relatively inexpensive and harmless technology comparing to other
SHM methods. Classical methods of ultrasonic NDT involve actuators and sensors
attached to the testing structure. In pitch-catch inspection mode, actuator emits
ultrasound so that it it propagates through the structure and is received by the
sensor on the other side. The passed signal delay can be used to determine the
presence of damage. In pulse-echo inspection mode, the same element plays the role
of actuator and sensor. Instead of passed signal here the reflected signal delay reveals
damage.

Some limitations are specific to SHM. Indeed, contrary to the conventional NDT,
it is not possible to physically move the scanning sensors around the sample, since
they are integrated into the structure. It is therefore necessary to use robust signal
processing techniques to extract useful information on the defect using a limited num-
ber of sensors. It is also important to reduce the power consumption of the ultrasonic
sources, to make them lighter, simplify the electronics, and limit the electromagnetic
interactions between the cables.

Some NDT techniques require additional measurement on a baseline pristine
sample. It should be a copy of the test sample except for damage presence. It is

1/162



Introduction

challenging to produce such a sample for some cumbersome or unique structures (e.g.
colliders or nuclear reactors). Another issue with baseline is that it stops being valid
and has to be replaced whenever environmental or operational conditions change.

To address the two latter issues, in this work we propose to use the ambient noise
to scan the inspected sample. Indeed, when the noise is diffuse, i.e. without any
privileged location or direction, the cross-correlation of the signals recorded between
two points of the environment gives the impulse response (i.e. the Green’s function)
as if one of the two receivers had been substituted by an actuator. This approach
has been used in seismology since 1968, first introduced by Claerbout [1]. Some years
later, in the ultrasonic domain, Lobkis and Weaver [2] showed that the latter is also
valid in reverberant solids. Since then significant number of research works have been
concerned with passive acoustic SHM, i.e. inspection based on the use of ambient
noise.

The most interesting findings highlighted in the project ANR PASNI (Passive
Acoustic Sensing Network and Imaging), in which my supervisors E. Moulin and
L. Chehami were involved, contributed to development of passive ambient noise ima-
ging. L. Chehami et al. developed a reliable passive damage localization algorithm.
My PhD thesis is a continuation of her work.

Figure 1 – Illustration of CAN behaviour under LF loading : (a) nonlinear HF
emission (e.g. harmonics generation) ; (b) local variation of material properties and
wave scattering.

For robust damage monitoring, it is important to detect nonlinear defects such as
cracks, delaminations, etc. In this thesis, contact acoustic nonlinearity (CAN) plays
the role of damage, and we study its interaction with acoustic waves and vibrations.
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Introduction

When the structure to which CAN belongs is excited with high frequency (HF)
acoustic waves and low frequency (LF) vibrations, CAN either becomes a secondary
wave source (see fig. 1 a) emitting harmonics or modulates local material properties
(fig. 1 b) and scatters the wave in various directions. In this work, damage detection
means is based on the modulations induced by CAN under variable low frequency
loading states. More precisely, the CAN is subjected to low-frequency (pump) vi-
brations that modifies the local properties of material which in turn alters the high
frequency (probe) signal revealing the signature of the CAN.

The thesis work presented in this manuscript finds its originality in the set of
studies conducted at the IEMN-DOAE and IEMN-LCI. This thesis is financed by
the French National Research Agency (ANR) in the framework of the ANR PANS-
CAN (Passive Ambient Noise-based Structural monitoring through the exploitation
of Contact Acoustic Nonlinearity) project, carried out by a four UMR CNRS la-
boratories : IEMN-DOAE (Valenciennes), IEMN-LCI (Villeneuve d’Ascq), Institut
Langevin (Paris) and LaMCoS (Lyon).

Research objectives
Summarizing the desired requirements we formulate the following objectives of

the present study :
Experimental : develop an acoustical localization technique for SHM that
— is sufficiently sensitive for robust detection of contact nonlinearities
— does not require baseline sample
— is efficient for passive inspection with ambient noise
Theoretical : Create a numerical model or, eventually, numerical tool for mo-

deling wave propagation in a thin plate containing contact acoustic nonlinearity
— taking inner friction into account
— predicting measurable indicator of contact acoustic nonlinearities
— helping to test and optimize the detection algorithm
Practical :
— Contribute to the creation of embedded structural health monitoring system

into aircrafts

3/162



Introduction

Thesis outline
This manuscript consists of five chapters. In the first chapter, a review on exis-

ting ultrasonic structural health monitoring methods is given with an emphasis on
reference-free and passive methods. Lamb waves interaction with defects in an elastic
plate is discussed. Scattering characteristics of damage are introduced and the me-
thod to measure them is described. Green’s function reconstruction from correlation
of diffuse waves is discussed.

Chapter 2 describes in detail pump-probe experimental procedures of two kinds :
synchronized and non-synchronized emission between low frequency and probe si-
gnals. Reference-free repetitive probing damage localization algorithm taking into
account the dispersion of A0 Lamb mode is proposed. Results of contact acoustic
nonlinearity (CAN) localization on a thin plate are presented with incoherent ima-
ging. To improve localization image contrast, the beamforming algorithm is modified
through multiplying by ah-doc coefficients resulting in synchronous detection.

Chapter 3 focuses on relationship between the defect scattering cross-section and
localization image contrast. This relationship is derived both theoretically and by
measurements. Detection scattering cross-section threshold is estimated. Essential
parameters influencing the contrast are found.

Chapter 4 is concerned with preliminary experimental results on the passive lo-
calization method. In pump-probe experiments, high frequency white noise plays
the role of probe wave. The optimal parameters are established both for diffuse field
emission (thus, satisfactory Green’s function reconstruction) and for defect scattering
cross-section to exceed the detection threshold. Localization results are discussed.

In chapter 5, physical modeling for ultrasonic waves propagation in a thin plate
in the presence of localized contact acoustic nonlinearity is performed. The contact
is activated by the Lamb wave propagation in a thin plate that generates a specific
response in terms of contact loads that, in turn, perturbs the propagation medium
and induces secondary waves in there. Two types of CAN are compared with each
other : the one that was used in the experiment and more realistic crack-like CAN.
Numerical modeling tool that takes into account the above-mentioned phenomena
and imitates wave-CAN interactions in simplified 2D plate-like geometry is given.
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Chapter 1

General review for SHM techniques and
associated signal processing tools

Contents
1.1 Propagation and scattering of Lamb waves in thin elastic plates 6
1.2 Damage detection using guided waves . . . . . . . . . . . . . . . 10

1.2.1 Active baseline-free methods . . . . . . . . . . . . . . . . 10
1.2.2 Passive methods . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Damage localization . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Damage localization using ultrasonic arrays . . . . . . . 18
1.3.2 Beamforming techniques . . . . . . . . . . . . . . . . . . 18

1.4 Defect scattering characteristics . . . . . . . . . . . . . . . . . . 21

Introduction
Structural Health Monitoring (SHM) refers to a permanent inspection of a system

or a structure in service and includes damage detection, structural integrity assess-
ment, as well as damage evolution prognostics and life-time estimations. Permanent
monitoring should be capable of detecting fatigue damage that appears in materials
under repetitive loading, and possibly locate it.

Structural Health Monitoring is a part of nondestructive testing (NDT). Examples
of widely used methods for not entirely acoustic NDT include : eddy currents in thin
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1.1. PROPAGATION AND SCATTERING OF LAMB WAVES IN THIN
ELASTIC PLATES

plates [3, 4], ionizing radiation tomography [5], thermal wave imaging [6], thermal
acoustic imaging and ultrasonic infrared thermography[7, 8]. In industry they often
practice magnetic patricle testing and liquid penetrant testing [9, 10]. In this chap-
ter, we will be particularly interested in ultrasonic methods based on guided waves
widely used in NDT and SHM.

1.1 Propagation and scattering of Lamb waves in
thin elastic plates

Ultrasonic guided waves are a powerful tool in SHM due to their simple imple-
mentation, low attenuation, and their ability to provide detailed information about
a structure [11].

Lamb waves are guided elastic waves whose particle motion occurs in a thin plate
in a plane described by the normal to the surface and the direction of propagation
(see fig. 1.1).

Figure 1.1 – Displacement of symmetric (top) and antisymmetric (bottom) Lamb
wave modes. The discontinuous line represents the middle of the plate.

They occur in materials with a uniform thickness on the order of a few wave-
lengths or less. Due to their relatively short wavelengths, they have shown promise
in detecting highly localized defects [11].

The issues with Lamb waves based structural health monitoring are in their multi-
mode dispersive nature (see fig. 1.2) and complex wave reflection from structural
boundaries. To tackle these issues, usually the inspected plates are chosen relatively
large, so it is possible to consider them infinite and the analysis will be based on
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CHAPTER 1. GENERAL REVIEW FOR SHM TECHNIQUES AND
ASSOCIATED SIGNAL PROCESSING TOOLS

the first wave arrivals only. Another technique consists of the use of optimal sensors
and actuators allocation in correlative sensors array [12]. Damage is located based
on analysis of correlations between signals from different sensors.

The effects of dispersion traditionally have been minimized by using narrow band-
width input signals to concentrate input energy at a point (referred to as the opera-
ting point) on the dispersion curves in which the dispersion is low [13]. More recently,
digital post-processing techniques have been shown to be effective in compensating
for the effect of dispersion, even when the operating point is in a dispersive region [14].
Modal selectivity is generally achieved by using narrow bandwidth input signals in
conjunction with transducer design [13].

Figure 1.2 – (taken from Liu et al. [15]) Dispersion curves of Lamb waves in an
aluminum plate : (a) phase velocity and (b) group velocity.

If a plate is sufficiently thin and excitation frequency is sufficiently low, number
of Lamb modes in a plate is limited, which prevents modal interaction and simplifies
localization process.

In some plates it is possible to excite only one fundamental mode (S0 or A0, see
fig. 1.1). Selective generation of Lamb modes is necessary for detecting vertical (S0)
and horizontal (A0) damage position [16]. Clezio et al. (2002) [17] used S0 Lamb wave
mode by adopting a frequency below the S1 cut-off, to quantify vertical cracks in an
aluminum plate. Single A0 mode excitation in a thin plate using Hertzian contact is
described in [18] where a transducer generates normal displacement on the surface.

The theoretical number of the antisymmetric Lamb modes that can travel in a
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1.1. PROPAGATION AND SCATTERING OF LAMB WAVES IN THIN
ELASTIC PLATES

plate of a certain thickness is given by Eq. (1.1) [19].

Na = 1 +
[2d
λl

]
+
[2d
λt

+ 1
2
]
, (1.1)

where λl and λt refer to longitudinal and transverse wavelengths, respectively, d is a
half-thickness of the plate, « [ ] » denote integer part of a number. Having in mind
that λt < λl we arrive to the condition : if [2d

λt
] = 0, then Na = 1, namely, only A0

mode is present.

Figure 1.3 – Scheme of a thin plate.

The following dispersion relationship in Eq. (1.2) defines wavenumber k for A0
Lamb mode in isotropic plates [19].

(2k2 − k2
t )2 · sinh (

√
k2 − k2

l d) · cosh
(√

k2 − k2
t d
)

=

= 4k2 ·
√
k2 − k2

l

√
k2 − k2

t · cosh
(√

k2 − k2
l d
)

sinh
(√

k2 − k2
t d
)
,

(1.2)

where kl = ω
cl

and kt = ω
ct

are wavenumbers for longitudinal and transverse waves

with longitudinal cl =
√

E(1−ν)
ρ(1+ν)(1−2ν) and transverse ct =

√
E

2(1+ν)ρ phase velocities, d
is a half-thickness of the plate, ω stands for angular frequency, E and ν are Young’s
modulus and Poisson’s ratio of plate material, respectively, and ρ is mass density of
a plate material. If kA0 is a solution to Eq. (1.2), then displacement components for
A0 mode can be expressed as : uLambx = BkA0( sinh qy

cosh qd −
qs

k2
A0+s2 · sinh sy

cosh sd) cos (kA0x− ωt− π/2)
uLamby = −Bq( cosh qy

cosh qd −
2k2

A0
k2

A0+s2 · cosh sy
cosh sd) cos (kA0x− ωt) ,

(1.3)

where q =
√
k2
A0 − k2

l , s =
√
k2
A0 − k2

t , B is an amplitude-related factor with the
dimensionality of the length square. Coordinate system (x,y) is introduced in fig. 1.3.
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By taking time derivative of Eq. (1.3), velocity components for A0 mode can be
obtained :  vLambx = −ωB · k · ( sinh qy

cosh qd −
2·q·s
k2+s2 · sinh sy

cosh sd) · cos (kx− ωt)
vLamby = −ωB · q( cosh qy

cosh qd −
2·k2

k2+s2 · cosh sy
cosh sd) · sin (kx− ωt) . (1.4)

Stress tensor components can be deduced from Eq. (1.3) by using Hook’s law
σik = λεllδik + 2µεik resulting in :

σLambxx = (λ+ 2µ)Bk2( sinh qy
cosh qd −

2qs
k2+s2

sinh sy
cosh sd) cos (kx− ωt)

−λBq( q sinh qy
cosh qd −

2k2s
k2+s2

sinh sy
cosh sd) cos (kx− ωt)

σLambxy = 2µBkq( cosh qy
cosh qd −

cosh sy
cosh sd) · sin(kx− ωt)

σLambyy = −Bq(λ+ 2µ)( q sinh qy
cosh qd −

2k2s
(k2+s2) ·

sinh sy
cosh sd) cos(kx− ωt)

+λBk2( sinh qy
cosh qd −

2qs
(k2+s2) ·

sinh sy
cosh sd) cos(kx− ωt) ,

(1.5)

where λ and µ are Lamé parameters.
Another way to obtain kA0(ω) is by using Kirchoff-Love theory [20] based on the

following assumptions :
— Plate is isotropic, plane and homogeneous ;
— Transverse displacement of the plate mean plane does not exceed its thickness ;
— The normal to plate surface remains normal to plate mean plane during defor-

mation ;
— Rotational inertia of the plate can be neglected (valid for low frequency-thickness

products).
If all these conditions are met, then the following equation for normal displacement
uy holds :

D∆2uy(~r, t) + 2ρd∂
2uy(~r, t)
∂t2

= −F (~rs, t) , (1.6)

where F (~rs, t) is a transverse component of a force acting on the plate, and D is a
bending stiffness coefficient defined as :

D = 2Ed3

3(1− ν2) . (1.7)

Solution of Eq. (1.6) in the form of propagating wave uy0 e
−i(~k~r−ωt) leads to the

following analytical expression of A0 wave number for low frequency-thickness pro-
ducts :

k(ω) =
(2ρd
D

)1/4√
ω . (1.8)
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1.2. DAMAGE DETECTION USING GUIDED WAVES

In the next section, interaction of Lamb waves with defects in a thin plate will
be discussed.

1.2 Damage detection using guided waves

1.2.1 Active baseline-free methods

Many SHM techniques require additional reference measurements on a baseline
intact sample for comparison with the actual monitored structure. However, even
a significant difference with the reference in measured properties does not neces-
sarily indicate the presence of damage. Indeed, materials’ characteristics can slowly
evolve due to aging, environmental effects, change in temperature, loading, boundary
conditions, moisture, surface conditions or other external factors, etc. In addition,
measurements in the original state of a structure are frequently not available or not
possible. That is why development of reference-free damage detection methods has
lately become a trend in research works.

Environmental and operational conditions effects on Lamb wave based structural
health monitoring systems are reviewed in [21]. Temperature variations affect ampli-
tude and arriving time of Lamb waves. It is experimentally shown that by increasing
temperature, the wave group velocity decreases which affects the experimental mea-
surement of time of flight.

Low frequency vibration causes deviation in recorded time domain signals [22] in
comparison with static structure, since vibration generates flexural waves in addition
to the Lamb waves actuated by the PZT elements. Time of flight changes only within
the margin of error, so time of flight based methods are still valid. Strain tensor
becomes asymmetric and Lamb waves speeds change because of the acoustoelastic
effect [23].

Loads applied to initially isotropic plate make it slightly anisotropic, hence, the
magnitude of the time shift due to varying applied loads, depends on the propagation
angle [21].

a) Optimal baseline selection and instantaneous baseline

First ancestors of an algorithm with no baseline is an optimal baseline selection
[24, 25] and baseline signal stretch or both of them together [26]. These approaches
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imply multiple baseline samples subjected under different environmental conditions,
i.e. temperatures. The baseline that is the most coherent with an experimental si-
gnal is selected and adjusted. Then an error parameter between the signal and the
adjusted baseline waveform is calculated and compared to a threshold to determine
the structural status. However, optimal baseline selection is storage consuming and
there is a risk to confuse a flaw with a temperature deviation.

Stubbs and Kim in 1996 [27] elaborated a method of damage localization in a
steel beam based on changes in mode shape of the structure after being damaged. A
combination of a finite element model together with postdamage modal parameters
from an experiment allow one to estimate possible baseline parameters. This method
is feasible only for structures with simple geometry.

To get rid of environmental changes dependency, instantaneous baseline could be
applied. In this approach [28], Lamb wave propagation along several paths is inter-
rogated in pitch-catch configuration with a distributed transducers array. Common
features in the undamaged paths are considered as instantaneous baseline and used
for damage prediction. The flaws of instantaneous baseline are the following : preci-
sion strongly depends on number of transducers, localization is only possible on the
paths’ intersection.

b) Neural networks and artificial intelligence

A promising technology for nondestructive testing is based on artificial neural
networks due to their excellent pattern recognition capability. First, neural networks
were used in damage localization by Wu et al in 1992 [29]. They trained a neural
network to recognize the behavior of the undamaged structure as well as the behavior
of the structure with various possible damage states. The trained network was able to
detect and localize any existing damage based on structural response measurements.
Neural networks can be trained to be immune to changes in various environmental
and operational conditions, thus, they only indicate damage when changes in the
data do not correlate with the learned effects avoiding false positive predictions. For
instance, neural networks provide possibility to use only one initial baseline instead
of multiple and build others with the help of dictionary learning algorithm [30].
Or at least the errors in the intact baseline can be accounted [31] by estimation of
structure modal properties in various perturbation states. Recently, Mariani et al
detected damage in plates using CNN for guided waves at temperatures well outside

11/162



1.2. DAMAGE DETECTION USING GUIDED WAVES

the range in the baseline set of signals [32].
Neural networks help reducing required number of baseline samples, accounting

for errors in intact sample and expanding the detection method scope beyond the
existing set of baseline samples, however, up to now neural networks are not able to
get rid of baseline samples completely. So although this method is not completely
baseline-free but it reduces the methodical error related to the baseline and allows
to test samples in conditions different to the baseline set, therefore moves towards
baseline-free situation.

c) Coda wave interferometry (CWI)

The idea of CWI is to delay each wave packet by an amount of time proportional
to the relative velocity change. Maximum of cross-correlations between source signal
and the delayed one in short time-windows corresponds linearly to relative velocity
change. As diffused waves travel along much longer paths than direct or simply re-
flected ones, they are much more sensitive to weak perturbation in the medium. This
high sensitivity makes CWI stand out compared to time-of-flight techniques [33].
Using CWI allows to eliminate undesired environmental effects by carrying out tests
over a time scale shorter than the characteristic temperature (or humidity) change
time. Instead of reference it is possible to compare codas before and after pertur-
bation. However, if change in testing structure between the states before and after
perturbation exceeds certain limit, then waveforms might be shifted by more than
a half of the wavelength between windows which makes classical CWI inapplicable.
In this case stepwise CWI must be applied [34]. In addition, stepwise CWI provides
estimation of maximum load amplitude to remain nondestructive. Zhang et al. [35]
showed that CWI relying on reference sample is ∼ 5 times more accurate. They used
one part of the concrete sample to test and the other part as a reference which is
sort of instantaneous baseline.

Evidences of interaction between independent waves of different frequencies is
a classical proof of nonlinearity existence. Pump-probe experiment is one of the
ways to arrange frequency mixing. It implies excitation of a structure by signals of
two different central frequencies such as fprobe � fpump. For example, pump-probe
experiment applied together with Coda Wave Interferometry in [36] results in a coda
wave velocity variation due to interaction with low-frequency pump waves. When the
probe signal is shorter than the pump counterpart, it is efficient to perform temporal
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averaging combined with asynchronous excitation of probe and pump signals, because
this procedure averages the nonlinear mixing effect of the pump on the probe wave,
hence, enhances it.

d) Probability-based diagnostics

A classical probabilistic damage diagnostic algorithm is based on a correlation
coefficient between signals recorded in the same structure at different damage states
– no damage (baseline), one damage, two damage – and digital damage fingerprints
extracted from the signals captured by a set of sensors. The probability of damage
presence at a point is estimated as a sum of probabilities for different actuator-sensor
paths. It is related to distances from a point to both actuator and sensor, as well as
specific amplitude features related to the presence of damage [37].

Probability-based diagnostic imaging is interesting, because it is not relying on a
shape of structure, so it is useful in the absence of structure’s physical model, appli-
cable for complex structures such as composites. In [38] probability of the damage
presence in the monitoring area estimated using correlation coefficients of Lamb wave
signals from an active sensor network. Damage index is defined by comparing the
real-time data with the baseline data as reference. Recently reference-free probabi-
listic approaches also appeared. In [39] the damage index is defined based on the
mode conversion of multi-mode guided waves with real-time signals without baseline
signals. Interrogating different sensing paths sensor-actuator one can obtain proba-
bility of damage presence. Localization precision depends on number of sensors and
paths (should be long enough to contain both S0 and A0 modes) and is limited
by intersection of paths. However, probabilistic approaches are applicable only for
damages related to variation in thickness of the plate (cracks, corrosion).

In reconstruction algorithm for probabilistic inspection of defects (RAPID), pro-
bability esteem of damage presence at a certain position depends on a correlation
between signals recorded on test and reference samples and distance from emitter to
receiver via interrogated point averaged over multiple emitter-receiver pairs. Proba-
bility mapping provides damage localization image. In 2007 in [40] it was used for
detection of corrosion in an airplane wing and recently geometricaly modified version
of RAPID was applied for composite plates [41].

Combination of coda wave interferometry and multiply scattered waves spec-
troscopy [42] allow one to localize perturbation in propagation velocity (source
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1.2. DAMAGE DETECTION USING GUIDED WAVES

or scatterer) under diffusion approximation by cross-correlating of the unperturbed
and perturbed wave fields. Similar to a standard CWI, analysis of later-arriving wa-
veforms is performed. Later this probabilistic approach was developed and called
LOCADIFF (Locating a weak change using diffuse waves) [43]. Maximum likelihood
approach combined with a diffusive propagation model provide scatterer’s location
as well as its effective scattering cross-section.

e) Time reversal

Another method capable of detecting small nonlinearities is called Time Rever-
sal (TR) invariance [44]. The idea of TR is to re-emit of a time reversed version of
the reflected and transmitted waves and reconstruct the original pulse shape. Due
to the spatial reciprocity and time-reversal invariance of linear wave equations re-
constructed signal is deviated from the input – time reversibility breaks down – only
in case of nonlinearity (or high attenuation) along the wave path. Typical markers
of damage are additional frequencies generated during forward propagation such as
higher harmonics, sub-harmonics and zero-frequency component.

As for Lamb waves, application of TR for them is complicated because of their
dispersive nature. Dispersion causes non-uniform amplitude distribution of different
frequency components in the signal passed through the medium, since some of the
components arrive to receiver earlier than the others. Therefore, reconstruction of
broadband signals, whose components propagate with essentially different veloci-
ties, is challenging. In order to enhance TR and tackle dispersion issue allowing to
detect damage in a plate without baseline sample, wavelet-based signal processing
technique can be applied [45] or probabilistic approaches such as consecutive outlier
analysis [46].

Nevertheless, time reversibility of Lamb waves is widely used for baseline free
damage detection techniques, in particular, applying time reversal mirror and self-
focusing effect [47],[48],[49], [50]. There are possible concerns with an incorrect in-
terpretation of the physics of time reversal and also incorrect approach to assessing
time reversibility in several published papers. Hence, it is recommended to refer to
reference [51] for a critical discussion of these issues.

It was concluded [52], that TR is relatively immune to environmental and ope-
rational variations but, on the other hand, there are significant limitations such as
necessity to employ narrowband signals to minimize dispersion and a large number
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of transducers required for precise localization. In [53] combination of methods is
applied : pump-probe experiment is performed, CWI is used to analyze frequency
mix interacting with nonlinearity for global inspection of a structure, and TR aids
for damage localization by focusing a pump wave.

In [54] the loss of reciprocity is estimated with a reciprocity index, which compares
the discrepancy input signal and re-emitted one depending on elastic responses from
A to B and from B to A. High values of this index identify damaged paths between
transducers. Together with probabilistic imaging algorithm this technique allowed to
detect a delamination in a plate.

f) Lamb wave based SHM

Sohn and co-researchers [55, 45, 52, 56] have put forward a time reversed Lamb
wave based damage detection technique through theoretical and experimental study.

Mode conversion technique benefits from multimodal dispersive nature of Lamb
waves. In [57] collocating PZT transducers are attached to the opposite surfaces of
a thin plate, then guided waves are excited across different transducer pairs. Crack
formation creates Lamb wave mode conversion due to a sudden change in the thi-
ckness of the plate. Knowledge of transducers’ polarization characteristics allows to
isolate mode conversion and, hence, identify damage.

Qu et al [58] presents a baseline-free imaging technique based on Lamb waves
along with using decomposition of time reversal operator. In [59] Lamb wave based
refined time reversal method without baseline has been tested. First, probe frequency
of best reconstruction is selected and, second, an extended wave packet ranging
between two sidebands accompanying the main mode of the reconstructed signal is
used for computing a damage index.

The idea of guided wave tomography was initially inspired by the computatio-
nal tomographic technique used in X-ray imaging. Combining the computational
tomographic algorithms with guided wave features, researchers have been able to ge-
nerate tomograms that reveal structural integrity of the objects under inspection [60].
Signal Different Coefficients are guided wave features that account for mode conver-
sion, changes in signal amplitude and in wave velocity. They are derived from the
mean-removed cross-correlation value between guided wave signals from two data
sets.
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1.2.2 Passive methods

Passive SHM is monitoring based on analysis of ambient noise (diffuse acoustic
field). Monitoring of this kind is energy saving, since ultrasound generator is not
required.

The possibility of retrieving the impulse response (the Green’s function) of a com-
plex medium by correlating records between two passive sensors has been suggested
several times in the literature [61]. Weaver and Lobkis [2] have first shown that me-
thod from seismology can be applied in ultrasonic inspection of solid reverberating
structures. After this work, principle of correlation of acoustic fields became widely
used in underwater acoustics, medical imaging, seismology, etc. In structural health
monitoring the pioneer work was done by Farrar and James [62] for monitoring of ci-
vil engineering structures by estimating resonant frequencies of a bridge using traffic
excitation as an ambient vibration source. Later Larose et al. [63] showed application
of the correlation-based approach for measurement of dispersion curves. In 2008 Sa-
bra et al. [64] first proved that it is possible to detect a flaw in a plate. In [65] Snieder
derived the Green’s function from the correlation of coda waves under assumption
that scattered waves propagate on average isotropically near the receivers.

The complexity of this application lies on the nondiffusivity of the ambient field,
which leads to an imperfect convergence of correlations towards the Green’s functions.
As a consequence, localizing, detecting, and imaging defect is a real challenge.

One of the well known passive detection method is matching pursuit [66]. In si-
gnal processing, a matched filter is obtained by correlating a known delayed signal,
or template, with an unknown signal to detect the presence of the template in the
unknown signal. This is equivalent to convolving the unknown signal with a conju-
gated time-reversed version of the template. A matching pursuit isolates the signal
structures that are coherent with respect to a given dictionary. Matching pursuit
decomposes any signal into a linear expansion of waveforms that are selected from
a redundant dictionary of functions [67]. These waveforms are chosen in order to
match the signal structures in the best possible way.

Principle of retrieving information from ambient noise
Information about flaws in thin plates perturbated with diffused ambient noise

can be retrieved from Green’s function. Green’s function between two points of a
structure can be reconstructed from correlation of noise signals recorded at these
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two points. Estimated Green’s functions can be then used for damage localization
via classical techniques from active NDT methods. Similar to [68],[[69]] the passive
damage localization algorithm proposed in this thesis is based on Green’s function
retrieval from noise correlation matrix. However, in this work the method is baseline-
free, thus, instead of comparing Green’s functions for a plate with its pristine baseline
counterpart, Green’s functions are compared between different contact states during
pump-probe experiment (see chapter 2).

For a good quality of Green’s function reconstruction, several conditions must be
met : noise sources with fixed locations should be uncorrelated and emit wideband
signals in ultrasound range.

According to [2] under the assumption of diffuse noise, cross-correlation between
two receivers A and B is proportional to impulse response between them. It is similar
to situation when A is an active emitter and B is a receiver : the recorded signal can be
reconstructed as a convolution between emitted signal and impulse response (Green’s
function) depending on the state of the medium and presence of damage. In passive
experiment A and B are both physically receivers but to highlight the similarity with
the active situation, one of them e.g. receiver A is referred as virtual emitter.

CAB(t) = [GAB(t)−GAB(−t)]⊗ f(t) + n(t) . (1.9)

Here ⊗ stands for a convolution, CAB(t) is a cross-correlation between recordings
at point A and at point B, GAB(t) and GAB(−t) are causal and anticausal parts of
Green’s function between A and B respectively, n(t) is called a reconstruction error
or spurious term, f(t) is a virtual excitation waveform.

If h(ri, rn, t) is an impulse response emitted by the ith noise source and received
by the nth receiver, then cross-correlation is defined as follows :

Cmn(t) =
Ns∑
i=1

h(ri, rm, t)⊗ h(ri, rn,−t) , (1.10)

where Ns is the number of sources.
L. Chehami et al. [68, 70] applied this approach for passive damage detection

in thin plates. My thesis is a continuation of these works for reference-free case
with nonlinear defects. Green’s function retrieval will be used in signal processing of
passive experiments in chapter 4.
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1.3 Damage localization

1.3.1 Damage localization using ultrasonic arrays

Ultrasonic arrays offer two key advantages over standard monolithic transdu-
cers [71]. Firstly, a particular array is able to undertake a range of different inspection
angles and focal depths from a single location and so is more flexible than a single
element transducer. However, they are most commonly used to produce fields similar
to those from traditional single element transducers, i.e. plane, focused and steered
beams. Secondly, most types of array (with the exception of annular arrays) can be
used to produce images at each test location. This allows rapid visualization of the
internal structure of a component. Thirdly, using array of transducers provides more
information per time unit, than from single transducer, thus, it is less costly in terms
of time.

Apart from the acoustic emission technique, where the damage itself acts as the
primary acoustic source, classically considered methods rely on active principles. By
implanting small piezoelectric transducers (PZT) into the structures, guided waves
can be emitted and received, and it is theoretically possible to monitor a whole given
area. Damage localization algorithms using such sparse transducer arrays implanted
in structures are widely used.

1.3.2 Beamforming techniques

Classical beamforming
Beamforming is a process of producing a desired wavefront by means of an ultra-

sonic array. Beamforming can be used to focus ultrasound on a defect in experiment
by adjusting excitation time on different array elements or to visualize a defect in
post-processing.

The simplest and most widely used technique for beamforming is the delay-and-
sum beamformer. By applying delays on the received data from each receiver element
prior to summation, the output from the beamformer can be steered in a certain
direction. Signals coming from the steered direction will add up constructively, while
interfering signals from other directions will generally be reduced.

Total focusing method is a delay and sum beamforming algorithm, in which the
array is synthetically focused on each image point in the imaging region. For this
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reason, it can result in the highest possible imaging resolution of any linear algorithm
and has been termed the gold standard in array imaging [72],[73].

Classical delay-and-sum algorithms are very computer-efficient but, since they
neglect wave dispersion, they lack accuracy and are not suitable for Lamb waves
based SHM.

Speaking of beamforming techniques for phased arrays accounting for Lamb waves
dispersion, the earliest work was reported by Deutsch et al. in 1997 [74]. They pro-
posed a method based on time reversal mirror to focus an ultrasonic linear array
on a defect. They applied an iterative re-transmission of reversed signal from recei-
vers to emitters with time excitation adjustments based on time-of-flight estimation
from cross-correlation of signals recorded on adjacent elements. Focusing occurs when
time-of-flight for each element is the same.

Wilcox et al. in 2000 [75] proposed an array-based beam steering technique ope-
rating with Lamb modes in the post-processing stage. They showed that circular
arrays of round ceramic disks can be applied for omni-directional inspection of plate
structures, therefore, this technique contributes to rapid data acquisition from large
areas.

Dispersion compensation is challenging, however, some approaches, conversely,
take advantage of dispersive structures for the beamforming purposes. For instance,
ultra-wideband beamforming [76] with enhanced resolution can be achieved without
phase shifters, delay lines, or moving parts by connecting linear antenna array to
a passive device made of highly dispersive material, where multipath propagation
implies channels with a very low level of correlation. Signals are received by antenna
array, then pass through the passive device, after that they are summed up and at
the end they are being decoded using time reversal in frequency domain including
both magnitude and phase compensation. This technique allows one to obtain a
radiation pattern enhancement with simple increase of the antenna array’s inter-
element spacing.

Compared to the array approaches reviewed above, acoustic tomography uses
distributed sensors that surround the inspected area. This technique requires multiple
projections to create an image of a region. To obtain these projections, in classical
tomography, emitter and receiver are mechanically moved in parallel, which requires
a setup capable of accurate positioning of the transmitter and receiver in parallel and
complicates field inspections. McKeon et al. [77] evaluated the crosshole technique.
Transmitted signal from each position is received at all receiver positions. This leads
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to a more efficient use of the setup, and is not restricted to a certain geometry which
allows to obtain images with fixed array setups.

Michaels et al. [78] proposed the use of the minimum variance distortionless res-
ponse reference-free algorithm on data from a tomographic setup. A multistatic da-
taset was acquired by sequentially exiting a number of transducers. A circular ring
of transducers surrounded a single defect, which was probed from different angles.
This causes the backscattered signals from different excitations to vary substantially.
To improve the results a scattering model of the defect was used to compensate for
these variations.

Back-propagation algorithm
In [79] Wilcox added dispersion compensation to time reversal mirror for omni-

directional guided wave arrays. Converting raw signals into wavenumber k domain
enables recompression of dispersed signals and subsequent phase shifting by eik(ω)r

to precisely follow the dispersion relationship for the guided wave mode of interest.
Angular deconvolution of signals is performed dividing by reference simulated array
response. Gaussian filter is applied to reduce side-lobes. This method is limited by
geometry of US array : transmitter and receiver element density both must be uniform
in the angular domain.

Two types of noise may exist in guided wave tests. Noise that is independent of
the desired guided wave signals is considered as incoherent noise. Other noise belongs
to the class of coherent noise. Coherent noise includes unwanted guided wave modes,
higher order harmonic signals caused by non-linearity, guided wave mode conversions,
etc.

Fei et al. in 2010 [80] showed that by applying time delays to the phased array
elements guided wave beams can be formed. In the receiving end of the phased array
back-propagation technique is used to synthesize the received signals. The combina-
tion of real time beam forming and back-propagation provides higher signal-to-noise
ratio and longer inspection distance. Back-propagation also allows to suppress the
side-lobe effects as well as the influence of guided wave dispersion and coherent noise.

The coherent noise introduced by unwanted guided wave modes can be signifi-
cantly reduced by selecting guided wave sensors that produce single mode excitation
and detection. Another major source of coherent noise for phased array applications
is the reflections from objects close to the phased array. This is caused by the wave
divergence. The use of real-time phased array has a great advantage to lower the
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influence of the coherent noise from close reflectors. The physically formed wave
beams have strong directivity, which is helpful in reducing the reflections from close
reflectors that are away from beam steering direction. The well-formed wave beam
also greatly improves the signal-to-noise ratio of the possible reflection signals from
defects in the beam steering direction.

Back-propagation algorithm described by Chehami et al. in [68] is a beamfor-
ming method applied during post-processing to steer beam formed by ultrasonic
phase array omnidirectionally. Multiplication of signals in frequency domain by phase
factor taking dispersion into account allows to identify damage location. For low
wavenumber-thickness products kd, a single Lamb mode in thin plates can be domi-
nant. In this work, modified version of this algorithm will be applied (see chapter 2
for details).

1.4 Defect scattering characteristics
Every damage can be considered as a scatterer, i.e. some type of obstacle that

causes scattering of incident waves.

Figure 1.4 – Wave scattering by a rigid heterogeneity.

To evaluate scatterer’s ability to be detected, the following quantitative charac-
teristics are introduced.

Let us denote θ a scattered angle (between incident and scattered waves), ω is
angular frequency, f(θ, ω) is a scattered far-field amplitude, and σ(ω) is a scatte-
ring cross-section. f(θ, ω) is defined in the form of the following 2D scattered field
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asymptotic behavior [81] :

usc(r, θ) = eikr√
r

(f(θ, ω) +O(1/r)), r →∞ .

Then a scattering cross-section, defined as a ratio of the scattered flux to the
incident flux, at a frequency ω can be expressed as (see e.g. [82]) :

σ(ω) =
∫ 2π

0
|f(θ, ω)|2dθ . (1.11)

Scattered amplitude and scattering cross-section are also related by an optical
theorem [83] :

σ(ω) = −2
√
π

k
Re f(0, ω) .

The optical theorem expresses energy conservation in classical acoustics and elec-
tromagnetism [84, 85]. It was first used in the context of flexural wave scattering
by Vemula and Norris [86]. The far-field flexural waves are governed by Helmholtz
equations makes the form of the optical theorem identical to that of two-dimensional
acoustics for both Kirchoff and Mindlin plate theories.

Scattering cross-section is a quantity proportional to the rate at which a particular
radiation-target interaction occurs. As applied to our experiment, scattering cross-
section represents the rate of interaction between sound wave and a scatterer (defect).
If a value of scattering cross-section is sufficiently high, the defect is detectable.

It is possible to relate the scattering properties of a local heterogeneity (or defect)
to average features of reverberated signals in a finite plate. To do so and measure de-
fect’s scattering cross-section, experimental approach based on statistical properties
of scattered flexural wave envelope is applied [87]. A brief summary of this procedure
is described below.

First, active static measurements are conducted with defect sw and without defect
sw/o : a series of sine bursts is excited. Then these signals are filtered in a narrow band.
Narrow band filtering allows to consider that scattering cross-section is a constant in
this frequency range. After that envelope of an averaged signal is extracted env(sw/o).
It decays exponentially as Ae−2t/τ where A is related to the energy emitted into the
medium (for more details see [88]).

Estimation of parameters A (amplitude) and τ (reverberation time) is done by
fitting of squared signal envelope averaged over receivers with an exponential function
using nonlinear least squares fit :
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1
Nr

Nr∑
n=1

env2(sw/on ) = Ae−2t/τ , (1.12)

where subscript n stands for the nth receiver, Nr is the number of receivers. An
example of this fitting is shown in fig. 1.5.

Figure 1.5 – Estimation of amplitude A and a plate reverberation time τ by using
nonlinear least squares fitting for squared signal envelope averaged over receivers.

A similar procedure is repeated for a differential signal ∆s = sw− sw/o. Averaged
square of differential signal envelopes over number of receivers is fitted with a product
of a decaying exponent and linear time function using nonlinear least squares fit to
estimate a parameter K :

1
Nr

Nr∑
n=1

env2(∆sn) = K(vgt− ra)e−2t/τ . (1.13)

Here vg is the group velocity for A0 mode, ra is two times the average distance
between defect and any point on the plate : ra = 2

S

∫ ∫
S

√
(x− xd)2 + (y − yd)2). S

stands for the plate’s area, xd and yd are defect’s coordinates on the plate. Example
of this fitting is illustrated in fig. 1.6.

Finally, scattering cross-section can be found as :
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Figure 1.6 – Estimation of a parameter K by using nonlinear least squares fitting
for squared differential signal envelope averaged over receivers.

σ = KS

A
(1.14)

Figs. 1.5,1.6 illustrate an agreement between experimentally obtained square of
envelope of a signal and differential signal and the theoretical expression from a
statistical model.

In the chapter 3 the described measurements are applied experimentally and it
is shown that localization image quality, in particular its contrast, is influenced by
the defect scattering cross-section.

Conclusions
We have seen in this chapter some reminders on the propagation of guided waves

in thin plates. Dispersive nature and multi-modality of Lamb waves challenges in the
context of SHM are discussed. We have shown the advantages of back-propagation
algorithm comparing to other beamforming technique, since it takes dispersion into
account and uses single mode. The state-of-the-art methods of damage detection are
briefly reviewed with an accent on benefits from baseline-free approaches. Multiple
reflections from plate boundaries can generate diffuse field. It is shown that correla-
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tion of diffuse field is a good candidate for the estimation of the Green’s functions
of the medium allowing to identify damage.

We propose in the rest of this thesis to adapt back-propagation beamforming
for the baseline-free localization and imaging of a contact defect subjected to low
frequency vibration in reverberating plates. We will first apply it in active mode in
chapter 2. Then we will measure scattering characteristics of damage from flexural
waves envelope (as was discussed in section 1.4 of this chapter) to quantify the range
of defects that are possible to detect with the proposed method in chapter 3. After
that we will adapt damage detection and localization for passive experiments by
retrieving Green’s function from noise correlations in chapter 4.
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Chapter 2

Active baseline-free experiments for CAN
localization
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Introduction
This chapter describes a baseline-free imaging method capable of localizing contact

acoustic nonlinearity (CAN) in thin plates. This method is based on a pump-probed
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interaction, in which information of damage is provided by differences in high fre-
quency (HF) probe signals measured under varying contact conditions induced by low
frequency (LF) pumping. The contact defect is localized by using a back-propagation
technique presented in [68, 70, 89], where baseline-subtraction allowed to strongly
enhance the scattering signature of the defect.

In the reported experiments, a steel sphere pressed against an aluminum plate is
used to mimic a CAN. Similarly to a crack or delamination, the sphere excited by the
LF pumping slightly modifies the propagation conditions for the HF probe. These
weak changes are considerably enhanced by cumulating effects over multiple different
contact states. Mechanical characteristics of the contact such as its deflection and
strain caused by pump and probe waves separately are estimated.

2.1 Experimental setup and pump-probe principle

2.1.1 Pump-probe experiment
In this experiment, the setup consists of a thin aluminum rectangular plate (1 m

× 0.5 m × 3 mm) horizontally suspended with elastic strings on a metallic supporting
structure, and instrumented with piezoelectric transducers (model « KEPO FT-20T-
4.0A1-465 ») glued on its surface. Instead of real defect we use a 1 cm diameter steel
sphere pressed against the top plate surface (see fig. 2.1).

Two types of vibrations are generated in the plate (fig. 2.2) : a high-frequency
(HF) probe wave corresponding to a one-period sine toneburst at fprobe=10 kHz,
sequentially emitted at regular time-intervals ∆T ; and a low-frequency (LF) har-
monic pump vibration spump(t) with a frequency fpump in the range of a few Hz
(fpump � fprobe). The choice of the probe frequency in the range of dozens of kHz is
justified by two reasons. Firstly, signal processing developed in this thesis requires
one and the only propagating flexural mode in the plate. Secondly, few tens of kHz
is the frequency range of noise emitted by sponge rubbing in the previous works in
our research team L. Chehami et al. [70] the ancestor of a passive adaptation for a
defect detection method presented in chapter 4. As for the pump wave, the choice of
a few Hz is related to the reverberation characteristics of the plate.

The probe signal is emitted using one of the piezoelectric patch transducers glued
to the plate surface. Pump vibration is excited using an electromechanical shaker
(TIRAvib 50018, fed through its power amplifier TIRA BAA60) connected to the
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Figure 2.1 – Pump-probe experimental setup. (a) - Scheme, (b) - photo, (c) - zoom
on the defect.

plate with a steel rod equipped at its extremity with a polystyrene foam-coated
clamp gripped to the plate edge. In that way, the shaker forces alternative normal
motion at the clamp point of the plate.

In addition to the emitting piezoelectric transducer, Nr = 14 receiving trans-
ducers of the same kind (model « KEPO FT-20T-4.0A1-465 ») are fixed at known
positions. Signals from these transducers are recorded by means of a multichannel
digital sampling board (24 I/O MOTU, 96 kS/s, 24 bits digitizer) for 40 s. Low-pass
and high-pass filtering then easily allow to retrieve respectively the LF pump vibra-
tion and the HF probe signals from these recorded signals. Individual HF signals
are then obtained by cutting high-pass filtered signals from each sensor into slices
of duration ∆T . We thus denote sm,n(t) the HF signal in the mth slice from the nth

receiver Rn.
The idea behind this experimental setup is that LF vibrations will slightly mo-
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Figure 2.2 – Recorded signals as a mix of the LF pump and HF probe waves.

dulate the contact condition (contact load, relative positions) between the plate and
the sphere. Each recorded HF signal, containing components with wave paths ha-
ving crossed the contact area, will then carry information on the contact state at
the instant of measurement. Indeed, since ∆T is much smaller than the LF period,
as pointed out above, the contact state can be assumed stationary during one HF
signal slice. The other restriction is that the duration of one HF slice ∆T should be
greater that the plate reverberation time τ to avoid overlapping the adjacent slices.
To meet all these requirements the pump frequency must be in the range of few Hz.

Since the effect of contact modulation in the HF signals is expected to be slight,
we seek to cumulate information acquired at different contact states (i.e. different
HF signal slices).

2.1.2 Synchronized and non-synchronized experiments

There have been done two sorts of experiments depending on the way a pump
LF signal was emitted : synchronized and non-synchronized. In synchronized expe-
riments, pump and probe waves are emitted both by a sound board simultaneously.
In non-synchronized experiments pump and probe waves are emitted independently
from different devices. The pump and probe emission start times are independent of
each other.
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Both sorts of experiments prove to show satisfactory results for defect localization.
Further both of them will be described in more detail.

a) Synchronized experiments

In synchronized experiments (see fig. 2.1 a), a pump and a probe are excited si-
multaneously with the use of a MOTU sound board (96 kS/s, 24 I/O) being managed
from a computer. This setup allows experimenter to have control over LF waveform
and a moment LF emission starts. Synchronization provides LF phase information at
every given time instant, which makes synchronous detection possible to apply (see
section 2.3.1 for details). It is important to note that maximum voltage available
from the sound board is around 1.7 V. Later we will see that this fact imposes a
strong limitation for damage detection in synchronized experiments.

b) Non-synchronized experiments

In non-synchronized experiments, a pump is excited separately from a probe by an
independent electrical generator connected to the shaker through a power amplifier.
In this case, pump is excited continuously and then probing is started at random
moment. Thus, a sine phase of pump at that moment is unknown, i.e. pump and
probe are not synchronized with each other. On the one hand, it implies no control
over a moment when LF emission starts, thus, synchronous detection is not an option.
On the other hand, it is easy to control LF amplitude and it can be made relatively
high to magnify fine modulation effect we are trying to observe here.

We used here the same experimental testbench as described before in section 2.1.1.
Here individual HF signals are obtained using National Instruments acquisition board
(500 kS/s, 8 channels). They pass through high-pass filter and are amplified at re-
ception. fprobe = 20 kHz and number of PZT patches receiving signals is Nr = 7. 40
consecutive acquisitions of HF signals were performed.

2.2 Estimation of displacement and strain induced
by pump and probe waves excitation

Before presenting the obtained imaging results (in section 2.3), it is interesting
to estimate the orders of magnitude of mechanical parameters involved in our ex-
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perimental setup. In particular, comparison of displacements and strains induced
respectively by the pump vibrations and the HF probe wave is essential to get more
quantitative insight on the pump-probe processes. Besides, detection threshold es-
timation in terms of pump excitation will also help us quantify capabilities of the
developed technique. This is what is proposed in this section.

2.2.1 Measurements of displacement and strain induced by
pump excitation using image correlation

Before presenting the obtained imaging results (in section 2.3), it is interesting
to estimate the orders of magnitude of mechanical parameters involved in our ex-
perimental setup. In particular, comparison of displacements and strains induced
respectively by the pump vibrations and the HF probe wave is essential to get more
quantitative insight on the pump-probe processes. Besides, detection threshold es-
timation in terms of pump excitation will also help us quantify capabilities of the
developed technique. This is the subject of the current section.

a) Evaluation of displacement caused by pump : image correlation

Displacement induced by the pump wave is estimated using image correlation
technique. First, ten-second videos of the pump-probe experiment are recorded with
« zoom » on the defect at different pump amplitudes (in the range of 0.5-6 V). In
these experiments, pump is a continuous sine wave at 1 Hz. Second, each video is
converted into frames. After that, frames are converted into gray scale images. In the
image a small fragment with high contrast – preferably, with the Dirac δ distributed
intensity – in y-direction, but homogeneous in x-direction was selected, since we are
looking for vertical displacement. A fragment of the photo with the washer connecting
the two nuts (see fig. 2.3 b) meets these requirements. The defect is considered a
rigid body, so the vertical displacements of the washer and the sphere are equal.
Then gray scale intensity of the selected image fragment is averaged in x-direction.
Finally, this averaged gray scale intensity is cross-correlated with its counterparts
in different frames of the selected image fragment corresponding to various time
instants. Maximum of correlation corresponds to a coordinate of the moving object
(defect). Thus, shift in distance of the correlation peak position plotted against time
can reveal an amplitude of the defect displacement (see fig. 2.4).
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Figure 2.3 – (a) - Frame of a video of the pump-probe experiment : zoom on the
defect, (b) - gray scale fragment of this frame selected for image correlation procedure
to estimate the sphere’s y-displacement induced by pump excitation.

Figure 2.4 – Shift in coordinate corresponding to maximum correlation vs time at
pump amplitude 6 V.
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After averaging over ten pump periods, amplitude of y-displacement ∆δ is calcu-
lated and plotted against pump amplitude in fig. 2.5. The dependency is linear.

Figure 2.5 – Defect’s y-displacement due to pump excitation vs pump amplitude.

b) Estimation of strain caused by pump wave at the defect-plate contact
area

After the estimation of the pump wave displacement (resulting in ruler’s deflec-
tion), it is possible to estimate the corresponding contact force and strain. It is gene-
rally known [90] that for a flexed rod, which our ruler can be roughly approximated
by, relationship between its deflection δ and exerted force is the following :

δ = Nl3

3IE1
, (2.1)

where N is the normal force, l is the ruler’s length, E1 is Young’s modulus of steel,
I is its inertia moment, which is for rectangular section equal to :

I = bh3

12 , (2.2)

where b and h stand for the ruler’s width and thickness, respectively. Substituting
this expression into Eq. (2.1) yields :
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N = E1bh
3

4l3 δ . (2.3)

Let us denote N0 and δ0 the force and deflection for the system at rest (when there
is no plate, ruler is bending free), whereas ∆N and ∆δ stand for force and deflection
caused by pump oscillations and interaction with a plate. Thus, at every moment
the following statements will hold :{

N = N0 + ∆N
δ = δ0 + ∆δ .

The edge of the ruler is connected to the sphere, so N is also a force applied at
the Hertz contact [91] given by :

N = 4
3E
∗
√
Ra3/2 (2.4)

where R is the sphere’s radius, a is an interpenetration distance between the sphere
and the plate, E∗ is effective Young’s modulus defined as

1
E∗

= 1− ν2
1

E1
+ 1− ν2

2
E2

(2.5)

with ν1 and ν2, Poisson’s ratios of the ruler material (steel) and plate material (alu-
minum) respectively, E2, Young’s modulus of aluminum.

For more details about force-displacement relationship for a sphere pressed against
a plate see chapter 5.

Then pressure radial distribution in the circle of contact area is [92] :

p(r) = p0

√
1− r2

c2 , (2.6)

where c is a radius of the Hertz contact area expressed as

c =
√
Ra , (2.7)

p0 is maximum contact pressure given by :

p0 = 3N
2πc2 = 1

π
(6NE∗22

R2 )1/3 . (2.8)

According to Hooke’s law stress tensor is proportional to strain tensor :
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σzz ≈ E2εzz ,

where z is a vertical axis.
Considering that at the contact area σzz = p(r), maximum strain obtained at the

center of the contact is :
ε = p0

E2
.

Assuming that E1 � E2, ν2
2 � 1, E∗ ≈ E2 and substituting p0 from Eq. (2.8)

results in :
ε ≈ 1

π
( 6N
R2E2

)1/3 .

By replacing N with an expression from Eq. (2.3), we get :

ε ≈ Kd1/3

with

K = h

πl

( 3bE1

2R2E2

)1/3
. (2.9)

Dividing deformation into strain at rest ε0 and strain caused by pump-plate
interaction ∆ε similarly as we did for force and deflection before, one can introduce :

ε = ε0 + ∆ε

with

ε0 ≈ Kd
1/3
0 .

And assuming ∆δ � δ0 leads to :

∆ε ≈ Kδ
−2/3
0
3 ∆δ

Substituting Eq. (2.9) into the last equation finally yields :

∆ε ≈ h

πl

( 3bE1

2R2E2

)1/3 δ
−2/3
0
3 ∆δ (2.10)

Considering h=1 mm, l = 0.5 m, b = 2.7 cm, E1 = 2 · 1011 Pa, R = 0.5 cm,
E2 = 6.9 · 1010 Pa, δ0 = 43 mm, we get approximate values for acoustical strain
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at different pump amplitudes (see fig. 2.6). In this series of experiments, the defect
detection was successful for pump amplitudes higher than Apumpth that was between
1 and 1.5 V. In fig. 2.6 acoustical strain corresponding to this detection threshold
∆εth is observed to be around 10−5. This is a limitation of our detection method
sensitivity : we can detect damage only if it produces strain ∆ε ≥ ∆εth = 10−5.

Figure 2.6 – Acoustical strain in the center of sphere-plate contact as a function
of pump amplitude.

Linear behavior of displacement (fig. 2.5) and strain (fig. 2.6) as functions of
pump amplitude means that the materials in contact (steel and aluminum) stay
in linear elastic region of the stress-strain curve during the entire experiment. The
nonlinear character of the experiment is associated with the interaction of the pump
vibrations with the solid contacts in the defect. Indeed, the modulation of the defect
properties induced by the pump vibration is nonlinear (since Hertzian contact and
friction imply nonlinear force-displacement relationship) and amplitude-dependent,
and can be seen as a local manifestation of acousto-elastic or nonlinear elasticity
effects (see for instance [93], [94], [95]). Therefore, the HF probe signals will hold
some signatures of these local vibration-induced property changes (effect known in
some works as pump-probe modulations or nonlinear frequency mixing, see [36]).

Also it is insightful to note that probe modulation is directly related to the
defect scattering cross-section defined in section 1.4. Variation of the scattering cross-
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section that will be studied in chapter 3, section 3.3, and interpenetration distance
(and, consequently, force and displacement) are related by the unknown nonlinear
relationship.

2.2.2 Measurements of displacement and strain induced by
high frequency excitation using laser vibrometer

a) Estimation of displacement induced by high frequency signal : laser
Doppler vibrometry

Laser doppler vibrometer (LDV) [96] experiment was performed with laser Poly-
tec OFV 55 with a decoder VD-09 at the regime « measurements of velocity » with
5mm/s/V precision, sampling frequency 1MS/s with averaging over 1024 acquisi-
tions. Experimental setup consists of a fiber laser vibrometer, LDV controller and
oscilloscope (see fig. 2.7).

Synchronization was applied : emission signal generated with MOTU sound board
was received directly by one of the oscilloscope channels and at the same time trans-
mitted by the PZT transducer into the plate. Defect was located 25 cm away from
the emitter. Laser was positioned under the plate at different locations : under emit-
ter, under the defect and several locations in between. 50 ms bursts at 10 kHz were
emitted with MOTU board (as in pump-probe experiments) during 140 s.

We obtained the following result : when amplitude of the probe is 5Vpp at the
plate (as we apply in experiments), it causes defect normal displacement around
1 nm.

b) Estimation of strain caused by a probe wave at source position

In case of an axisymmetric problem (isotropic plate and source located in the
coordinates origin), strain in polar coordinates (r, θ) is given by [97] :{

εrr = ∂ur

∂r

εθθ = ur

r

(2.11)

Assuming that there is only A0 flexural mode in the plate within Kirchoff-Love
model (see chapter 1, section 1.1), displacement can be written as :

ur = −z ∂w
∂r

uθ = 0
uz = w

(2.12)
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(a) Laser vibrometer experimental setup. (b) Laser vibrometer controller.

(c) Oscilloscope. (d) Fiber vibrometer.

Figure 2.7 – Experimental setup for Laser Doppler vibrometry in order to measure
velocity at the contact spot while emitting high frequency signal.
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where w is a plate deflection.
Substituting the second system Eq. (2.12) into the first one Eq. (2.11), we get :

{
εrr = −z ∂2w

∂r2

εθθ = − z
r
∂w
∂r

For a 2D propagation, a solution for the wave equation can be presented in the
form of w(r, ω) = K(ω)√

r
ej(ωt−kr), where K(ω) depends on the source characteristics

and type of emitted signal. It is difficult to determine this factor, but it will not affect
the final result of this derivation. Applying of this expression of w into the previous
system of equation leads to :

{
εrr = z( 1

4r2 + jk
r

+ k2)w
εθθ = z(− 1

2r2 + jk
r

)w

Maximum of strain is obtained for z = d, i.e. on the surface of the plate. Thus,
in the far-field approximation, maximum deformation can be estimated as :{

εrr ∼ dk2w
εθθ ∼ 0

For A0 flexion mode, wavenumber k within Kirchoff-Love model is given by
Eq. (1.8), with bending stiffness D defined in Eq. (1.7).

For the laser vibrometry experiment described in a previous subsection the plate
is made of aluminum : E = 69 GPa, ν = 0.35, ρ = 2700kg/m3 with a thickness of
h = 3 mm. Central frequency of excitation is f = 10 kHz. An estimated displacement
is w ∼ 1 nm. So the strain is equal to :

εrr ∼ d · 2πf
√

2dρ12(1− ν2)
8Ed3 w = πfw

√
12ρ(1− ν2)

E

Substituting the problem parameters in the above equation, we can estimate
deformation as

εrr ∼ 2 · 10−8

This is 3 orders lower than pump-related strain (εpump ∼ 10−5), which means that
conditions of pump-probe experiment are met.
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2.3 Signal processing for damage localization and
experimental results

In this section, details of signals processing for defect detection are described and
obtained localization images are discussed.

2.3.1 Synchronous detection mode between pump and probe
signals

We define differential signals ∆sm,n by subtracting the extracted HF signals sm,n
(signal in the mth slice from the nth receiver) and their averages over all M slices
(see fig. 2.2) :

∆sm,n(t) = sm,n(t)− 1
M

M∑
i=1

si,n(t) (2.13)

Averaging is expected to cancel the defect contribution and only retain compo-
nents of the signals associated to the plate itself and the sensor array configuration.
Therefore the differential signals ∆sm,n should essentially contain contributions of
the defect [98]. Indeed, nonlinear defect is being revealed from contact modulations
caused by the powerful pump that is three orders of magnitude stronger than the
probe (see section 2.2), which allows to linearly separate a term related to the de-
fect, whereas the averaged state cancels the modulations. We expect the defect to
manifest as a very weak modulation comparing to reverberations, but this effect can
be enhanced by averaging over different contact states.

Note that pump frequency fpump = 1 Hz is far below the mechanical resonance
frequency of the plate, so the defect can not correspond to a node or anti-node of a
plate mode and defect signature is not hidden by high resonance amplitude. To prove
this point, we performed the modal analysis of the plate. A shaker excited a plate
with a chirp in a range of 1-200 Hz, we recorded this signal with an accelerometer at
different locations on the plate. Then we averaged the square of absolute value of a
signal spectrum over all the accelerometer locations and obtained the power spectral
density of the plate that is presented in fig. 2.8. Most of the plate modes energy is
distributed between 40 and 150 Hz that is much higher than fpump = 1 Hz.

The defect localization procedure consists in constructing an image by processing
these differential signals pixel by pixel, using a back-propagation based procedure
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Figure 2.8 – Energy spectrum of the plate.

already exploited with success in previous works [68]. For clarity, we briefly describe
below the main steps of this processing.

First, for a given pixel of coordinates (x, y) and a given signal slice m, differential
signals are back-propagated over distances rn(x, y) between the emitter and the nth

receiver via the pixel. This is simply done through multiplication in the frequency
domain by the complex conjugate of a propagation function e−j ~k ~r :

Fm,n(x, y, ω) = ∆sm,n(ω) ej k(ω) rn(x,y), (2.14)

where the wavenumber k fulfills the dispersion relation of A0 Lamb mode (flexu-
ral wave), which is largely dominant in the considered conditions (low frequency-
thickness product and surface excitation). Then we construct so-called back-propagation
function by summation over all receivers

bpfm(x, y, ω) =
Nr∑
n=1

Fm,n(x, y, ω), (2.15)

where Nr states for a number of receivers.
For pixels coinciding with the defect position, the back-propagation process will

perfectly compensate for propagation phases and, back in the time-domain, the back-
propagation function bpfm(x, y, t) will result in a constructive sum at zero time. On
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the contrary, for pixels at arbitrary positions, summed terms will have no particular
phase relation.

In this work, two types of imaging are applied depending on how the information
from the back propagation functions from the different slices is stacked : incoherent
and coherent imaging.

a) Incoherent sum

According to the properties of the back-propagation function, the pixel intensity
defined as

Im(x, y) =
∫ T0/2

−T0/2
[bpfm(x, y, t)]2 dt, (2.16)

is expected to exhibit a local maximum at the defect location. Here T0 is the duration
of the emitted wavepacket (typically inverse of the bandwidth), and integration over
the interval [−T0/2, T0/2] allows to eliminate influence of reverberations outside this
interval.

Finally, to enhance detection quality and reduce noise effects, averaging over all
M slices is performed, resulting in

Iinc(x, y) = 1
M

M∑
m=1

Im(x, y), (2.17)

where the subscript inc stands for « incoherent », since the final image is made up
of incoherent summation (sum of energy terms) over all HF signal slices.

In accordance to the formulated principle, Iinc(x, y) reaches a maximum when
(x, y) coincides with the defect position. A graphical representation of Iinc(x, y) thus
constitutes a localization image of the defect.

Later in the results section c) we will see that incoherent imaging provides satis-
factory defect detection but contains some speckle-like background artifacts. Those
artifacts can be diminished by using an improved version of the imaging with co-
herent sum described in the next section.

b) Coherent sum : synchronous detection

In a refined version of the procedure, the back-propagation functions obtained
for each HF slice can be coherently summed. To that end, we define
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BPF (x, y, ω) = 1
M

M∑
m=1

am bpfm(x, y, ω) (2.18)

where am is a set of ponderation coefficients aiming at ensuring that the summation
will be constructive.

Indeed, since the contact at the defect location is continuously and alternati-
vely modulated through the LF shaker, real part of excitation spump(t), averaging
with unitary ponderation (am = 1) should cancel the defect contribution. Instead,
we will apply here the well-known principle of synchronous detection, by defining
ponderation as

am = spump(Tm) (2.19)

where Tm = m∆T is the instant of the mth HF emission (slice m). As explained in
section 2.1.1, the pump vibration spump is easily extracted by low-pass filtering the
received signals.

Then, similarly to Eq. (2.16), an image can be constructed from coherently sum-
med back-propagation functions as in eq. (2.20)

Icoh(x, y) =
∫ T0/2

−T0/2
|BPF (x, y, t)|2dt (2.20)

c) Localization results for synchronized experiments

The results of the experiments in comparison between coherent and incoherent
imaging are shown in the fig. 2.9. Time interval between HF signal emissions is set
as ∆T = 50 ms and the LF pump is fpump = 1 Hz, signals contain M=700 slices.
The defect position is marked with a black circle, the crosses correspond to receivers
Rn. Two defect positions are tested : one inside the receiver array and one outside
it.

Both defect positions are correctly detected through localized higher-intensity
spots on the images. Note that the fact that the spot corresponding to the defect
outside the receiver array is larger than the one inside is coherent with the well-known
diffraction laws relative to the array aperture.

In incoherent images (figs. 2.9a, 2.9c) speckle-like background noise is observed.
It is mostly related to incoherent averaging of intensities in Eqs. (2.16) and (2.17),
which does not suppress all of experimental noise and reverberation contributions.
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(a) Incoherent image : defect (0.645, 0.24). (b) Coherent image : defect (0.645, 0.24).

(c) Incoherent image : defect (0.18, 0.268). (d) Coherent image : defect (0.18, 0.268).

Figure 2.9 – Localization results for synchronized experiments with incoherent ima-
ging (left column) and coherent imaging with synchronous detection (right column).
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To remedy that, coherent images (Eq. (2.20)) obtained from the same experimental
recordings have been computed as well. They are shown in figs. 2.9b, 2.9d. The
benefit of synchronous detection application, resulting in coherent and constructive
summation of the back-propagation function, on the image quality is obvious.

To make a quantitative comparison between incoherent and coherent imaging,
image contrast is introduced. A classical definition of image contrast is the so-called
Weber contrast, defined as

C = Idef − Iav
Iav

(2.21)

where Idef is the intensity value at the defect position and Iav is the average intensity
value of the image excluding the defect area.

Computed contrasts for incoherent and coherent images for the first defect loca-
tion are Cinc = 4.7 (fig. 2.9a) and Ccoh = 14.8 (fig. 2.9b), respectively. For the second
defect location they are Cinc = 2.4 (fig. 2.9c) and Ccoh = 12.2 (fig. 2.9d). This cor-
responds to a factor 3 to 5 of contrast improvement when applying the pump-probe
technique in a synchronous coherent way.

2.3.2 Non-synchronous detection mode using back-propagation
technique

Here the signal processing and the results of the non-synchronized pump-probe
experiments are presented. The experimental setup for them is described in sec-
tion 2.1.2. First, we will see the results of incoherent imaging.

a) Incoherent sum : results

In order to collect information from different contact states, signal slices sm,n of
duration ∆T are subtracted from each other, so for each pair of slices (m1,m2) ≡ p

there is a differential signal :

∆sp,n = sm1,n − sm2,n

And then P randomly selected pairs of loading states produce P differences ∆sp,n
that are taken into account for a back-propagation localization algorithm. So to
apply the incoherent imaging algorithm described for synchronized experiments in
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section 2.3.1, it is required to replace ∆sm,n with ∆sp,n and M with P respectively
that yields :

Ip(x, y) =
∫ T0/2

−T0/2
[bpfp(x, y, t)]2 dt, (2.22)

and

Iinc(x, y) = 1
P

P∑
p=1

Ip(x, y) . (2.23)

The results of the described algorithm obtained for P = 20 differences are de-
monstrated below. Defect is denoted with a black circle, white square refers to shaker,
PZTs are depicted as white asterisks, the letter E is for emitter.

The first series of experiments (fig. 2.10) is to examine different PZT patches
playing the role of emitter. The algorithm works more or less regardless the emit-
ter position, but better when emitter is far from the boundaries. The best images
were obtained with transducers R1 at (0.512,0.153) m and R8 at (0.484, 0.28) m as
emitters. So in the further series of experiments only these two are used.

The second series of experiments is concerned with a study of the pump frequency
dependency of the image quality. It turns out, that for all the frequencies in the
range of [0.5-4] Hz with a certain pump amplitude, location of the defect can be
found correctly (see fig. 2.11). Whilst for frequencies higher than frequency threshold
fmax ∼ 4 Hz localization is hardly possible (as in the two last images of fig. 2.11).

Two types of the defect’s motion are observed : « horizontal » and « vertical ».
« Horizontal » motion is a motion in which a sphere moves along elliptical trajectory
on the plate surface. « Vertical » motion is the motion regime in which sphere is
stationary in relation to the plate, its coordinate is constant and only the contact
force is modulated. In fig. 2.11 two transitions between « vertical » and « horizontal »
modes are observed : below f1=1 Hz and above f2=1.5 Hz motion is « vertical »
while between f1 and f2 it is « horizontal ». Later in this work « horizontal » motion
is avoided in order to make the artificial CAN behavior closer to a crack whose
coordinate does not change with vibrations.

If the pump amplitude is too high, squealing appears, signals contain extra spikes,
algorithm does not work. Since we are interested here in the effect of the CAN
modulation under low frequency vibrations (not acoustic emission), this situation is
avoided.
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Figure 2.10 – Imaging localization results : different PZTs play role of emitter.

If the pump amplitude is too high, squealing appears, which adds non-stationary
noise to the recorded signals and interferes with the work of the proposed detection
method. Acoustic emission based methods e.g. in [100] are robust for squealing. Since
we are interested here in the effect of the CAN modulation under low frequency
vibrations (not acoustic emission), this situation is beyond the scope of this thesis.

The third series of experiments (see left column on the fig. 2.12) was focused on
different defect locations. There are three locations : inside transducers zone at (0.615,
0.297) m, outside transducers zone at (0.39, 0.244) m and close to the boundaries at
(0.39, 0.10) m. Algorithm works for different defect positions, even when it is close
to the boundaries.

b) Coherent sum : random sign compensation

In many images obtained with incoherent sum, the contrast is not optimal : there
is speckle-like background noise due to high side lobes. To improve localization images
quality while keeping in mind idea about cumulation of information from repetitive
probings, random sign compensation technique is proposed here.
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Figure 2.11 – Imaging localization results at different pump frequencies. Defect is
located at (0.39, 0.244) m.
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The sum in Eq. (2.17) is incoherent, which means that the phase information of
back-propagation function (i.e. of scattered field) is discarded.

If signs of the defect strength ap under different loading states were known (p
refers to the pair of loading states), it would be easy to calculate this sum. However,
signs of the scattering amplitude are arbitrary and unknown in the experiment. Un-
like in synchronized experiments, synchronous detection is not an option here, since
pump and probe are excited independently. Within so-called random sign compen-
sation technique, ponderation coefficients are defined as : ap = +1 or −1, depending
on conditions discussed below. The pixel intensity is then defined in time domain
coherently by Eq. (2.20).

The optimal case would obviously be achieved if the actual sign sequence would
be known. Then, replacing ap by αp in Eq. (2.18) and applying Eq. (2.20) on the
obtained BPF would yield the pixel intensity corresponding to the optimal image :

Iopt(x, y) = Icoh(x, y)|(ap=αp) (2.24)

In practical situations, this optimal image is not accessible, since αp is unknown.
After obtaining an image, one should test quite a large number of different sign

sequences. We will seek to find the set of [ap] that maximizes the apparent image
contrast C defined in Eq. (2.21), which is in this case equivalent to :

C([ap]) =
max
(x,y)

[
Icoh(x, y)|ap

]
1

Npixel

∑
(x,y)

Icoh(x, y)|ap

− 1 (2.25)

here Npixels stands for the number of considered candidate defect positions.
Since the actual sign sequence is unknown, exact solution of this optimization

problem is not applicable. Instead, a Monte-Carlo estimation [101] – substituting a
deterministic process with a stochastic one – can be easily implemented. The idea of
Monte Carlo technique here is to repeat imaging with different randomly generated
sign vectors statistically significant number of times to find a vector corresponding
to maximum contrast based on the Law of Large Numbers. The details about sta-
tistical inference of contrast estimation with onte Carlo simulation are given further
in section 3.1.3. Briefly, a set of W candidate sign vectors [ap]w (1 ≤ w ≤ W ) will be
randomly selected. The retained vector [βp] among this set is then the one satisfying
best the optimization problem. Formally, this can be written as
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[βp] = arg max
[ap]w

(1≤w≤W )

C([ap]w) (2.26)

The image obtained using this selected vector is then defined as :

Isel(x, y) = Icoh(x, y)|(ap=βp) (2.27)

c) Localization results for non-synchronized experiments

This post-processing is then applied for some cases of different defect positions
where image contrast is relatively low. In fig. 2.12 the obtained results for incoherent
imaging and coherent imaging with random sign compensation are shown for W =
1000 different sign sequences and P = 20 differences.

Sign compensation leads to a clear contrast improvement. This will be theoreti-
cally discussed in the next chapter.
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Figure 2.12 – Imaging localization results at different defect locations at pump fre-
quency 1.5 Hz : incoherent imaging (left column) and coherent imaging with random
sign compensation (right column). White letter E stands for the emitter position :
(0.484, 0.278) in top and bottom images, (0.512, 0.153) in the middle ones. White
square is for the shaker position (0.3, 0.02).
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Conclusions
An active reference-free damage localization algorithm in thin plates based on a

combination of repetitive probing with back-propagation of signals has been develo-
ped. The algorithm is capable of detecting modulated Hertzian-like contact defects.
Two kinds of experiment have been done : when a pump wave is synchronized with
a probe wave (synchronized experiments) and when it is not (non-synchronized ex-
periments).

To improve localization image contrast, we performed coherent imaging using two
techniques : classical synchronous detection and random sign compensation. The lat-
ter offers an elegant and practical way to optimize imaging without synchronization.

Displacement induced by pump wave at 1 Hz is estimated in a range of tenths
of mm, whereas displacement induced by probe at 10 kHz is smaller by six orders :
around 1 nm. The difference in strains is three orders of magnitude : 10−5 and 10−8

for pump- and probe-induced strain, respectively. Our experiment belongs to a linear
part of stress-strain curve, nonlinearity is essentially in pump-probe interaction. A
quantitative study on influence of other parameters such as defect scattering charac-
teristics on the image contrast is derived in the next chapter.
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Quantitative analysis of image contrast
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Introduction
The purpose of this chapter is to find limitations of the developed detection tech-

nique described previously and quantify the involved parameters and their influence
on image contrast. Therefore, theoretical derivation and experimental study of what
the image contrast depends on are described. Quantification of CAN scattering cross-
section is also performed.

3.1 Theoretical estimations of contrast
Let us consider a plate equipped with an ultrasound emitter E and Nr receivers

Ri. We also assume the presence in the plate of a local heterogeneity. This defect
interacts with ultrasound probe waves with a given strength directly related to its
state at the instant of recording. Formally, the signal recorded at the ith receiver
when the defect is in the mth state can be expressed as :

sm,i(t) = s0,i(t) + fm(θi) ∆s0,i(t) + nm,i(t) (3.1)

where s0,i is the defect-free signal, fm is the defect scattering amplitude (far-field
pattern) defined for a plane wave, θi the direction angle of the ith receiver, nm,i an
experimental additive noise and ∆s0,i the wave signal scattered by the defect, whose
Fourier transform is given by

∆s0,i(ω) = δi u0(ω) e−jk(ω) (d1+d2i
) (3.2)

with δi = 1/
√
d1d2i

the geometrical spreading factor, d1 and d2i
the distances from

the emitter to the defect and from the defect to receiver Ri, respectively, and u0 the
emission signal :

u0(t) =


A
2 (1− cosω0t) sinω0t , 0 ≤ t ≤ 2π

ω0

0 , t > 2π
ω0

with amplitude A centered at angular frequency ω0.
For simplification purposes, we will assume in the following that the defect be-

havior is isotropic, implying that fm is independent from θn.
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Considering a set of two recordings (m1,m2) ≡ p in two different defect states,
the associated differential signal is then defined as

∆sm,i(t) = sm2,i(t)− sm1,i(t) = Zp ∆s0,i(t) + ∆np,i (3.3)

with Zp = fm2 − fm1 and ∆np,i = nm1,i − nm2,i.
We consider here that n(t) is a zero-mean additive Gaussian noise with variance

σ2
n affecting the recorded signals. Presence of this noise will result in a non-zero,

speckle-like, background on the images, even in the absence of a defect. The defect
detection contrast will then be evaluated based on the definition from Eq. (2.21).

First we will derive contrast expression in the simplest case of all, which is static
differential detection (i.e. subtraction of signals with and without defect, as developed
in [68]). Then we will adapt the derivation to the cases considered in chapter 2 of this
manuscript : dynamic incoherent (Iinc in Eq. (2.17)) and coherent (Icoh in Eq. (2.20),
Iopt in Eq. (2.24), Isel in Eq. (2.27)) imaging.

3.1.1 Static differential detection
a) Residual speckle without defect

In the defect-free case, fm1 = fm2 = 0 and therefore from Eq. (3.3) the recorded
differential signals would be :

∆sp,i(t) = ∆np,i(t) , ∀p (3.4)

with ∆np,i the differential noise, i.e. difference between two independent realizations
of noise n(t), thus, its variance can be expressed as :

σ2
∆n = 2σ2

n (3.5)

From Eq. (2.16) the averaged pixel intensity for a single pair of loading states :

〈Ip〉 = T0
〈
bpf2p

〉
= T0 σ

2
bpfp (3.6)

Considering that back-propagated noises from each receiver are uncorrelated,
Eq. (2.15) yields :

σ2
bpfp = Nrσ

2
Fp,i

(3.7)

55/162



3.1. THEORETICAL ESTIMATIONS OF CONTRAST

Using Parseval’s theorem, under the assumption of a stationary ergodic random
process, the variance of Fp,i can be expressed as average power :

σ2
Fp,i

=
∫ +∞

−∞
SFp,i,Fp,i

(ω) dω (3.8)

where Sbpfi,p,bpfi,p
is the power spectral density of bpfi,p.

Eq. (2.14) can be considered as a relation between the input and the output of a
linear invariant system of the form Y (ω) = G(ω)X(ω). Then using the consequence
of the Wiener-Khinchin theorem for power spectral densities of stationary processes
SY,Y (ω) = |G(ω)|2 SX,X(ω) with G(ω) = ejkdi , we can immediately deduce :

SFp,i,Fp,i
(ω) = S∆sp,i,∆sp,i

(ω) (3.9)

and

σ2
Fp,i

=
∫ +∞

−∞
S∆sp,i,∆sp,i

(ω) dω = σ2
∆sp,i

(3.10)

Finally, substituting Eq. (3.5) in Eq. (3.10) and using it in Eq. (3.7), yields :

σ2
bpfp = 2Nrσ

2
n (3.11)

and then using Eq. (3.6), we get

〈Ip〉 = 2Nr T0 σ
2
n (3.12)

b) Defect-related spot

The pixel intensity at the defect location is estimated from the back-propagation
functions defined by Eq. (2.14) when ∆sp,i corresponds to Eq. (3.3) along with
Eq. (3.2) and di = d1 + d2i

(pixel at the defect). This yields

Fp,i(t) = Zp δi u0(t) + ∆n′p,i(t) (3.13)

where ∆n′p,i is the back-propagated version of ∆np,i.
Then Eq. (2.15) yields

bpfp(t) = ZpNr δ u0(t) +Np(t) (3.14)

where δ is a geometrical spreading factor averaged over receivers :
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δ = 1
Nr

Nr∑
i=1

δi (3.15)

and

Np(t) =
Nr∑
i=1

∆n′p,i(t) (3.16)

Introducing Eq. (3.14) into Eq. (2.16) yields

Ip = Z2
pN

2
r δ

2
E0 +

∫ T0/2

−T0/2
N2
p (t)dt+X (3.17)

with X = 2ZpNrδ
∫ T0/2

−T0/2
u0(t)Np(t)dt the cross-term and where E0 is energy radiated

by emitter during T0 :

E0 =
∫ T0/2

−T0/2
u2

0(t) dt (3.18)

Since 〈X〉 = 0, taking the expected value over time of Eq. (3.17) yields

〈Ip〉 = Z2
pN

2
r δ

2
E0 + 2NrT0σ

2
n (3.19)

In the case of static differential imaging (subtraction of signals with and without
the defect), Z2

p is directly related to the scattering cross-section σ0 of the defect
defined in Eq. (1.11). f(θ, ω) is assumed to be constant in a narrow frequency band
centered at ω0. Then a scattering cross-section at a frequency ω0 can be expressed
as

σ(ω0) =
∫ 2π

0
|f(θ, ω0)|2dθ ≡ σ0 (3.20)

If states m1 and m2 correspond to the cases without and with defect, respectively,
then fm1(θ) = 0 and fm2(θ) = f(θ). This yields Zp = fm2−fm1 = f(θ) and therefore,
under our isotropic scatterer assumption f(θ, ω) ≡ f(ω)

σ0 = 2πZ2
p (3.21)

Eq. (3.19) then yields

〈Ip〉 = N2
r δ

2
E0σ0

2π + 2NrT0σ
2
n (3.22)
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c) Expressions of defect detection contrasts

Idef and Iav from the contrast definition in Eq. (2.21) correspond here to the
previously-derived expected intensity values 〈Ip〉 given in Eqs. (3.22) and (3.12),
respectively :

Idef = N2
r δ

2
E0σ0

2π + 2NrT0σ
2
n (3.23)

and

Iav = 2Nr T0 σ
2
n (3.24)

Therefore contrast defined in Eq. (2.21) can be written as

C = γχσ0 (3.25)

where

γ = Nrδ
2

4π (3.26)

is a term related to the geometrical configuration of the sensor network with δ defined
in Eq. (3.15), and

χ = E0

T0σ2
n

(3.27)

is the emission signal-to-noise ratio.
It is important to note that the expression of the contrast given in Eq. (3.25)

does not take into account reverberation in the plate. Indeed, since only the first
wave arrivals are considered, the result is theoretically valid for an unbounded plate.
However, reverberation will essentially affect the parts of the image close to the
plate boundaries. For a defect near the plate center, an image centered around this
defect location should be relatively similar to ours without taking reverberation into
account.

Another effect that is not taken into account in the derivation above is the
diffraction-related side lobes in the image. These lobes are related to the sensor
network geometrical configuration. They will induce a saturation of contrast for high
values of the scattering cross-section, since the image background will be dominated
by them. For small σ0 values, contrast is essentially affected by measurement noise
n(t), as is assumed in our derivation.
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Thus theoretical contrast expression given in Eq. (3.25) constitutes a linear ap-
proximation valid for moderate σ0. This will be verified through simulation below
and by experimental results further in section 3.2.2.

d) Wave scattering simulation in an infinite thin plate

In order to confirm the theoretically obtained contrast and scattering cross-section
relationship described in this section, there has been developed a wave scattering
simulation in a thin plate.

We assume that received signal in frequency domain is equal to emitted signal
multiplied by a propagation factor depending only on distance between emitter and
receiver. So neither absorption, nor boundary reflections are taken into account : it
is infinite plate approximation. We assume also a single propagating Lamb mode in
the plate, i.e. flexural wave which corresponds to low-frequency approximation of
A0 mode. This assumption is taken according to the experimental condition discus-
sed previously where A0 mode is dominant in the frequency range of 1-20 kHz for
asymmetric vertical excitation (displacements of different signs from top and bottom
surfaces of the plate).

As an emission signal ue we use one-cycle of sine with Hanning window at fem =
10 kHz of duration ∆t = 50 ms. A direct received signal udir in frequency domain
can be expressed as :

udir(ω) = 1
√
rER

ue(ω)e−ik(ω) rER , (3.28)

where rER is an emitter-receiver distance, k(ω) is a wavenumber corresponding to
A0 mode.

Then to simulate scattering from the defect, signals propagating from emitter to
receiver via the defect are multiplied by a scattering amplitude f(θ, ω0) at angular
frequency ω0 = 2πfem and scattering angle θ. It will be shown in section 5.2 that
the defect-plate contact size (∼ 10−5 m) is much smaller than the central wavelength
(∼ some cm), so the scatterer can be considered point-like with a known scattering
amplitude f(θ, ω0). In this simulation, under assumptions of isotropic defect and
narrow band, scattering amplitude is constant f(θ, ω0) ≡ fd. So the scattered signal
is defined as :

usc = fd
1

√
rEdR

ue(ω)e−ik(ω) rEdR , (3.29)
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where rEdR is a sum of distances from the emitter to the defect and from the defect
to the receiver.

We also add some Gaussian noise unoise to the received signal to break the per-
fection of simulation with a given variance σ2

n.
As a result, total signal at the receiver is a sum of direct signal from emitter,

scattered signal and noise.

ur = udir + usc + unoise (3.30)

The relationship between the scattering amplitude f(ω0, θ) and the scattering
cross-section is established in Eq. 1.11 which in case of constant f(ω0, θ) = fd is
equivalent to :

fd =
√
σ

2π (3.31)

This formula allows one to get scattering amplitudes fd corresponding to the
values of scattering cross-sections σ obtained in the experiment described above. For
each fd a simulation of wave scattering in an infinite plate was performed and then
by applying back-propagation algorithm for active static experiments localization
images were obtained and image contrast was estimated as in Eq. (2.21) along with
Eq. (3.82).

Fig. 3.1 illustrates dependency of an image contrast on a defect scattering cross-
section. A continuous line represents theoretical equation derived in this section, C =
χγσ, stars connected with lines represent results from the infinite plate simulation.
It is observed that at low values of scattering cross-section theoretical approximation
agrees with infinite plate simulation, whereas when σ exceeds a certain threshold
simulation curve experiences saturation deviating from a theoretical line.

This can be explained by the various nature of dominant image background noise
for different scattering cross-sections. For small σ values, electronic noise plays the
dominating role, as assumed in the derivation of theoretical formula Eq. (3.25) for
the contrast, therefore, theoretical line agrees well with simulations and experimental
data. However, for high σ values, diffraction-related side lobes from sensor network
become essential, which causes the contrast saturation.

The theoretical formula for contrast Eq. (3.25) allows to estimate a detection scat-
tering cross-section threshold σth. Indeed, assuming that minimal acceptable contrast
is equal to 1, σth = 1

γχ
, which for the performed simulations was around 0.065 mm.
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Figure 3.1 – Image contrast versus defect scattering cross-section for active static
case : theoretical approximation and scattering simulation in an infinite plate.

3.1.2 Synchronized pump-probe detection
In this section, the image contrast for detection process applied in section 2.3.1

is estimated.
Eqs. (2.13) and (3.1) yield

∆sm,i(t) = (fm − f̄m) ∆s0,i(t) + nm,i(t) (3.32)

where f̄m is the average defect strength over pump vibration.

a) Residual speckle

In the defect-free case, fm = 0 and therefore :

∆sm,i(t) = nm,i(t) (3.33)

Incoherent imaging
Taking expected value of Eq. (2.16), we get :

〈Im〉 = T0
〈
bpf2m

〉
= T0 σ

2
bpfm (3.34)

Here again, considering that back-propagated noises from each receivers are in-
dependent yields
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σ2
bpfm = Nrσ

2
Fm,i

(3.35)

with

σ2
Fm,i

= σ2
∆sm,i

= σ2
n (3.36)

Thus

〈Im〉 = Nr T0 σ
2
n (3.37)

Finally Eq. (2.17) implies 〈Iinc〉 = 〈Im〉 and thus

〈Iinc〉 = Nr T0 σ
2
n (3.38)

Coherent imaging
Eqs. (2.20) and (2.18) yield respectively

〈Icoh〉 = T0
〈
BPF 2

〉
(3.39)

and 〈
BPF 2

〉
= 1
M

σ2
bpfm = 1

M
Nr σ

2
n (3.40)

Therefore

〈Icoh〉 = 1
M

Nr T0 σ
2
n (3.41)

b) Defect-related spot

Based on derivation presented in section 3.1.1 along with Eq. (3.32), it is easy to
show that the pixel intensity on the defect is

〈Iinc〉 = N2
r δ̄

2E0
1
M

M∑
m=1

g2
m +Nr T0 σ

2
n (3.42)

for incoherent imaging and

〈Icoh〉 = N2
r δ̄

2E0

[
1
M

M∑
m=1

amgm

]2

+ Nr T0 σ
2
n

M
(3.43)
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for coherent imaging with gm = fm − f̄m.
We will consider here an average scattering cross-section over the modulated

defect states :

σ̄0 = 1
M

M∑
m=1

σ0m (3.44)

where σ0nm is defined as a modified version of Eq. (3.21) :

σ0m = 2πg2
m (3.45)

Therefore 1
M

∑
g2
m = σ̄0/2π and Eq. (3.42) yields

〈Iinc〉 = N2
r δ̄

2E0 σ̄0

2π +Nr T0 σ
2
n (3.46)

The pump modulation is expected to cause a periodic variation of the defect
strength, which we will assume to be a sine waveform. Therefore we will consider

gm = A cos(ωptm) (3.47)

where ωp is the pulsation of the pump vibration.
In the synchronous detection procedure described in section 2.3, the weighting

coefficients am are thus given, in accordance with Eq. (2.19), as

am = cos(ωptm) (3.48)

Under those assumptions, we have

1
M

M∑
m=1

g2
m '

1
Tp

∫ Tp

0
A2 cos2(ωptm) dt = A2

2 (3.49)

and

1
M

M∑
m=1

amgm '
1
Tp

∫ Tp

0
A cos2(ωptm) dt = A

2 (3.50)

which yield respectively :

A2

2 = σ̄0

2π (3.51)
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and [
1
M

M∑
m=1

amgm

]2

= A2

4 (3.52)

Consequently [
1
M

M∑
m=1

amgm

]2

= σ̄0

4π (3.53)

and thus from Eq. (3.43)

〈Icoh〉 = N2
r δ̄

2E0 σ̄0

4π + Nr T0 σ
2
n

M
(3.54)

c) Contrast expressions

Contrast can be deduced in incoherent and coherent cases from Eqs. (3.46) and
(3.38), and Eqs. (3.54) and (3.41), respectively :

Cinc = 2γχσ̄0 (3.55)

and

Ccoh = Mγχσ̄0 (3.56)

where γ and χ are defined as in the static case above (Eq. (3.26) and Eq. (3.27),
respectively).

We see here that theoretical contrast in coherent imaging is M/2 times the one
in incoherent imaging. Actually, this contrast improvement is limited by the asymp-
totic contrast value caused by secondary diffraction-related lobes, as explained in
the previous section. This is consistent with the results presented in section 2.3.1
in fig. 2.9, where coherent images with M = 700 signal slices reach the asymptotic
contrast value (which is around 15 in the given configuration).

3.1.3 Non-synchronized pump-probe and random sign com-
pensation

In this section, the expressions for localization image contrast are obtained for
non-synchronized incoherent imaging and coherent imaging with random sign com-
pensation that are described in section 2.3.2.
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a) Residual speckle without defect

Incoherent imaging
From Eq. (2.17), the expected value of pixel intensity over pairs of loading states

is given by :

〈Iinc〉 = 〈Ip〉 (3.57)

Using expression Eq. (3.12) for 〈Ip〉 in Eq. (3.57) yields

〈Iinc〉 = 2Nr T0 σ
2
n (3.58)

Coherent imaging
The expected value of speckle intensity in the coherent imaging case is obtained

from Eq. (2.20) :

〈Icoh〉 = T0
〈
BPF2

〉
(3.59)

Then Eq. (2.18) yields 〈
BPF2

〉
= σ2

bpfp (3.60)

Finally, using Eq. (3.11) we obtain

〈Icoh〉 = 2Nr T0 σ
2
n (3.61)

Comparison of Eqs. (3.61) and (3.58) shows that noise-related intensity is the
same for coherent and incoherent imaging cases. In the absence of a defect, construc-
tive interference does not occur, so regardless of how the intensity is calculated,
statistically noise makes identical contribution to the image.

b) Defect-related spot

Incoherent imaging
Taking 〈Ip〉 from Eq. (3.19) and, finally, invoking Eq. (3.57) we obtain :

〈Iinc〉 = N2
r δ

2
E0 σ

2
Z + 2NrT0σ

2
n (3.62)
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Optimal coherent imaging
Introducing now Eq. (3.14) into Eq. (2.18) yields

BPF(t) = 1
P

[Nrδ u0(t)SP +
P∑
p=1

apNp(t)] (3.63)

with SP = ∑P
p=1 apZp.

As explained in section 2.3.2, the optimal situation occurs when ap = αp =
|Zp|/Zp (see Eq. (2.24)), i.e. when this coefficient indicates the sign of differential
defect strength Zp = fm2 − fm1 .

Introducing Eq. (3.63) into Eq. (2.20) and (2.24), and taking the expected value
yields :

〈Iopt〉 =
〈
Icoh|(ap=αp)

〉
= 1
P 2N

2
r δ

2
E0

〈
S2
P

〉
+ 1
P

2NrT0σ
2
n (3.64)

with E0 defined in Eq. (3.18).
In the optimal case, ap = αp, so Sp = ∑P

p=1 |Zp| and it is easy to show that :
〈
S2
P

〉
= Pσ2

|Z| + P 2µ2
|Z| (3.65)

Therefore :

〈Iopt〉 = N2
r δ

2
E0 (σ2

|Z| + Pµ2
|Z|) + 2NrT0σ

2
n (3.66)

To conclude, an expected value of intensity at the defect spot depends on the
radiated energy E0, defect strength (Z = fm1 − fm2), number of considered pairs
of loading states P , geometrical spreading factor, and number of receivers Nr. Since
f also has a physical meaning of a scattering amplitude, which again shows the
importance of defect scattering characteristics for imaging that will be studied in the
next sections of this chapter.

Coherent imaging with random sign compensation
We consider here again Eq. (3.63), with the additional condition ap = βp (see

Eq. (2.27)), where βp is the sign vector selected among a set of W sign vectors and
maximizing the pixel intensity Icoh at the defect location.

Invoking Eqs. (2.27) and (2.20) yields :
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Isel = 1
P
N2
r δ

2
E0QW (3.67)

where QW = S2
P |(ap=βp).

By definition, as explained above, QW is the maximum value among a set of W
realizations S2

Pw
≡ S2

P |apw
of SP :

QW = max
1≤w≤W

S2
Pw

(3.68)

and the expected value of the pixel intensity at the defect location is then, from
Eq. (3.67) :

〈Isel〉 = 1
P
N2
r δ

2
E0 〈QW 〉 (3.69)

The cumulative distribution function FQW
of QW can be easily estimated, simply

starting from its definition :

FQW
(x) = Prob[QW ≤ x] = Prob

 ⋂
1≤w≤W

S2
Pw
≤ x

 (3.70)

Assuming statistical independence of all events (S2
Pw
≤ x), this yields

FQW
(x) =

W∏
w=1

Prob
[
S2
Pw
≤ x

]
=
[
FS2

P
(x)
]W

(3.71)

For sufficiently large values of P (typically P > 25 to 30), the central limit
theorem implies that the statistical law of SP is close to a normal distribution with
variance σ2

SP
= Pσ2

Z and zero mean. Therefore, the standard normal random variable
defined as ap = S2

P/σ
2
SP

is distributed according to the chi-squared distribution with
one degree of freedom χ2(1), whose cumulative distribution and probability density
functions are denoted F (x, 1) and f(x, 1), respectively.

Consequently, Eq. (3.71) entails that the probability density function of QW is
given by

fQW
(x) = dFQW

dx
= W

σ2
SP

f
(
x/σ2

SP
, 1
)
FW−1

(
x/σ2

SP
, 1
)

(3.72)

Then Eq. (3.69) can be rewritten as

〈Isel〉 = 1
P
N2
r δ

2
E0

∫ +∞

0
x fQW

(x) dx (3.73)
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c) Expressions of defect detection contrasts

Combining equations derived above provides theoretical expressions of the image
contrasts defined in Eq. (2.21) Cinc, Copt and Csel, in the different considered versions
of signal processing.

— For incoherent Cinc, Idef is given by Eq. (3.62) and Iav by Eq. (3.58)
— For optimal coherent (reference) Copt, Idef is given by Eq. (3.66) and Iav by

Eq. (3.61)
— For coherent with random sign compensation Csel, Idef is given by Eq. (3.73)

and Iav by Eq. (3.61)

Final results are thus :

Cinc = Nrδ
2
E0 σ

2
Z

2T0 σ2
n

(3.74)

Copt =
Nrδ

2
E0 (σ2

|Z| + Pµ2
|Z|)

2T0 σ2
n

(3.75)

Csel = Nrδ
2
E0

∫+∞
0 x fQW

(x) dx
2P T0 σ2

n

(3.76)

From these expressions, we can also define the contrast ratios (or contrast gain)
relatively to the incoherent imaging case ropt = Copt/Cinc and rsel = Csel/Cinc as

ropt =
σ2
|Z| + Pµ2

|Z|

σ2
Z

(3.77)

and

rsel =
∫+∞

0 x fQM
(x) dx

2P (σ0 − µ2
f )

(3.78)

An elementary variable substitution shows that rsel is actually independent of P
and σ2

Z and depends only on W :

rsel =
∫ +∞

0
x gW (x) dx (3.79)

with
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gW (x) = Wf(x, 1)FW−1(x, 1) (3.80)

The expression of rsel given in Eq. (3.79) can be easily estimated by numerical
integration or, alternatively, quite closely approximated by :

rsel '
√
π ln(W ) (3.81)

The corresponding curve is plotted in fig. 3.2. This curve is a result of central limit
theorem application, i.e. it is only valid for sufficiently large number of loading states
pairs P , when the deterministic process of defect modulation can be approximated
with normally distributed scattering characteristics. In this case, coherent imaging
with random sign compensation provides results better than incoherent imaging.
For a given value of W , contrast and, therefore, expected contrast gain rsel, depend
on the defect scattering cross-section, number of receivers and, in case of passive
monitoring, on number of noise sources, as it will be shown later in section 4.2.

Figure 3.2 – Theoretical evolution of rsel as a function of number of sign vectors
W . Parameter rsel is an expected contrast gain of coherent imaging comparing to
incoherent imaging.

Hence, for instance, we can see that a random selection of a set of W = 5000 sign
vectors is sufficient to obtain an expected contrast gain of a factor 15.
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3.2 Study on image contrast and CAN scattering
cross-section : static experiments

This section describes studies on contrast on different parameters. It is of inter-
est to understand limitations of the developed algorithm and to find the optimal
conditions for passive reference-free experiment.

3.2.1 Influence of angle between ruler and plate on image
contrast

This section is concerned with preliminary so called static experiments. The lo-
calization algorithm here is based on a pristine reference : differential signals ∆s
are obtained by subtracting signals measured on a plate with defect sw and signals
measured on the same plate without defect sw/o. The defect was the same as des-
cribed before (sphere pressed against the plate). Emission signals is 1 cycle burst of
∆T = 100 ms duration generated at f = 10 kHz (see fig. 3.3). Both sw and sw/o are
obtained after averaging over 20 ∆T -acquisitions. Differential signal obtained from
the nth receiver is defined as :

∆sn(t) = swn (t)− sw/on (t)

Then back-propagation is performed similarly to the procedure described in sec-
tion 2.3.1 of chapter 2 forM = 1 slice and localization images are obtained according
to Eq. (2.17). Weber contrast denoted by C is calculated from Eq. (2.21) with ave-
raged intensity over all x and y defined as

Iav = 1
Npixel

∑
(x,y)

I(x, y) (3.82)

where I(x, y) is given by Eq. (2.16), Npixel stands for the number of considered
candidate defect positions.

One of the parameters that might influence localization image contrast and is,
therefore, of interest to study is defect strength. In the current experimental setup it
can be regulated by manual turning of a micrometer screw (see fig. 3.4) in the defect
attaching mechanism. It changes the angle between ruler and plate, which in turns
means a local change in stress at CAN (sphere-plate contact).
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Figure 3.3 – Emission signal in static experiments : a sequence of 100 ms one-cycle
sine bursts at 10 kHz.

This mechanism is rather subtle, so the important fact to check was a reprodu-
cibility of experiments. To do so, measurements of image contrast are performed at
different angles, some of the angles are repeated several times in a way that such se-
quence of static experiments imitates an excitation by a one period sine wave. First,
we do a static experiment at a particular angle (acquisition 0), then we turn screw
clockwise (fig. 3.5 a) by 6◦ or 1 µm between two ticks on a screw scale and conduct
another static experiment (acquisition 1), we repeat it 5 times (acquisitions 1-5),
after that we turn screw counterclockwise (fig. 3.5 b) by 1 µm 10 times while doing
another series of static experiments (acquisitions 6-15), finally, again turn screw clo-
ckwise (fig. 3.5 a) 5 times and conduct the last series of experiments (acquisitions
16-20) and at the end come back to the initial angle (acquisition 20 is equivalent
to an acquisition 0, as well as an acquisition 10). A scheme of this experimental
sequence is illustrated in fig. 3.5 c : these are ticks on the screw micrometer scale
(as in fig. 3.4) where numbers correspond to the order of experimental acquisitions.
So acquisitions 0, 10 and 20 are preformed with the same micrometric screw angle,
which means the contrast values are expected to be similar but as observed in fig. 3.6,
they are not. The same for pairs of acquisitions 1 and 9, 2 and 8, etc. Overall, the
dependency is expected to be periodic but it is not. The observed effect is hysteresis
related to presence of friction in the sphere-plate contact. This means that angle on a
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Figure 3.4 – Micrometer screw in the defect attaching mechanism allowing to
change the angle between the ruler and the plate. (a) - Defect attaching mechanism,
(b) - Zoom on the defect, (c) - Zoom on the micrometer screw.

micrometer is not firmly related to particular contact conditions. Thus, experiments
with a specific angle are not reproducible.

Then we assumed that the problem of reproducibility can be solved by enhancing
a poor sphere-plate contact, thus, we added in the next experiments, first, water
and then oil in order to improve coupling. However, as you can see in fig. 3.7 and
fig. 3.8 contrast values at acquisitions 0, 10 and 20 are not similar, which means even
with enhanced sphere-plate contact there is no reproducibility of experiments with
different angles. Increasing of the angle affects image contrast non-monotonously,
therefore, micrometric screw is not a proper parameter to control image contrast.

As is obvious from theoretical derivations presented in section 3.1.1, the defect
parameter influencing the detection contrast is the scattering cross-section. The non-
reproducible results observed in the present section then tend to show that, due to
complex and not well-calibrated contact phenomena, no bijective relationship can be
deduced between the micrometric angle and the contrast and, hence, scattering cross-
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Figure 3.5 – Scheme of the experiment with hysteresis : (a) - Turn of a micrometric
screw clockwise, (b) - Turn of a micrometric screw counterclockwise, (c) - Schemati-
cally shown order of acquisitions (0-20) on the micrometric screw with the distance
between two ticks equal 1 µm, (d) - Readings on the micrometric screw at different
ruler-plate angles as a function of acquisitions.
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Figure 3.6 – Image contrast versus acquisition at different micrometric screw angles
(see fig. 3.5).

Figure 3.7 – Image contrast versus acquisition at different micrometric screw angle.
Sphere-plate contact is water-soaked.

section in our experiment. This will be verified in the next section, where the defect
scattering cross-section will be directly estimated for different angles. Then, it will be
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Figure 3.8 – Image contrast versus acquisition at different micrometric screw angle.
Sphere-plate contact is impregnated with olive oil.

confirmed that the scattering cross-section is the pertinent defect-related parameter
and theoretical contrast-scattering cross-section relationships from section 3.1.1 will
be validated.

3.2.2 Contrast and CAN scattering cross-section relation-
ship in static experiments

As discussed before in chapter 1, scattering cross-section represents the rate of
interaction between sound wave and a scatterer (defect). If a value of scattering cross-
section is sufficiently high, the defect is detectable. To evaluate the defect’s scatte-
ring cross-section, experimental approach based on statistical properties of scattered
flexural waves is applied [87].

First, active static measurements are conducted with defect sw and without defect
sw/o : twenty sine bursts are excited at f = 10 kHz with ∆T = 0.05 s between
pulses. Then these signals are filtered in a frequency band of [9-11] kHz. Narrow
band filtering allows to consider that scattering cross-section is a constant in this
frequency range. Also signals are averaged over number of pulses to increase signal-
to-noise ratio. After that envelope of an averaged signal is extracted : env(sw/o).
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Then the two-steps fitting procedure described in section 1.4 of chapter 1 is applied
in order to experimentally estimate the defect scattering cross-section denoted by σ.

The next step is to establish relationship between image contrast and scattering
cross-section. To do so, series of 72 active static experiments with different screw
angles has been conducted. In this experiments, signals obtained at the angle 60 were
considered as a reference sw/o. The results are demonstrated in fig. 3.9 : as expected,
contrast is increasing monotonously with an increase in the defect’s scattering cross-
section. It is important to note that scattering cross-section in static experiments is
in mm range.

Fig. 3.9 illustrates dependency of an image contrast on a defect scattering cross-
section from the experimental measurements. This curve matches the one obtained
in simulations in fig. 3.1 and the theoretical linear curve for low σ. For higher σ, the
curve experiences saturation related to diffraction side lobes from sensor network, as
explained before in section 3.1.1.

Figure 3.9 – Image contrast versus defect scattering cross-section for active static
experiment : experimental measurements.
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3.3 Measurement of CAN scattering cross-section
for dynamic experiments

3.3.1 Dynamic experiments : measurement of scattering cross-
section

Dynamic non-synchronized pump-probe experiments were conducted at fpump =
1 Hz. The probe wave is a sequence of M = 800 one-cycle sine bursts at fprobe =
10 kHz of duration ∆T = 0.05 s each.

At first, we tried to measure scattering cross-section by processing the recorded
signals as a series of static experiments (see section 3.2.1). The received signals are
qualitatively similar to the one shown in fig. 2.2. These signals are cut into M slices.
Mean over slices plays the role of a reference sw/o. For each ∆T -slice and mean over
slices sw/o scattering cross-section is measured by following the differential signal
envelope fitting procedure described in the section 1.4 for active static experiment.
Every ∆T -slice separately is considered static.

Static measurements are based on linear superposition, so this procedure could
be questioned when nonlinearity is involved. However, as it was shown in section 2.2,
CAN is activated mostly by powerful pump (causes three orders of magnitude hi-
gher strain), so the probe propagation can be considered mostly linear, especially,
after filtering out low frequencies, we get linear signals and linear imaging based on
superposition.

However, this measurement technique appeared to be rather challenging, since
squares of envelopes of differential signals do not attenuate exponentially being hid-
den by high level of noise (see fig. 3.10a). Thus, fitting is not possible. The reason
for that is absence of signals averaging that would reduce the electronic noise level.
Contrary to the static case, where the signals sw and sw/o are averaged over 20 re-
petitive acquisitions, here it is not possible to do within one ∆T slice corresponding
to one contact state.

To increase signal-to-noise ratio, signals have been averaged in a different way,
namely, over number of pump periods. In fig. 3.11 the averaging process is explained.
By calculating mean value of acquisitions made at instants denoted by circles, we
obtain averaged signal 1 at the beginning of pump period. Similarly, mean value of
acquisitions at instants denoted by triangles give us signal 2. Averaging of rhombuses
forms signal 20 at the end of pump period. As a results we have 20 pulses-acquisitions
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(a) Squared envelope of differential signal against time. Dynamic scattering cross-section
measurement without averaging over periods.

(b) Dynamic scattering cross-section measurement with averaging over periods (typical
fitting).

Figure 3.10 – Dynamic scattering cross-section measurements by fitting averaged
over receivers envelope of differential signal : challenge and solution.
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with a total duration of one pump period.

Figure 3.11 – Averaging signals over periods for scattering cross-section measure-
ment in pump-probe experiments.

After averaging, fitting for the squared envelope of differential signals becomes
possible (see fig. 3.10b), therefore scattering cross-section can be estimated for each
acquisition.

In fig. 3.12a scattering cross-section is shown as a function of acquisition, i.e.
time within one pump period. It is interesting to note that order of magnitude for
apparent scattering cross-section in dynamic experiment is about 16 times lower than
in static counterpart : maximum scattering cross-section is around 0.19 mm, whereas
for static it was 3 mm. However, this value is higher than the detection threshold
σth = 0.065 mm, which shows that the proposed localization algorithm is reliable for
active dynamic experiments.

As for contrast, we computed an image using back-propagation procedure at every
acquisition instant (20 images) for the signals averaged over periods. In fig. 3.12b
there are results of a study on contrast as a function of acquisition, in other words,
time during one pump period after averaging. Both scattering cross-section (fig. 3.12a)
and contrast (fig. 3.12b) general periodic behavior is observed as expected. However,
there is a small synchronization issue between scattering cross-section and contrast :
minimum of contrast is at acquisition 10, whereas for σ it is at acquisition 8. The
reason why the contrast and σ are a little out of sync for a single pump-probe expe-
riment is the subject for the future works.

In fig. 3.12b three variants of Weber contrast were computed. In the first definition
of contrast (circles) in Eq. (2.21), intensity Idef at the actual defect position in
nominator is considered. In the second definition (asterisks), maximum intensity in
a square 2 × 2 cm around the defect is put into nominator of Eq. (2.21). In the
third definition (crosses), maximum intensity in the entire plate is considered in a
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(a) Scattering cross-section versus number of acquisitions in pump-probe experiment.

(b) Comparison between different definitions of contrast versus number of acquisitions in
pump-probe experiment.

Figure 3.12 – Scattering cross-section (a) and contrast (b) as functions of acquisi-
tions within one period of pump wave in active dynamic experiment with averaging
over periods.
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nominator of Eq. (2.21). All three curves follow similar trend of a periodic function in
terms of phase with modulated amplitude. Values for contrast of the second definition
are higher than for the first one, because sometimes defect is moving a little to the
side and there is imprecision of the localization algorithm of 1 cm. Values of the
second and third definition coincide, so further in this work we use contrast of the
second definition to take this imprecision into account.

3.3.2 Comparison of different dynamic experiments to each
other in terms of contrast and scattering cross-section

It is of interest to compare scattering cross-section in different dynamic expe-
riment to find conditions for maximum of σ and image contrast, so we can reproduce
them while making passive dynamic tests.

However, scattering cross-section varies during one experiment (see fig. 3.12a).
For this matter, it was decided to take a mean value over 20 scattering cross-section
values during one period : σ represents one dynamic experiment.

First, the series of experiments with different pump amplitudes was conducted.
According to fig. 3.13, σ grows monotonously with increase in pump amplitude and
reaches its maximum at Apump = 4.5V.

The « incoherent » contrast is introduced for this series of experiments. By defini-
tion, it is a contrast of the mean of images corresponding to 20 different acquisitions
within one pump period for the signals averaged over periods. Fig. 3.14 illustrates
the « incoherent » contrast as a function of scattering cross-section in pump-probe
experiments with different pump amplitudes. The contrast grows with increase in
scattering cross-section, which in turn grows with increase in pump amplitude. This
means that a pump amplitude is a good parameter to control quality of localization
images.

To summarize, pump amplitude is an appropriate parameter for scattering cross-
section contrast control and therefore improving image contrast.
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Figure 3.13 – Scattering cross-section against pump amplitude in active dynamic
experiment.

Figure 3.14 – Contrast against mean scattering cross-section in active dynamic
experiments with different pump amplitudes.
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Conclusions
It has been shown here that image contrast depends monotonically on the de-

fect scattering cross-section, and is directly proportional to it for small scattering
cross-sections. This statement has been confirmed by experimental measurements,
numerical simulation of scattering in infinite plate and theoretical derivation for ac-
tive static experiments. In dynamic experiments, scattering cross-section values are
much smaller than in static case, yet it is sufficient to get a satisfactory detection.
CAN with scattering cross-section from the order of hundredths of a millimeter to
several millimeters can be resolved by the proposed localization algorithm. The es-
timated detection threshold in terms of scattering cross-section is 0.065 mm for the
considered experimental setup. The detection is possible at such small scattering
cross-section values, since dynamic contrast is M times higher than the static one,
where M is number of the considered loading states.

In pump-probe experiment, image contrast can be improved by increasing pump
amplitude or changing the defect strength, i.e. angle between ruler and the plate.
However, this angle is not firmly related to particular contact conditions. Thus, ex-
periments with a specific contact state are not reproducible due to hysteresis of the
contact with friction. Also image contrast is proportional to number of receivers and
signal-to-noise ratio in both static (with and without defect) and dynamic experi-
ments according to the obtained theoretical formula.

In the next chapter, we will discuss the application of the developed method
to the passive baseline-free case. We will see that initial configuration of sensors
array considered for active experiments is not sufficient to obtain satisfactory defect
detection in passive case and we will propose an improved configuration.
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Chapter 4

Passive baseline-free dynamic
experiments for damage localization :
proof of concept
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Introduction

This chapter is concerned with experimental development of a passive reference-
free localization algorithm of CAN in thin plates. In this chapter, passive probe signal
is white noise emitted simultaneously by a set of PZT transducers.

The defect detection method is based on estimation of Green’s function derived
from analysis of differential noise correlations for short samples of signals induced by
low frequency pumping. Localization is provided with back-propagation technique
described in a greater detail in [68, 70, 89] adapted for pump-probe experiment
similar to the way it is described in the chapter 2 for active case.
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The improved parameters for the pump-probe experiment enabling defect detec-
tion in passive mode are found thanks to quantitative analysis of image contrast and
defect scattering cross-section relationship derived in chapter 3.

4.1 Preliminary pump-probe passive experiments

This section describes preliminary passive pump-probe experiments and the control
parameters allowing to increase image contrast.

4.1.1 Experiment with a set of controlled simultaneously
emitting white noise sources

In this section, the pump-probe experiments are similar to the ones described in
chapter 2 : the same aluminum plate with a CAN in a form of 1 cm steel sphere
pressed against the plate is excited by the same harmonic continuous pump wave of
fpump = 1 Hz. High frequency white noise plays the role of a probe signal. The signal
resulting from pump wave and high frequency noise is recorded by the set of PZT
patches glued on the top surface of the plate.

To retrieve Green’s function from noise correlation, we need homogeneously dis-
tributed acoustic diffuse field with wide band of frequencies. For this purpose, we
use a set of Ns = 14 PZT sources of the same kind as Nr = 14 receivers distribu-
ted on the top surface of the plate. They emit uncorrelated Gaussian white noise
simultaneously of 40 s duration. Both emission and reception are operated with a
multichannel digital sampling board (24 I/O MOTU, 96 kS/s, 24 bits digitizer). The
shaker firmly attached to the plate emits a continuous sine wave at fpump = 1 Hz
(see fig. 4.1).

Noise spectral range for emission is between 1 and 30 kHz which corresponds
to the range of high frequency recordings in successful active experiments shown in
chapter 2. The idea is to keep the same frequency range, as it was for signals in active
experiments.

For every recording, low-pass filtering is applied to retrieve the LF pump vibra-
tion spump(t). As for the high frequency signal, band-pass filtering between 1 and
30 kHz is applied, followed by a whitening procedure consisting in temporal and
spectral normalization [102]. This procedure is aimed at improving Green’s function
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Figure 4.1 – Passive experimental setup with multiple simultaneous noise sources.

quality by making noise spectrum more flat. Whitening starts with temporal norma-
lization, which is necessary to correct time fluctuations of raw signals from signals
with constant amplitude :

snorm(t) = s(t)√
env(s2(t))

Here « env() » stands for signal envelope extracted using the method that consists
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in Squaring and Low-pass Filtering the input raw data. The raw input signal is squa-
red and then passes through a low-pass filter. Squaring the signal effectively demo-
dulates the input. Indeed, the input plays the role of a carrier wave for its squared
version. This means that half the energy of the signal is pushed up to higher frequen-
cies and half is shifted down toward low frequencies. Low-pass filtering eliminates the
high frequency energy resulting in the low-frequency envelope. Finally, to maintain
the correct scale, we perform two additional operations : we multiply the signal by
a factor of two, since we are keeping only the lower half of the signal energy, and we
take the square root of the signal (see fig. 4.2).

Figure 4.2 – Recorded signal : (a) before and (b) after the normalization in time.

After that, normalization is carried out in frequency domain with a Fourier trans-
form of snorm :

swhite(ω) = snorm(ω)√
env(2|snorm(ω)|2)

A factor 2 is introduced to take into account both positive and negative frequencies.
An inverse Fourier transform of swhite(ω) completes the whitening procedure. In the
following description we will omit subscript « white » for convenience. The spec-
trum of signals before and after whitening procedure is presented in fig. 4.3. After
whitening, the spectral flatness increases making a signal closer to white noise.

To apply similar to the chapter 2 differential procedure, signals at different loading
states are required. To get them, whitened signal received at the nth sensor is cut
into M short slices of duration ∆T � 1/fpump smoothed with Hanning window.
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Figure 4.3 – Spectrum of the received signals : (a) before and (b) after the whitening
procedure.

Each slice represents a particular contact loading state. Let us denote sn,m(t) the
mth slice of a signal recorded by the receiver Rn. Instead of actual emitter in active
experiments, one of the receivers RV E plays the role of a virtual emitter : in practice, it
remains a receiver, but in theory, for Green’s function reconstruction we can consider
it as the "reference sensor", the recording from which is being cross-correlated with
all the other receivers in the array. Then for the mth slice and receiver Rn, cross-
correlation Cn,m between signal recorded by this receiver sn,m and signal recorded by
virtual emitter sV E,m is computed in frequency domain according to Eq. (1.10) and
convolution theorem as :

Cn,m(ω) = sV E,m(ω)s∗n,m(ω) (4.1)

As a result for each slice, Nr correlations are obtained. After that, an inverse Fourier
transform is applied to each correlation. Examples of cross-correlations as functions
of time for a 10 ms window duration are shown in fig. 4.4. Quality of the retrieved
Green’s function depends on these curves symmetry extent with respect to t = 0 [64].
After whitening procedure, cross-correlation becomes more symmetric with respect
to y-axis in fig. 4.4 b, therefore Green’s function quality is improved.

Differential correlations for the mth slice and nth receiver are defined as follows

∆Cn,m(t) = Cn,m(t)− 1
M

M∑
m=1

Cn,m(t) . (4.2)

Then back-propagation procedure is applied to this differential correlation.
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Figure 4.4 – Example of cross-correlation function between signals recorded by
receivers R1 and R14 (a) without and (b) with whitening procedure. Cross-correlation
of whitened signals are more symmetric with respect to y-axis, that implies improved
quality of Green’s function reconstruction.

Similarly to eq. (2.14) phase function is given by :

Fn,m(x, y, ω) = ∆Cn,m(ω) ej k(ω) rn,V E(x,y) , (4.3)

where rn,V E(x, y) is the sum of distances from receiver Rn and virtual emitter RV E

to pixel (x, y), k(ω) is the wavenumber fulfilling dispersion relationship for A0 mode
(Eq. (1.2)). Then a back-propagation function for the mth slice is given by Eq. (2.15).

After returning to the time domain, coherent imaging with synchronous detection
(as in section 2.3.1) is carried out by using Eq. (2.18) for coherent summation of
back-propagation functions multiplied by pump amplitude ponderation coefficients
(Eq. (2.19)) and computing pixel intensity for imaging (Eq. (2.20)).

The localization result presented in fig. 4.5 is not satisfactory as the defect is
not localized. To understand the reasons of such a low image contrast, the current
experimental parameters are briefly analyzed below and ways of improvement are
proposed.

4.1.2 Results and discussion

The localization result presented in fig. 4.5 is unsatisfactory. This might occur
due to poor quality of the Green’s function reconstruction from correlation of diffuse
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Figure 4.5 – Localization result for passive pump-probe experiment Ns = 14 si-
multaneously emitting uncorrelated noise sources. Nr = 14. Unsuccessful detection.

waves. Accuracy of the Green’s function reconstruction is discussed in [103], where
the statistical model based on relative noise level (RNL) estimation is developed.

For receivers Ri and Rj cross-correlation of the recorded reverberated signals can
be expressed as

Cij = Dij + nij , (4.4)
where Dij represents a deterministic term containing causal and anticausal parts
of the Green’s function between the two receiver locations and nij is a residual
noise term or Green’s function reconstruction error. The ratio of energy between
the reconstruction error and the deterministic part is called relative noise level and
defined as

RNL =
∫
n2
ij(t)dt∫

D2
ij(t)dt

. (4.5)

RNL estimation might help us answer the question whether it is hypotheti-
cally possible to localize a defect with a given scattering cross-section under given
experimental conditions (plate geometry and number of noise sources) using back-
propagation algorithm.

It is shown that for the reverberated signals in plates RNL can be expressed as
follows [103] :
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RNL = 1
Ns

(α− 1 + 2πη0

τ
) , (4.6)

where Ns is number of noise sources, τ is attenuation time related to exponential
decay of reverberated signals, α is a plate shape factor (α = 9

4 for a rectangular
plate [104]), η0 is the modal density which is equal to :

η0 = S

4π

√
2ρd
D

,

where S is a plate area, d is a plate half-thickness, D is a flexural stiffness given by
Eq. (1.7).

In fig. 4.6 there is a graph of relative noise level estimated for series of experiments
with different number of noise sources based on Eq. (4.6) and with the following
parameters S = 0.5 m2, ρ = 2700 kg/m3, 2d = 3 mm, ν = 0.35, E = 69 GPa,
τ ≈ 10 ms.

Figure 4.6 – Dependency of relative noise level on number of noise sources.

The synchronous detection principle described (and applied to the active case)
in section 2.3.1 is applied here for the correlation functions Cij. Therefore the prin-
ciple of theoretical contrast derivation is similar to Sec. 3.1.2, except for a subtlety
associated to the stationarity of noise sources locations.

Indeed, ni,j in Eq. (4.4) is not an actual noise, but a (deterministic) reconstruction
error related to the number (and location) of the noise sources, as explained in [103].
For different receivers, these reconstruction noises can be assumed independent and
thus Eq. (3.35) holds. However, the back-propagation of them associated to summa-
tion over receivers (bpfm from Eq. (2.15)), will not result in independent terms for
different defect states m, since noise sources are the same for all states.
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Therefore, here coherent summation over m will not divide noise variance by M
as in Eq. (3.41) and instead residual speckle intensity will be similar to the incoherent
case :

〈I〉 = Nr T0 σ
2
n , (4.7)

where σ2
n corresponds to the numerator of Eq. (4.5).

Consistently, the defect-related spot will be given as a modified version of Eq. (3.54) :

〈I〉 = N2
r δ̄

2E0 σ̄0

4π +Nr T0 σ
2
n , (4.8)

where E0 corresponds to
∫
D2
ij(t)dt (denominator of Eq. (4.5)).

From Eqs. (4.7) and (4.8), the corresponding contrast expression is thus

C = γχ′σ̄0 (4.9)

with γ given by Eq. (3.26), and χ′ corresponding here to the signal-to-noise ratio
associated to the passive Green’s function reconstruction, which is quantified by the
inverse of RNL.

Considering the same experimental parameters as for fig. 4.6 the RNL estimated
from Eq. (4.6) for Ns = 14 is around 0.47.

Direct application of Eq. (4.9) with σ̄ ≈ 0.2 mm and Nr = 14 would yield a
contrast value of around 0.02, which could explain the non-detection observed in
fig. 4.5.

Actually things are slightly more complex than that because in the presence of
a defect, the Green’s function reconstruction error not only depends on the plate
properties, but also on the defect features.

Formally, this reconstruction error when the defect is in a given state m can be
written as

nij,m = nij,0 + δnij,m , (4.10)

where nij,0 is the Green’s function reconstruction noise when the defect is in the state
taken as reference (average over a pump period here).

Then we can define the RNL related to the modulation of the defect by the pump
as
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δRNL =
〈∫

δn2
ij,m(t)dt∫
D2
ij(t)dt

〉
(4.11)

and then χ′ = 1/δRNL in the contrast expression Eq. (4.9).
Estimation of δRNL is not straightforward and will require further theoretical

work in perspective. However, noticing that χ′ is homogeneous to inverse of RNL,
and that RNL is itself homogeneous to inverse of the number of sources Ns (from
Eq. (4.6), it seems reasonable to assume proportionality between χ′ and Ns.

To conclude, in the current passive reference-free experiment defect is not detec-
ted using Green’s function reconstruction. Nevertheless, based on Eq. (4.9), we can
increase the image contrast by :
— Increasing χ′ (decreasing RNL and δRNL) by augmenting number of noise

sources Ns (up to 18 in our case).
— Increasing γ by augmenting number of receivers Nr (up to 19 in our case) which

γ is proportional to.
— Increasing the defect scattering cross-section σ̄0 by exciting the plate with hi-

gher pump amplitude as discussed in section 3.3.2.
In the next section, optimization of experimental parameters based on the reaso-

ning discussed here and on quantitative analysis described in the chapter 3 rewards
us with a successful localization result.

4.2 Improved experiments and parametric study
In this section, the pump-probe passive experiments with a set of uncorrelated

noise sources distributed on the top surface of the plate described in the previous sec-
tion 4.1.1 are conducted with the modified parameters obtained from the quantitative
analysis of active and passive experiments (see the chapter 3 and the previous section
for details) and aimed at improving the image contrast. The parametric studies on
Nr, Ns, and virtual emitter position are discussed.

A scheme of the experimental setup is shown in fig. 4.7. It contains Ns = 18
noise sources and Nr = 19 receivers. Signal processing applied to experiments in this
section is the same as described in the previous section 4.1.1.

In fig. 4.8 results of active (chapter 2) and passive reference-free localization algo-
rithms are compared. Here the passive experiment is done with Ns = 18 emitters and
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Figure 4.7 – Schematic configuration of the considered experiment. The circles
denote noise emitters, the asterisks are for receivers and the cross represents defect
(CAN) position.

Nr = 15 receivers. Both experiments are conducted with the same defect scattering
cross-section σ (f0 = 10 kHz) = 0.18 mm (i.e. the same ruler-plate angle, here we
neglect variation of contact condition between two successive experiments related to
friction), same set of receivers, virtual emitter selected for passive signals proces-
sing is the same PZT patch emitting in the active experiment with the coordinates
(0.438, 0.277) m, same pump amplitude 4.8 V. For active experiment M = 780 slices
of ∆T = 50 ms are considered and for passive counterparts there are M = 3900
windows of ∆T = 10 ms duration. Contrast for active image is Ca = 22, whereas for
passive one Cp = 3, which means that the quality of the passive image is around 7
times lower comparing to the active one under the same conditions. Indeed, in the
passive image a lot of background speckles are observed, which points out that the
Green’s function reconstruction error n(t) (see Eq. (1.9) in section 1.2.2) is essential.

In fig. 4.9 scattering cross-section against time within one pump period is illustra-
ted supplementing the localization results in fig. 4.8. The result resembles harmonic
function which is consistent with the pump periodicity and similar to previously
obtained results (see section 3.3.1).

To improve signal-to-noise ratio of the image, the number of receivers was increa-
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(a) Active result.

(b) Passive result.

Figure 4.8 – Localization results of active vs passive imaging. Ns = 18 emitters and
Nr = 15 receivers. The active emitter (0.438, 0.277) m is the same PZT transducer
as the one used as a virtual emitter in passive localization. Defect is located at
(0.654,0.185) m.
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Figure 4.9 – Scattering cross-section against time within one pump-period for
the experiment comparing active and passive localization algorithm under the same
conditions.

sed up to Nr = 19. A localization result of this experiment is given in fig. 4.10. The
contrast of this image is higher than in fig. 4.8 : C ≈ 4. The virtual emitter is located
at (0.724, 0.126) m, there are M = 3900 windows of duration ∆T = 10 ms.

Finally, for deeper investigation, dependence of image quality on the different
involved parameters is studied.

Dependency on number of receivers
Localization results of the study on number of receivers are presented in fig. 4.11.

Starting from Nr = 7 the defect is well pronounced in the image. Contrast of each
image is computed and shown in fig. 4.12 as a function of Nr with Ns = 18 noise
sources, M = 3900 windows of ∆T = 10 ms duration. The graph follows the linear
trend with coefficient of determination R2 = 0.83 : contrast is proportional to the
number of receivers as predicted by theoretical formula Eq. (4.9) for the contrast.

Dependency on number of noise sources
Another study is concerned with contrast dependency on number of noise emitters.

Localization images for Ns from 13 to 18 are shown in fig. 4.13. In these experiments
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Figure 4.10 – Passive dynamic reference-free localization image of a CAN ob-
tained with Ns = 18 noise emitters and Nr = 19 receivers. Defect is located at
(0.66,0.185) m.

there are Nr = 19 receivers, M = 390 windows of ∆T = 100 ms duration are
considered, virtual emitter is located at (0.438,0.277) m. In this case, the defect is
detected in all the images. However, in fig. 4.14 it is shown that in this series of
experiments the contrast is not proportional to number of sources. The reason for
this could be the fact that we tested only one configuration of noise sources for each
Ns (as in fig. 4.7). Indeed, this proportionality to Ns is only a theoretical average
behaviour over all possible sets of sources that might not be obvious on a single set.

Dependency on virtual emitter position
The last series of experiments was aimed at studying contrast dependency on a

virtual emitter position. Localization images are presented in fig. 4.15 for virtual
emitters from R1 to R19 and the last image is the sum of all the previous images
(incoherent sum). For this series of experiments, there are M = 2600 windows with
a duration of ∆T = 15 ms.

So with only one virtual emitter, localization quality significantly depends on the
mutual positioning of receivers and the defect and also their proximity to the plate
boundaries. This drawback, presumably, can be mitigated for the passive method
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Nr = 2 Nr = 3 Nr = 4

Nr = 5 Nr = 6 Nr = 7

Nr = 8 Nr = 9 Nr = 10

Nr = 11 Nr = 12 Nr = 13

Nr = 14 Nr = 15 Nr = 16

Nr = 17 Nr = 18 Nr = 19

Figure 4.11 – Passive localization images with different number of receivers. Num-
ber of noise sources Ns = 18.
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Figure 4.12 – Dependency of image contrast on number of receivers.

with using full correlation matrix and coherent imaging.
Even though in some images the defect is not detected, in the last image corres-

ponding to the sum of images obtained with different virtual emitters the defect is
well pronounced.
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Figure 4.13 – Localization images with different number of noise sources Ns.
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Figure 4.14 – Dependency of image contrast on number of noise sources.
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R11 R12

R13 R14

R15 R16

R17 R18

R19 Sum of images with R1, R2,...,R19.

Figure 4.15 – Results of passive dynamic experiments for different virtual emitter
positions. The last image is the sum of images with virtual emitters 1-19.
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Conclusions
Passive reference-free localization algorithm based on a combination of pump-

probe experiment, Green’s function retrieval from noise correlations and back-propagation
is proposed as a proof of concept of passive dynamic SHM. Contact acoustic nonli-
nearity has been successfully detected. Successful damage localization images have
been obtained.

The guidelines to optimize parameters of the passive pump-probe experiment are
the following : high number of sources Ns, high number of receivers Nr, high pump
amplitude, the micrometric screw angle should be selected to maximize the defect
scattering cross-section.
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Introduction

This chapter is concerned with physical modeling for ultrasonic waves propaga-
tion in a thin plate in the presence of localized contact acoustic nonlinearity (CAN).
We recall an existing approach to modeling frictional contacts excited by arbitrary
signals and calculate a load-displacement relationship in that situation. In the consi-
dered example, the contact is activated by the Lamb wave propagation in a thin
plate that generate a specific response in terms of contact loads that, in turn, per-
turbs the propagation medium and induces secondary waves in there. The secondary
waves propagating in the plate are qualitatively similar to whose generated in the
experiments described in chapter 2. The chapter is concluded by presentation of
a modeling tool that takes into account the above-mentioned phenomena and imi-
tates wave-contact interactions in simplified 2D plate-like geometry. This numerical
tool can be used as a prototype for real numerical support software accompanying
structural health monitoring experiments such as those described in the chapter 2.

As noted, real contact acoustic nonlinearity occurs most often in the presence
of damage (cracks, delaminations, etc.) or degradation of artificially produced joints
(welds, glue joints). In these cases usually of interest for SHM, the contact is between
areas of rough surfaces with friction excited by a complex shaped acoustic signal.
However, in this work we consider a model contact nonlinearity representing a Hertz-
Mindlin type contact, in which the frictional contact interaction occurs between
two geometrically smooth axisymmetric bodies, i.e. in our case between a sphere
and a plate. The next section describes the existing model of contact interaction
in such a system when it is excited by arbitrary in time normal and tangential
displacements (method of memory diagrams). The method was originally developed
for axisymmetric bodies but, under some additional assumptions, can also be applied
to the contact of rough surfaces. The resulting relation between the stresses and
displacements in the contact area is a boundary condition for the acoustic problem
whose solution is the purpose of the theoretical part of this thesis.
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5.1 Load-displacement relationship in contact acous-
tic nonlinearity under arbitrary oblique exci-
tation

5.1.1 Normal component of contact interaction for axisym-
metric bodies and for rough surfaces

The classical problem for the force N and displacement a arising from the normal
compression of two balls is solved by H. Hertz [91], who obtained the following result :{

N(a) = 4
3E
∗R∗1/2a3/2

c =
√
Ra .

(5.1)

Here E∗ is effective elastic modulus and R∗ is effective radius. E∗ is defined in
Eq. (2.5) where E1,2 are Young’s moduli and ν1,2 are Poisson’s ratios for materials
in contact. Here R∗ is given by

1
R∗

= 1
R1

+ 1
R2

.

In the considered case radius of half-space R2 =∞ and, consequently, R∗ = R1 ≡ R,
where R is sphere’s radius.

This solution can be generalized (Galin [105]) for the contact of two axisym-
metric bodies of arbitrary (not necessarily spherical) shape. For two axisymmetric
bodies [106] the key relationships can be written as follows :

N =
2E∗

1− ν2

(
ca−

∫ c

0

rz(r)√
c2 − r2

dr
)

a =
∫ c

0

cz′(r)
c2 − r2dr ,

(5.2)

where r is the radial coordinate, c is the contact radius, z(r) is a function describing
the gap between the two bodies in the unstrained state (the total gap equals 2z(r)),
z′(r) is its derivative, and ν is Poisson’s ratio. When z(r) = R−

√
R2 − r2, Eqs. (5.2)

yield Hertz’s solution (5.1).
For rough surfaces, description of the normal interaction by exact mechanical me-

thods is hardly possible and is constructed here with the use of model considerations
instead. The model proposed here is based on the following principles.
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Contact of rough surfaces can be described using three different parameters re-
lated to the contact area : the nominal contact area An defined by replacing rough
surfaces by ideally plane ones, the real (atomic) contact area A, and the geometric
(truncated) contact area Ag obtained in a virtual situation when rough profiles can
freely penetrate into each other or, equivalently, when all roughness elements of each
surface located higher than a certain height are virtually cut off. Two of these contact
areas are also illustrated in fig. 5.1. As can be observed, the real atomic contact area
A between two bodies with rough surfaces is only a small part of the nominal area
An. The proportionality A ∼ N was proposed by Bowden and Tabor in 1939 [107] ; a

Figure 5.1 – Illustration of the nominal contact area An and the real contact area
A.

more recent discussion on the proportionality can be found in [108]. Both empirical
and theoretical arguments suggest that

A = 2κ(1− ν2)
Eh′

N (5.3)

with h′ equal to the root mean square of the random surface slope, and κ ≈ 2
(see [109] and references therein for experiments, [110] for theory, [111] for the
discussion on the coefficient κ, [112] for theoretical and numerical examples).

Further, we introduce the random gap ξ between the surfaces (2ξ is the full gap, ξ
is related to one body) and denote φ(z) as its distribution. Then it is easy to express
the ratio Ag/An from purely geometric consideration as

Ag
An

=
∫ a

0
φ(z)dz . (5.4)

Finally, the real and geometric contact areas can be linked by a model relationship. In
particular, if all microcontact spots are approximated by strained spheres, a simple
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relation
A

Ag
= η = 1

2 (5.5)

follows from the Hertz theory [91] (see also second equation in Eqs. (5.1) below). For
non-spherical shapes of asperities, the value of η can deviate from 1/2. Combining
Eqs. (5.3), (5.4) and(5.5) we obtain an analytical expression linking N and a,

N(a) = ηh′E

2κ(1− ν2)

∫ a

0
φ(z)dz . (5.6)

In case of negative normal displacement a – when two bodies move away from each
other, – we set N equal to zero which actually corresponds to the absence of adhesion.
Equation (5.6) means that the normal reaction of a crack section is determined by
the gap (aperture) distribution which, in turn, depends on the nature of a crack.
Since typical acoustic excitations can always be considered as small perturbations,
the normal reaction in the acoustical strain range will mainly depend on the tangent
to the curve φ(z) at z = 0 (i.e. the first-order Taylor series approximation) illustrated
in fig. 5.2.

Figure 5.2 – Example of the gap distribution function φ(z) illustrating the type of
crack depending on the slope of its tangent at z = 0.

As such, three cases can be distinguished : a vertical tangent, a horizontal one,
or a tangent with inclination angle between 0 and π/2. A vertical tangent implies
that even for a small compressive displacement a, a non-zero contact area will be
immediately formed. In practice, this refers to highly conforming surfaces at the
atomic level. Secondly, a horizontal tangent refers to an essentially open crack in
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which points in atomic contact practically do not appear. Finally, an intermediate
tangent inclination coefficient k(0 < k < ∞) results in the approximation which
yields the following result :

N(a) = ηh′Ek

4κ(1− ν2)a
2, a > 0 . (5.7)

The same second-order dependency (N(a) ∼ a2) has been introduced by Biwa et
al. [113] based on existing experimental data for aluminum-aluminum contact and
was already used by Yuan et al. [114] for modeling the nonlinear interaction of a
compressive wave with a soft contact interface between two solid blocks of aluminum.
This suggests that the quadratic dependency is a possible approximation for two
globally plane surfaces with uncorrelated roughness brought into contact. As an
extension we assume that Eq. (5.7) is also approximately valid for fatigue cracks
since the internal stresses released during cracking and the associated microscopic
displacements result in a similar loss of conformity at the atomic scale. Microscale
composite roughness (related to the random gap between two surfaces) that mainly
contributes to the acoustic response can thus be considered as uncorrelated.

The quadratic approximation is not the only possible form for modeling the nor-
mal load-displacement relationship. In [115, 116] it is shown that rough surfaces
with various fractal dimensions correspond to different powers in approximation of
the kind of Eq. (5.7).

So, in any of the considered cases the law of the normal interaction is given by
the analytical formula N = N(a). For the model CAN used in our experiments,
this is power law with an exponent of 3/2. For rough surfaces corresponding to a real
defect, the exponent will be different. However, the general solution for axisymmetric
bodies makes it possible to simulate this dependence by selecting the gap function
z(r). In the present work, the contact between the sphere and the plate is used for
simplicity. In the following, we will show that such a system can approximate, in
terms of acoustic behavior, the contact between rough surfaces with some statistical
properties, even though the law of contact interaction is different for these systems.
This fact can be an argument in favor of using the chosen model CAN instead of the
real damage in SHM problems.
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5.1.2 Tangential component of frictional contact interaction
for axisymmetric bodies and for rough surfaces

Calculating the tangential component of the contact interaction in the presence
of friction is more challenging than modeling for the normal component. First of all,
friction is a hysteretic process i.e. a one-to-one relationship between the tangential
force T and the tangential displacement b is absent. Besides, Coulomb’s law of dry
friction, which is a typical model form of frictional interaction, does not provide any
relation between T and b at all, but only defines at what relation between normal
and tangential forces there will be slip, and at what relation there will not. Further,
if the contacting bodies have relief, Coulomb’s law has to be set not for the bodies
as a whole but at the level of local stresses and displacements in the contact area.
Different fragments of the contact area are loaded differently, resulting in sliding in
some areas and in stick in others. This situation can be called partial slip, which is
therefore an additional mode of contact interaction besides the obvious two - full slip
in the whole contact area and loss of contact. All of these factors require a multi-step
analysis, which should eventually lead to some kind of integral model [117] developed
a few years ago by our research team.

a) Constant load and partial slip

First of all, let us outline here a method for solving the axisymmetric problem in
the case of partial slip (fig. 5.3). For spherical bodies this case is called the Hertz-
Mindlin problem [118] or the Cattaneo-Mindlin problem [119]. If the normal force is
kept constant while the tangential one increases, the solution is written down in the
following simple form : {

T = 4µE∗

3R∗ (c3 − s3)
b = µθ

R∗ (c2 − s2) , (5.8)

where µ is a dry friction coefficient, R∗ is an effective radius defined in Eq. (5.1.1),
c is a radius of a contact zone, s is a radius of stick zone, E∗ is defined in Eq. (2.5).

It is important to note here that this result is obtained by neglecting the dissi-
milarity effects which arise due to differences in elastic constants and shapes of the
strained bodies in contact. Thus, for example, two non-identical spheres in a purely
normal interaction can experience slip only due to a different pattern of tangential
deformations in each body caused by the Poisson effect. The disregard of dissimilarity
effects is quantified by the requirement of Dundur’s constant β to be small
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Figure 5.3 – Illustration of the partial slip regime for an example of two spheres
pressed against each other. Blue segment denotes stick zone, red segments are for
slip zone.

β = G2(κ1 − 1)−G1(κ2 − 1)
G2(κ1 + 1) +G1(κ2 + 1) . (5.9)

Here G1,2 are shear moduli, κ1,2 = 3 − 4ν1,2, and ν1,2 are Poisson’s ratios of the
materials (see, for instance, [120]). The elastic similarity means that normal and
tangential interactions are uncoupled in some sense. In many practical cases, even
if the above conditions of elastic similarity are not exactly fulfilled, the dissimilarity
effects are found to be numerically small [121, 122, 123, 124].

Note now that the expression Eq. (5.8) is similar to the solution{
N = 4E∗

3R c
3

a = c2

R

(5.10)

of Hertz problem. This fact makes it possible to rewrite the Cattaneo-Mindlin solu-
tion [122], [119] in a compact form, which turns out to be true for the contact of
arbitrary axisymmetric bodies as well :{

T = µ(N(c)−N(c = s))
b = θµ(a(c)− a(c = s)) , (5.11)

where θ is a constant depending on materials of contacting half-spaces (sphere and
plate, steel and aluminum) [106] :

θ =
(2−ν1)(1+ν1)

2E1
+ (2−ν2)(1+ν2)

2E2
1−ν2

1
E1

+ 1−ν2
2

E2

.

Here a(c) and N(c) are the analytical relations (see Eqs. (5.10)) relating the
normal displacements and forces to the contact radius. Moreover, if the law of normal
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interaction is known N = N(a), it is easy to represent the previous relation as{
T = µ(N(a)−N(a = q))
b = θµ(a− q) (5.12)

in which the geometric parameters of the contact are not present explicitly. Here q is
defined as q = a(c)|c=s. These parameters, however, are contained here implicitly in
the dependence N(a). The form in Eq. (5.12) has an important consequence, which is
that if the laws of normal interaction of two contact systems are the same, then their
tangential behavior will also be the same. Hence, in particular, it follows that the
contact of two rough surfaces can be replaced by the contact of axisymmetric bodies
with the same normal reaction – their tangential behavior will also be the same. This
conclusion is strictly valid for surfaces in which all asperities are spherical in shape.
As a model assumption, one can also assume that this property holds for arbitrary
(non-spherical) asperities if their random shape is isotropic, i.e., in particular, there
is no direction in which the roughness pattern will be statistically more elongated
than in the other one.

The solution in Eq. (5.12) is called the Reduced Elastic Friction Principle [122],
which means that the tangential interaction is determined by the difference between
the actual normal load-displacement relationship and the same relationship in which
the contact radius is replaced by the slip zone radius (so that the corresponding load
is virtually reduced).

b) Arbitrary oblique load and partial slip

Suppose now that the forces (or displacements) loading the contact are not
constant over time, but vary in an arbitrary law, with their vectors not leaving the
same plane. This means that the contact interaction is described by the relationship
between the forces N(t), T (t) and displacements a(t), b(t). This relationship can be
calculated using the Method of Memory Diagrams (MMD), which is a semi-analytical
solution to the problem in which all the key relationships are given analytically, but
the input parameters are determined by the algorithm.

These analytical relationships for tangential force T and displacement b are as
follows 

b = θµ
∫ a

0
D(α)dα

T = µ
∫ a

0
D(α)dNda |a=αdα ,

(5.13)
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where D(α) is an internal function of the system in question, which encapsulates all
the information about the memory in it, and is called a memory diagram. Whereas
the tangential load and displacement are given by analytical expressions, we shape
of the memory diagram sitting inside is defined by an algorithm. In particular, with
a simple loading protocol indicated in (fig. 5.4 a), it has a simple form expressed as
follows (see fig. 5.4 b)

D(α) =
{

1, 0 ≤ α < q
0, q ≤ α ≤ a .

(5.14)

Substituting it into the system Eq. (5.13), provides a known result from Eq. (5.12).
With an arbitrarily varying load (fig. 5.4 c), its form is more complex (fig. 5.4 d)

Figure 5.4 – Examples of memory diagrams (b) and (d) for simple (a) and complex
(c) loading protocols, respectively. For the simple case, load-displacement relationship
is known, for the complex one, method of memory diagrams is applied to find it.

The algorithm is discussed in detail in [125] and [117]. It updates the shape of the
memory diagram at each change of input parameters of the system by small values
∆N and ∆T for the force-driven system, or ∆a and ∆b for the displacement-driven
system. Thus, if the arguments in the problem are displacements and the functions are
forces, then based on the known values ∆a and ∆b, the algorithm calculates current
change in the memory diagram D(α), which satisfies the first equation in (5.13)
written for increments. The memory diagram is then used to compute the responses
∆N and ∆T using known N(a) and the second equation in (5.13). As a result, for
any loading history the tangential response of the system is automatically calculated
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with the known normal loading curve N(a), in which the entire system geometry is
encoded.

c) General case of arbitrary in time oblique excitation

So, the MMD allows one to calculate the tangential response of the system to an
arbitrary in time oblique shift, but only in the case of partial slip. Let us consider what
happens when the non-slip zone decreases to the point r = 0 and then disappears
completely.

For the force-driven system the tangential force will reach a critical value of
µN and then, if this threshold is exceeded, a part of the tangential force cannot be
compensated for by friction. In the absence of other forces, the non-equilibrated com-
ponent causes accelerated motion. This description is highly undesirable as it goes
beyond the closed-form relationship between forces and displacements and depends
on the external conditions of the contact.

Figure 5.5 – Tangential displacement b contains two components corresponding to
total sliding b0 and partial slip b̃, respectively.

For the displacement-driven system, however, this difficulty does not arise. In
order to build a closed-form load-displacement relationship, consider displacement b
as the sum of two components : one part b0 corresponding to total sliding and the
other one b̃ to partial slip (fig. 5.5) :

b = b0 + b̃ . (5.15)
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The idea [126] behind this separation can be illustrated as follows. Suppose the
tangential loading increases while keeping constant normal compression N = N(a)
corresponding to a certain normal displacement a. The bodies in contact move away
from each other under load in both normal and tangential directions. In addition,
the tangential receding b̃, in contrast to the normal one, a, is accompanied by partial
slip. According to the MMD based on the Coulomb friction law, b̃ is not allowed to
grow infinitely. Once the maximum value b̃max = θµa is achieved, the bodies can not
deform anymore and a total sliding process develops when the very last stick point
belonging to one face separates from its neighbor at the opposite one. The tangential
displacement between those points is denoted b0 and corresponds to the contribution
from total sliding. In other words, b0 is a reference point mismatch, in some sense.

Figure 5.6 – Three possible contact states. For each case, the following information
is supplied : conditions under which the case occurs, solutions for components and ,
solutions for forces N and T , and memory diagrams.

Fig. 5.6 provides an overview of the full concept in case both normal and tan-
gential displacements a and b evolve in an arbitrary manner. The scheme explains
how to calculate the forces N and T for any given value of displacements a and b.
In order to do so, the tangential displacement components b0 and b̃, together with
the corresponding memory diagram should be updated. The updating operation for

116/162



CHAPTER 5. MODELING FOR ACOUSTIC WAVE PROPAGATION IN A
THIN PLATE WITH AN ARTIFICIAL CAN

the tangential displacement components is denoted using the assignment operator
« := », which means that values obtained at the previous time step are overwritten
by new ones [126].

Figure 5.7 – (a) Tangential force as a function of tangential displacement and
normal force (b) in case of particular displacement histories shown in (c).

A typical result provided by the MMD with some particular normal and tangential
displacement histories is illustrated in fig. 5.7. In this example a = 1.3+1.9 sin(1.7t)+
0.9 sin(2.4t), b = sin(t) + 1.5 sin(1.4t) + 0.8 sin(2.1t). Note that since the tangential
force is a history-dependent function of two arguments a and b, its behavior is more
complicated than typical patterns for uni-variate hysteresis with closed loops. The
curve is composed of several fragments marked in fig. 5.7 a with different colours :
blue stands for total sliding in which T = ±µN , red stands for partial slip, and green
is for contact loss.

The same regimes can be seen in fig. 5.7 b visualizing the link between the normal
and tangential forces. As one can see, total sliding indeed corresponds to fragments
T = ±µN . Parts of curves T = T (N) located in between the delimiting lines T =
±µN are related to the partial slip regime, while the case of contact loss corresponds
to the point (0,0). This behavior is in complete agreement with the Coulomb’s friction
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law.
The algorithm in fig. 5.6 completes the description of the contact model. It is for-

mally valid for axisymmetric bodies ; however, under some limitations, can be consi-
dered as a good approximation for contact of rough surfaces as well. Indeed, following
the Greenwood and Williamson approach [127], all asperities can be considered as
spherical or axisymmetric. Even if they are not, i.e. individual microcontacts can
have arbitrary shapes, in many cases it is reasonable to consider isotropic roughness
when along all possible directions parallel to the global surface plane all statistical
properties of roughness are the same (one of exceptions is rough surfaces obtained
by grinding). In the isotopic case, each microcontact can be effectively replaces by a
pair of equivalent axisymmetric bodies for which the above theory is applicable.

Finally, we will list the assumptions that were used explicitly or implicitly to
construct the method.

1. Loading is in one plane only (i.e. in 2D) ; 3D extensions are discussed in [128].
2. Only shift is considered ; torsion and rolling are ignored.
3. The Coulomb friction law with friction coefficient µ is postulated for contact

stress fields.
4. The model is quasi-static : differences between static and dynamic friction are

not considered, inertial behavior in the material in the vicinity of the contact
zone is neglected.

5. Plasticity and adhesion are ignored.
6. The normal to the contact area (or all normals to all microcontact areas for

rough surfaces) does not rotate and stays in the same direction.
7. The normal solution is a known bi-unique function N = N(a) independent of

the tangential loading.
8. Dissimilarity effects are neglected.
9. The reduced elastic friction principle is valid for the considered geometry (exact

for axisymmetric bodies and reasonable approximation for isotropic rough sur-
faces).

In the next section, the Method of Memory Diagrams (automated Hertz-Mindlin
solution) will be used for computing forces excited by the Lamb waves at CAN
location.
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5.2 Modeling for contact acoustic nonlinearities
excited by the Lamb waves

In this section, contact forces excited by the Lamb wave for two types of contact
acoustic nonlinearities will be calculated from the known wave displacements : for
the Hertz-Mindlin CAN (HM-CAN) and for rough surface CAN (RS-CAN). Here
the HM-CAN corresponds to the physical model for damage used in the experiments
that represents a contact between a sphere and a plate, whereas the RS-CAN refers
to a more realistic case where a defect is a crack or a loose joint with rough surfaces.
Both CANs produce nonlinear force reaction on acoustic excitation ; the obtained
forces as functions of time can be interpreted as a secondary waves’ source located
at small area (practically a point) on the plate surface. In what follows we focus on
the interaction of CANs and the Lamb wave in more detail.

5.2.1 Hertz-Mindlin CAN
In the considered geometrically idealized experimental case, a small steel ball

pressed against a top surface of an aluminum plate is exited by the A0 Lamb mode.
Then the coordinates of the ball’s center of mass supposed to be zero when the
bodies are unstrained are given as a superposition of wave displacements and contact
displacements : {

x = b+ ux = 0
y = a+ uy .

(5.16)

The former equation takes into account that horizontal motion is prohibited by
a device positioning the sphere. This taboo comes from the experiment in which
sphere’s horizontal motion on the plate activates acoustic emission due to friction
and makes the defect detection method reference-based due to the varying sphere’s
coordinate. The latter equation in the system (5.16) is to be combined with the
equation of motion :

m
∂2y

∂t2
= N0 −N(a) (5.17)

with m, the mass of the sphere. Here N0 denotes precompression force that has
two components, elastic prestress and gravity, and is positive for the y-axis directed
downward, whereas the normal contact reaction force N(a) is directed upward. The
geometry of the problem is illustrated in fig 5.8b.
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(a) Small ball pressed against a plate is exited by the Lamb
wave (plate’s deformation is highly exaggerated). (b) Zoom on
the ball with the normal contact displacement shown.

(c) Physical problem formulation for HM-CAN.

Figure 5.8 – Model of HM-CAN.
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The equation of motion has to be supplemented by the calculation of the normal
and tangential contact forces given by

{
N(a) = 4

3E
∗R∗1/2a3/2

T (b, a) = TMMD(b, a) , (5.18)

where TMMD is an automated analytical solution given by the Method of Memory
Diagrams described before in section 5.1.2.

Besides, we have to specify explicitly the known solution Eq. (1.3) for the A0
Lamb wave. This stationary solution is fully harmonic in time ∀t ∈ (−∞,+∞).
However, in order to solve the equation of motion, one has to set initial conditions
in terms of coordinates or contact displacements which are a priori unknown in
the stationary wave regime. To avoid this difficulty, we assume the initial condition
a = a0, with a0, contact displacement produced by force N0, i.e. in the absence of
wave. To comply with zero wave displacements at t = 0, the wave form is considered
with a formal « ramp function » that equals zero at the initial moment and then
gradually reaches 1 : 

ux = uLambx · r(t)
uy = uLamby · r(t)
r(t) = 1− e−( t

tramp
)2
.

(5.19)

A formal requirement on the ramp duration tramp � 1/f , where f denotes acoustic
excitation frequency, guarantees that the distortion introduced by using this tech-
nique is negligible.

Due to the presence of the Hertz nonlinearity and of the hysteretic friction force,
the equation of motion Eq. (5.17) together with Eq. (5.18) have to be solved nume-
rically. As far as initial problems for ordinary differential equations are concerned,
at least two numerical approaches are commonly used : the Runge-Kutta and the
Adams-Bashforth [129] methods. The both are precise and efficient enough and as-
sume higher orders of approximation (e.g. 4th, 5th). However, the former one involves
expressions to be calculated in between of time discretization points tj, while the
latter one is fully based on calculations at points tj only. Since the MMD does not
directly provide any values in between of time discretization points, the Adams-
Bashforth method is more appropriate in that case. Having this in mind, we rewrite
the equations (5.17) and (5.16) to be solved in a form suitable for Adams-Bashforth
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method of the 5th order application :{
∂y
∂t

= yd
∂yd

∂t
= 1

m
(N0 −N |a=y−uy(t))

(5.20)

in which the first time derivative yd of the y-coordinate is defined explicitly. The
numerical calculations are performed in accordance to the following scheme :{

yj+5 = yj+4 + dt∑4
i=0 ki+1f(tj+5−i, yj+5−i)

y1 = a0 ,
(5.21)

where k1 = 1901
720 , k2 = −1387

360 , k3 = 109
30 , k4 = −637

360 , k5 = 251
720 , dt is a time step with

f(ti, yi) = 0 for i = 1, 2, 3, 4. The latter equation indicates precompression at the
initial moment of time.

Note that for making a new step in time the method requires knowledge of all
variables on five previous time steps. This means that for five first steps of the algo-
rithm, some of these previous values are not defined. However, since the procedure
starts with zero initial conditions, we assume all such variables to be 0.

Now we know how to calculate forces exerted at HM-CAN from the known Lamb
wave-driven displacement. Calculation results for the HM-CAN excited by the Lamb
wave obtained via the above method are considered later in section 5.2.3. Here we
first concentrate on an analogous description for the RS-CAN.

5.2.2 Rough surface CAN
The obvious difference between the case of real damage and the model HM-

CAN is that for real damage no additional mass has to be considered. The only
inertial behavior for contact of rough surfaces can be associated with thin layers
of material comprising surface roughness that can react on bulk load with some
delay. However, the corresponding relaxation time is related to microstructure and
is therefore much smaller than the acoustic period and thus is negligible. The quasi-
static approximation for the boundary conditions at rough surfaces of real damage
remains valid for any acoustic excitation of interest.

In the experiments and simulations for the HM-CAN the ball is prestressed. A real
crack can be prestressed either at least due to the following reason. During cracking,
an external action is applied that separates crack faces by a distance significantly
exceeding the atomic size. Upon releasing the action the crack faces tend to return
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back to the unstrained state, but due to micro-distortions of local surface shapes
they can not do so with the atomic precision. The resulting shapes’ mismatch acts
as a thin layer of additional material « inserted » between crack faces which actually
plays a role of prestress.

Implementing the above considerations, we assume the governing equation in the
following form : 

a = a0 − uy
N = Ka2

x = b+ ux(t) = 0
T = TMMD(b, a) ,

(5.22)

where K = C2An, and C = 6 · 1010 Pa1/2m−1 is Biwa’s empirical constant.
Here no mass is present so that the equation of motion is replaced by calculation of

instantaneous reaction of the contact on the action of the Lamb wave. Displacement
a0 is responsible here for the prestress effect.

A graphical representation for the considered system is given in fig. 5.9a. The
no-mass formulation corresponds to a contact between a surface and a small (much
less then the wavelength) unmovable block whose coordinate y always stays equal
0 and therefore is not introduced. Certainly, other configurations are possible, but
the considered one fully corresponds to Eq. (5.22) and is geometrically similar to the
HM-CAN case. Here An is the nominal contact area (see section 5.1.1) and C is a
constant [113] that can be either estimated from contact microgeometry parameters
by using the model discussed in [125] or measured experimentally for a real contact
in a way similar to Biwa et al. [113].

5.2.3 Comparison of reactions of both CANs on acoustic
excitation

Here it is appropriate to discuss the compliance between the model and real
damage CANs. Obviously, the powers in the normal reaction law are not the same
in these cases (3/2 and 2). However, by selecting proper parameters, the normal
load-displacement curves can be numerically matched. This procedure is required to
quantitatively justify relevance of the model defect in the experiment (HM-CAN) as
approximation of the real damage (RS-CAN). Also there is an unknown constant An
in the expression for the force generated by RS-CAN. The choice of this constant is
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(a) Two rough surfaces in contact exited by the Lamb wave
(plate’s deformation is highly exaggerated). (b) Zoom on the
RS-CAN.

(c) Physical problem formulation for RS-CAN.

Figure 5.9 – Model of RS-CAN.
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based on the equality of the initial normal displacements a0 caused by precompression
for both HM-CAN and RS-CAN. An example of numerical match between normal
reaction in the both models is shown in fig. 5.10 in which the HM-CAN and the
RS-CAN responses are observed to be qualitatively similar. The RS-CAN curve is
matched to HM-CAN curve with the least squares method. Accepting the value
of C = 6 · 1010 Pa1/2m−1 measured by Biwa et al [113] for two aluminum blocks
as a reference, we get the radius of nominal contact area An ≈ 6.2410−9 m2 that
corresponds to the contact size of

rcontact ≈ 4 · 10−5 m.

This means that in both cases the contact size is much less than all macroscopic
geometry dimensions and thus can be considered as punctual. Also it is the same
order of magnitude as a scattering cross-section detection threshold σth = 0.065 mm
estimated in section 3.1 of chapter 3. Diameter of the nominal contact area 8 mm is
greater than σth, which confirms that the CAN can be detected.

Figure 5.10 – The normal load-displacement curve for the HM-CAN and a close
curve for RS-CAN with matched parameters for m∗ = 414.

Despite similar normal responses, the reaction of the considered CANs on the
acoustic excitation can be different. The reason is in dynamic effects that arise in the
HM-CAN with the finite mass but does not occur in the case of massless RS-CAN.
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In figs 5.11 and 5.12 we illustrate cases of various strength of the dynamic effects
that consist in appearance of low-frequency modulation of the force response and in
a general loss of periodicity with 1/f period. In fig. 5.11 they are almost negligible
while in fig. 5.12 their magnitude is significant.

It is easy to quantify the expected dynamic effect level by calculating of the
dimensionless mass m∗ appearing in the dimensionless form of Eqs. (5.17),(5.16),
(5.18),(5.19) for the HM-CAN :

Here
m∗ = a0mf

2

N0
(5.23)

is a combination of the inverse normal stiffness a0/N0 and the known parameter
mf 2. To reduce the dynamic effects and make the HM model more adequate to real
damage with no inertia, one has to increase the dimensionless mass m∗ by increasing
the real mass, exciting the plate with a higher frequency, or having a less stiff contact.
In figs 5.11 and 5.12, the parameter m∗ equals 414 and 155, respectively.

It is also important to mention that increasing prestress decreases overall non-
linearity of the problem. Nevertheless, the secondary waves are generated even for
high prestress levels making it possible to detect localized CAN position via methods
developed in chapter 2.
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Figure 5.11 – Normal (a) and tangential (b) forces applied to the plate by the HM-
CAN and RS-CAN with matched normal responses N(a). Here m∗ = 414 indicating
weak dynamic effects. Frequency f=200 kHz, plate thickness 2d=5 mm, radius of
the sphere R=9 mm, no precompression, Bamp = 0.1 nm.(c) Normal displacement
produced by the HM-CAN and RS-CAN with matched normal responses N(a).
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Figure 5.12 – Normal (a) and tangential (b) forces applied to the plate by the
HM-CAN and RS-CAN with matched normal responses N(a). Here m∗ = 155 that
corresponds to moderate dynamic effects. Frequency f=200 kHz, plate thickness
2d=3 mm, radius of the sphere R=5 mm, no precompression, Bamp = 0.15 nm. This
HM-CAN mimics real damage only qualitatively.(c) Normal displacement produced
by the HM-CAN and RS-CAN with matched normal responses N(a).
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5.3 Numerical modeling for elastic waves interac-
ting with the CAN in a thin plate

5.3.1 Modeling for Lamb waves using finite difference and
finite element methods

This section is concerned with modeling for wave propagation in a thin plate in the
purpose of calculating the normal and tangential displacements activating the CAN.
In the experiments, the first flexural mode A0 is primarily excited whose analytical
form is known in the fully harmonics case where t ∈ (−∞,+∞). In practice, some
non-stationary transient wave processes are always present at least due to a finite
observation time. In addition, the numerical tool to be developed has to be flexible
enough in terms of the choice of excitation. These features motivate us to build
up a numerical description for the propagating waves, despite the existence of the
analytical solution.

In many cases, nowadays numerical modeling for waves in solid structures is ba-
sed on the finite element method. However, for learning purposes it is interesting
to implement the classical finite difference method as well and then compare their
efficiencies. Thus, in this section, we set the problem geometry for the both methods
and implement the finite element and finite difference solutions in the case corres-
ponding to a pure Lamb mode where the exact solution is known. Then the tested
algorithms and codes can be used for modeling any transient wave process when the
analytical solution is cumbersome.

Unfortunately, the performance of available computers is not sufficient for an
adequate description of real experimental geometry (plate of L×w× 2d dimensions
suspended on elastic strings). Due to performance limitations we consider a L × 2d
fragment in the 2D case in which geometric parameters L, d, and λLamb (Lamb
wavelength of A0 mode) are selected in accordance to the following requirements.

First of all, the representative fragment should be long enough to mimic the plate
as an object with high geometric aspect ratio, i.e. L� d, L� λLamb. Secondly, the
experimental condition of preferential A0 mode excitation engenders a requirement
in terms of the λLamb and the plate half-thickness d. Indeed, the theoretical number
of the antisymmetric Lamb modes that can travel in a plate of a certain thickness is
given by Eq. (1.1) [19], therefore, if [ 2d

λLamb
] = 0, then Na = 1, namely, only A0 mode

is present.
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These requirements are satisfied by selection of the following excitation and geo-
metric parameters : d = 2.5 mm, f = 200 kHz, L = 5λLamb ≈ 5 cm. The λLamb = 2π

kA0
,

where wavenumber kA0 is to be determined in an implicit way as a root of an algebraic
equation (1.2) or equivalently :

f(k) = (2k2 − k2
t )2 sinh

√
(k2 − k2

l )d cosh
√
k2 − k2

t d

−4k2
√

(k2 − k2
l )
√

(k2 − k2
t ) cosh

√
(k2 − k2

l )d sinh
√

(k2 − k2
t )d = 0

(5.24)

that is convenient to solve by a bisection method i.e. by repeatedly dividing the
interval containing the root. Indeed, taking an initial interval kA0 ∈ [1, 50000] m−1

(f(1) is positive while f(50000) is negative), after 100 bisections only we localize the
root kA0 = 540.1073572879936 m−1 with the precision of 10−13 m−1.

After locating the root corresponding to the Lamb wavelength, we proceed to
numerical solving of the following wave propagation problem :

∂vx

∂t
= 1

ρ
(∂σxx

∂x
+ ∂σxy

∂y
)

∂vy

∂t
= 1

ρ
(∂σxy

∂x
+ ∂σyy

∂y
)

∂σxx

∂t
= (λ+ 2µ)∂vx

∂x
+ λ∂vy

∂y
∂σyy

∂t
= (λ+ 2µ)∂vy

∂y
+ λ∂vx

∂x
∂σxy

∂t
= µ(∂vx

∂y
+ ∂vy

∂x
) .

(5.25)

In this equations (vx,vy) is the 2D-velocity vector, (σxx,σyy,σxy) is the stress ten-
sor, λ and µ are Lamé coefficients. L is the plate length, d is a half of the plate’s
thickness.

Equation (5.25) describes the A0 Lamb wave if supplemented by the initial
conditions in the form 

vx(t = 0) = vLambx (t = 0)
vy(t = 0) = vLamby (t = 0)
σxx(t = 0) = σLambxx (t = 0)
σyy(t = 0) = σLambyy (t = 0)
σxy(t = 0) = σLambxy (t = 0)

(5.26)

and the boundary conditions{
σyy(x = 0) = σLambyy (x = 0)
vx(x = 0) = vLambx (x = 0) (5.27)
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and {
σyy(x = L) = σLambyy (x = L)
vx(x = L) = vLambx (x = L) (5.28)

at the left and right edges of the plate. The boundary conditions at the top and
bottom faces are stress-free and are given by{

σxy(y = ±d) = 0
σyy(y = ±d) = 0 . (5.29)

Here variables with the superscript « Lamb » defined in Eqs. (1.3), (1.4), (1.5)
correspond to the analytical solution for the A0 Lamb wave. It is straightforward to
check that the solution in Eqs. (1.3), (1.4), (1.5) exactly satisfies the above equa-
tion Eq. (5.25). The geometry together with boundary conditions are illustrated in
fig. 5.13.

Figure 5.13 – Geometry and boundary conditions corresponding to the A0 Lamb
mode in a thin plate.

a) Finite difference formulation

In the finite difference method, the derivatives in Eq. (5.25) are to be substituted
with finite differences. They can be one-sided or centered which corresponds to the
first or second order of approximation, respectively. The choice of the latter case
results in a staggered grid formulation [130] in which some variables are defined
at odd grid nodes while the others are defined at the even ones. This scheme is
illustrated in fig. 5.14.

In particular, vx is defined only on even y-layers and odd x-layers, vy - on odd
y-layers and even x-layers, σxx and σyy - on even y-layers and even x-layers, and σxy
- on odd y-layers and odd x-layers. In fig. 5.14 time stepping is shown for vx and
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Figure 5.14 – Staggered grid formulation of the finite difference method for
Eq. (5.25). (a) Each spacial layer contains nodes with odd and even numbers at
which different variables are defined. (b) Examples of time stepping to the new time
layer (variables marked with « + ») from the current one (unmarked variables) and
the previous one (marked with « - »).

132/162



CHAPTER 5. MODELING FOR ACOUSTIC WAVE PROPAGATION IN A
THIN PLATE WITH AN ARTIFICIAL CAN

σxy. For other variables the procedure is analogous. Here label « + » stands for new
time layer, label « - » is for the previous one.

Introducing the grids xi, yj, tl in space and in time via expressions :
xi = (i− 1)∆x
yj = −d+ (j − 1)∆y
tl = (l − 1)∆t

with i = 1, .., Nx, j = 1, .., Ny, l = 1, .., Nt and steps :

∆x =
L

Nx − 1
∆y =

2d
Ny − 1

∆t =
Tcomp

Nt − 1 ,

we denote variables on this grid as vx(i, j), vy(i, j) for x- and y- velocity compo-
nents respectively, σxx(i, j), σxy(i, j), σyy(i, j) for stress tensor components. Tcomp
here stands for computation time.

Using the above scheme of time stepping, it is easy to write the corresponding
discretized equations which take the form :

vx(i, j)+ = vx(i, j)− + ∆t
ρ∆x(σxx(i+ 1, j)− σxx(i− 1, j)) + ∆t

ρ∆y (σxy(i, j + 1)− σxy(i, j − 1))
vy(i, j)+ = vy(i, j)− + ∆t

ρ∆x(σxy(i+ 1, j)− σxy(i− 1, j)) + ∆t
ρ∆y (σyy(i, j + 1)− σyy(i, j − 1))

σxx(i, j)+ = σxx(i, j)− + (λ+ 2µ) ∆t
∆x(vx(i+ 1, j)− vx(i− 1, j)) + λ∆t

∆y (vy(i, j + 1)− vy(i, j − 1))
σyy(i, j)+ = σyy(i, j)− + (λ+ 2µ) ∆t

∆y (vy(i, j + 1)− vy(i, j − 1)) + λ∆t
∆x(vx(i+ 1, j)− vx(i− 1, j))

σxy(i, j)+ = σxy(i, j)− + µ∆t
∆y (vx(i, j + 1)− vx(i, j − 1)) + µ∆t

∆x(vy(i+ 1, j)− vy(i− 1, j)) .

To represent the boundary conditions, it is convenient to take odd total num-
bers of points Nx and Ny. This selection fully corresponds to the boundary condi-
tions(5.27),(5.28) at the plate edges written here in the form :

σxy(1, j) = σLambxy (x1, yj, tl)
vx(1, j) = vLambx (x1, yj, tl)
σxy(Nx, j) = σLambxy (xNx , yj, tl)
vx(Nx, j) = vLambx (xNx , yj, tl) .

(5.30)

The stress-free boundary conditions (5.29) at the plate top and bottom surfaces
should be replaced by the ones conforming to the staggered grid formulation :
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vy(i, 1)+ = vy(i, 1)− + 2∆t

ρ∆yσyy(i, 2)
σxy(i, 1) = 0
vy(i, Ny)+ = vy(i, Ny)− − 2∆t

ρ∆yσyy(i, Ny − 1)
σxy(i, Ny) = 0 .

(5.31)

The initial conditions on the staggered grid read :
At t = 0 : 

vx(i, j)− = vLambx (xi, yj, 0)
vy(i, j)− = vLamby (xi, yj, 0)
σxx(i, j)− = σLambxx (xi, yj, 0)
σxy(i, j)− = σLambxy (xi, yj, 0)
σyy(i, j)− = σLambyy (xi, yj, 0)

(5.32)

At t = ∆t : 

vx(i, j) = vLambx (xi, yj,∆t)
vy(i, j) = vLamby (xi, yj,∆t)
σxx(i, j) = σLambxx (xi, yj,∆t)
σxy(i, j) = σLambxy (xi, yj,∆t)
σyy(i, j) = σLambyy (xi, yj,∆t) .

(5.33)

The considered time stepping is explicit i.e. each value at the text time step is
obtained independently, in contract to implicit schemes in which they are coupled
so that an additional equation should be solved. For explicit schemes, the Courant-
Friedrichs-Lewy [131] conditions should be required :

cLamb∆t <
√

(∆x2 + ∆y2) , (5.34)

where cLamb = ω
kA0

.
The comparison of the numerical solution via finite differences with the exact one

will be done later. Now we turn to modeling for Lamb wave propagation using the
finite element method.

b) Finite element solution

The finite element solution is performed with the help of a standard commer-
cial package COMSOL Multiphysics that uses two second-order equations for the
displacement components instead of Eq. (5.25) : ρ∂

2ux

∂t2
= (λ+ µ)∂2ux

∂x2 + ∂2ux

∂x∂y
+ µ∂

2ux

∂y2

ρ∂
2uy

∂t2
= (λ+ µ)∂

2uy

∂x2 + ∂2uy

∂x∂y
+ µ∂

2uy

∂y2 .
(5.35)
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The package accepts boundary conditions formulated in terms of displacements
such as 

ux(x = 0) = uLambx (x = 0, y, t)
uy(x = 0) = uLamby (x = 0, y, t)
ux(x = L) = uLambx (x = L, y, t = 0)
uy(x = L) = uLamby (x = L, y, t = 0) ,

(5.36)

as well as stress-free boundary conditions as in Eq. (5.29).
The initial conditions are specified at t = 0 in the usual form for displacements

and velocities : 
ux(t = 0) = uLambx (x, y, t = 0)
uy(t = 0) = uLamby (x, y, t = 0)
∂ux

∂t
= vLambx (x, y, t = 0)

∂uy

∂t
= vLamby (x, y, t = 0) .

(5.37)

The code automatically meshes the calculation domain using triangular elements
(in our case) and uses a built-in solver to get all acoustic fields in the domain at
any moment of time. The details are given in the following paragraph in which the
comparison with the finite difference solution is discussed.

c) Stationary Lamb wave simulated via the finite difference and finite
element methods

In this section, we make a comparison between the finite difference and finite
element methods in terms of performance. This comparison is possible due to the
existence of the exact solution Eq. (1.3) for the A0 Lamb mode. The deviation
between the exact solution and the numerical ones expressed as a normalized root
mean square (rms) error is an obvious performance measure for the both methods.
To be more specific, the performance is a definite error magnitude achieved during
certain time of calculation on the same computer.

There is, however, a technical difficulty associated with the fact that the both
methods include discretization in space and in time, and the most efficient ratio
between space and time discretization steps is a priori unknown. Indeed, finer space
mesh and smaller time step usually both have positive effect on the calculation
error but are related to higher calculation times. This aspect deserves an additional
optimization.
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To do so, the following simple technique can be used. We use different but fixed
spatial meshes for the both methods and perform a series of computations for different
time steps keeping other parameters unchanged. First we start with a very coarse
time stepping and gradually increase the time discretization quality. In finite element
computing, the calculation error immediately drops as long as the time step decreases,
then the gain becomes smaller and finally almost disappears for very fine time grids.
In this final situation the quality of numerical solution is mostly affected by the
quality of space meshing. The optimal performance is obtained when the gain from
refining the time grid starts saturating. A better estimation can be obtained by
varying both space and time discretizations.

However, the opposite effect can occur when explicit finite difference calcula-
tions are used. A key feature in this case is the presence of Courant-Friedrichs-Lewy
condition [131]

CFL ≡ |c|∆t∆x < 1 (5.38)

that determines the stability of calculations. Here c is the velocity, ∆x and ∆t are
spatial and time steps, respectively. In other words, setting too large time step en-
genders error accumulation during subsequent time steps. A simple Von Neumann
stability analysis of wave equation [132] shows that calculations are most precise
when the condition Eq. (5.38) is just fulfilled ; the precision worsens when CFL is
considerably less than 1.

It is instructive to cite these arguments here for completeness. For the simplest
1D wave equation

1
c2
∂2u

∂t2
= ∂2u

∂x2 (5.39)

the corresponding wave dispersion relationship is obtained by substituting u =
u0e

i(ωt−kx) into Eq. (5.39)

−ω
2

c2 u0e
i(ωt−kx) = −k2u0e

i(ωt−kx)

with the obvious result k = ±ω
c
. The same harmonic solution substituted to the

discretized equation

1
c2
u+
j − 2uj + u−j

∆t2 = uj+1 − 2uj + uj−1

∆x2 (5.40)
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or substituting uj = u0e
i(ωt−kj∆x) into Eq. (5.40) leads to another result :

cos (ω∆t)− 1
c2∆t2 = cos (k∆x)− 1

∆x2 . (5.41)

(a) Finite difference method
time step, ns 3 2.9 2.5 1.7 1.25 1 0.8

(b) Finite element method

time step, ns 62.5 50 41.7 35.7 31.25 27.8 25 22.7 20.8 19.2 17.9 16.7 15.6 14.7 13.9 13.16 12.5

Figure 5.15 – Rms error of finite difference (a) and finite elements (b) method com-
paring to analytical solution for different time meshes as a function of computation
time.

It is straightforward to check that the dispersion relationship Eq. (5.41) exactly
corresponds to k = ω

c
for

∆x = c∆t (5.42)

and is different otherwise. The condition Eq. (5.42) requires that the parameter
CFL be close to 1 i.e. the explicit finite difference scheme works best at the stability
threshold. In other words, refining time discretization while keeping ∆x constant is
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useless in this case. The calculation error can be decreased by simultaneous reducing
∆t and ∆x that obviously improve approximation of the finite difference scheme.

Fig. 5.15 illustrates the predicted effects and gives an idea on the comparative
performance of the finite element and finite difference methods. The latter one is
implemented in Fortran and Matlab having in this case a relative performance factor
of 2.7 (Fortran wins).

Whilst Matlab finite differences realization and COMSOL finite element code
show comparable performances, the finite element method is undoubtedly gains in
terms of geometric flexibility. This feature underlies our decision to use the finite
element method for further calculations.

5.3.2 Secondary waves generated by contact acoustic nonli-
nearity in a thin plate

This section is concerned with the propagation problem for secondary waves ex-
cited by the CAN that plays a role of a punctual force source. The geometry of the
problem is same as for primary Lamb waves in the section 5.3.1 and is illustrated in
fig. 5.16. A substantial difference is related to the boundary conditions. In the pri-

Figure 5.16 – Geometry of the secondary wave generation problem. The CAN is
excited by the displacements obtained in section 5.3.1 and now, in turn, generates
secondary waves via application of nonlinear punctual forcesN(t) and T (t) calculated
as explained in section 5.2.

mary wave propagation problem, the boundary conditions corresponded to the exact
Lamb solution. Since they are already satisfied, the conditions at the plate edges
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for the secondary wave problem represent zero displacements (fixed boundaries). In
our example, this formulation helps avoid activating the movement of the plate as
a whole. Such movement would occur in a situation when the plate is excited by
stresses or velocities without fixing displacements at least at some point of the boun-
dary. In reality, the plate is suspended with elastic strings which are not considered
in the present numerical model.

Figure 5.17 – Secondary waves emitted by Hertz-Mindlin CAN in a thin plate.

A typical profile of the secondary wave excited by forces depicted in fig. 5.11 is
shown in fig. 5.17. To see more features in the secondary wave, we have considered
a long sequence of the force excursions comprising 300 periods of the primary Lamb
wave (cf. 100 periods in fig. 5.11 for the forces). It can be immediately noticed that
a quasi-periodic force protocol excites a long series of reverberations from the edges
of the small plate fragment (fig. 5.17). The multiply reflected wave interferes with
itself producing a complex non-periodic signal. Besides the fundamental frequency
imposed by the primary Lamb mode, it contains higher harmonics as well as low-
frequency modulations. The character of the signal is determined by the fact that
the secondary wave generation is asymmetric even though the secondary source is
located exactly at the middle of the plate.

In practice, the damage localization algorithm deals with first arrivals rather
than reverberated waves. Certainly, the complexity of the process shown in fig. 5.17
is due to multiple reverberations in the considered confined geometry that is usually
avoided in real measurements (chapter 2). However, physical nature of the underlying

139/162



5.3. NUMERICAL MODELING FOR ELASTIC WAVES INTERACTING WITH
THE CAN IN A THIN PLATE

processes remains the same and corresponds to the interaction between acoustic
waves and a frictional contact.

(a)

(b)

Figure 5.18 – Spatial Fourier analysis of secondary waves : displacement (a) ux
and (b) uy as functions of wavenumber kx on the top surface of the plate containing
the contact acoustic nonlinearity. The dominant component is A0 Lamb wave (kx ≈
540.1 1/m) that the plate was excited with.
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In the considered example, the secondary wave is about 10−4 times weaker in
amplitude than the primary one. It is important to stress that even such a weak
magnitude of the secondary signal is sufficient for successful damage locating in
experiments.

It would be instructive to see the structure of spatial spectrum of secondary
waves given at a certain (last) moment of time. The result of the 1D spatial Fourier
transform as a function of spatial frequency kx corresponding to x-coordinate on the
top surface is depicted in fig. 5.18. A0 Lamb wave with k = kA0 ≈ 540 1/m remains
dominant in the secondary wave spectrum. Peak of A0 mode has finite width, at
least because the signal is limited in space by the plate boundaries. A0 is the slowest
Lamb mode, which implies the largest wavenumber kA0, as confirmed in fig. 5.18.
There are also other spatial frequencies in the spectrum with k < kA0. In contrast
to the primary A0 mode selectively excited in our numerical modeling, these modes
are generated altogether in a non-selective way. Note that the spatial frequency step
∆k equals π

L
and can not be reduced without changing the plate length. This factor

does not allow to see the spectral structure of these modes in detail.

5.3.3 Prototype of numerical tool accompanying SHM ex-
periments for detecting damage in thin plates

As it was mentioned, there exists a substantial difference in geometric parameters
between the simplified case described via the developed modeling tool and real SHM
experiments in thin plates. Due to this reason, the developed tool can be seen as a
prototype for a future more advanced numerical toolbox capable of imitating realistic
secondary waves emitted by damage that contain information for damage locating
algorithms. However, the principal stages of the modeling procedure are similar for
the prototype and for a prospective working toolbox. The prototype tool comprises
the following five steps.

1. Generation of stationary A0 Lamb wave or of a transitional wave process at a
certain frequency in a fragment of a thin plate. This algorithm is implemented using
COMSOL Multiphysics ; data for the normal uy(t) and tangential ux(t) displacement
wave components are exported at a point corresponding to the defect location.

2. Displacement time data previously obtained on a relatively coarse grid suitable
for solving time-consuming wave equation are interpolated on a finer grid for solving
ordinary differential equations describing the CAN behavior at the next step.
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3. The equation of motion in ordinary derivatives for a HM-CAN excited by
wave displacements is numerically solved using the Adams-Bashforth algorithm in
the purpose of obtaining the normal N(t) and tangential T (t) contact forces applied
to the plate at the defect position. In the case of RS-CAN, these forces are calcula-
ted directly from the known contact displacements a(t) and b(t) without solving of
equation of motion. In the both situations, the load-displacement relationships for
frictional contact are obtained with the use of the Method of Memory Diagrams. The
corresponding algorithms are implemented in Fortran.

4. Technical step consisting in preparation of force data for importing to COM-
SOL at the next stage.

5. Solving the problem for secondary waves emitted by a punctual force with the
normal N(t) and tangential T (t) components applied at the defect position (pro-
grammed in COMSOL). Same geometry as at step 1 is considered.

Conclusions

The principal result of the modeling effort presented in this chapter is the crea-
tion of a modeling tool capable of describing the dynamic CAN response to acoustic
excitation and the subsequent generation of the secondary waves to be used in SHM
damage locating procedures. The contact response is modeled here with the use of
modern semi-analytical approaches based on the Hertz-Mindlin contact theory which
takes into account friction and friction-induced hysteresis. Thus, in some sense, the
proposed model bridges the gap between acoustics and contact mechanics and pro-
vides a description for processes underlying NDT/SHM experiments in acoustically
excited structures containing inner frictional contacts.

At the same time, the developed numerical tool should be seen as a prototype
of a real working toolbox that has to accompany SHM experiments in the future.
The reason for that is in a considerable number of geometric simplifications accepted
in the analysis. In particular, instead of realistic damaged plate-like structures we
have considered a 2D small fragment of a plate interacting with an artificial CAN
(such as small sphere pressed against the plate similar to the one in real experiments
in chapter 2). On the one hand, the presence of inertia associated with the sphere
make the response dynamic which is not pertinent to crack-like defects having no
mass. On the other hand, the plate fragment is assumed to have fixed edges to avoid
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the movement of the plate as a whole. These boundary conditions entail multiple
reflections of the secondary wave incompatible with the use of the damage locating
algorithms (chapter 2). However, despite these features following from experimental
or modeling simplifications, physical nature of the considered processes is represented
in an adequate manner.

In particular, we have arrived to the following specific conclusions.
1. There exist physical conditions under which the model CAN (sphere-plate

contact or HM-CAN) behaves similarly to crack-like damage (RS-CAN) in terms of
mechanical response to acoustic excitation. Namely, the dimensionless mass introdu-
ced in Eq. (5.23) must be much higher than 1. Higher dimensionless mass provides
the similarity between the both responses at a longer time interval.

2. The developed numerical tool adequately describes physical nature of the CAN-
wave interaction, but the considered test geometry significantly differs from the ex-
perimental one.

3. Modern FEM-based software provide generally higher but comparable effi-
ciency with respect to the classical finite difference implementations.

This study can be substantially improved in the future ; the related perspectives
include :

1. Account for geometries closer to real SHM experiments (higher geometric as-
pect ratios of the computation domain, realistic suspensions/fixing of the tested
structure, excitation signals similar to the applied pump-probe scheme, etc). These
improvements would require significantly higher computation resources.

2. Parameters of the used CAN models can be matched to behaviors of real
defects.

3. Mutual compromises from both modeling and experimental sides can help reach
a configuration which, on the one hand, assumes the application of the damage loca-
ting algorithms and visualizing damage, and, on the other hand, adequate modeling
is possible. This effort would result in establishing a detailed theory and experiment
agreement in NDT/SHM problems.

4. 3D-modeling can bring the model closer to the current experimental confi-
guration and open the opportunity to numerically estimate the damage scattering
cross-section, as well as to establish its dependence on CAN mechanical properties.
Indeed, in 3D it is possible to do by analyzing secondary waves generated by a CAN.
However, this change would require higher computer performance.
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As mentioned in introduction, the main goal of this thesis was to develop ambient
noise based reference-free acoustic damage localization technique for structural

health monitoring in thin plates capable of identifying contact acoustic nonlinera-
rities modulated by low frequency vibrations. In this work, we particularly focused
on the experimental tests with an artificial CAN in pump-probe configuration. We
studied scattering characteristics of this artificial CAN and performed modeling for
its nonlinear interaction with acoustic waves in a thin aluminum plate. Preliminary
localization results have been obtained in experiments with white noise of kHz range
along with low frequency harmonic vibrations. Image contrast increases with the
growth of the defect scattering cross-section. Strain induced by pump wave is pro-
portional to vertical displacement, i.e. it is mechanically linear regime. Strain caused
by the probe wave appeared to be three orders of magnitude smaller than strain
caused by pump wave.

In chapter 2, an active reference-free damage localization algorithm in thin plates
based on a combination of repetitive probing with back-propagation of signals is
described. This algorithm appeared to be capable of detecting an artificial CAN
mimicked with a steel sphere pressed against an aluminum plate in pump-probe
experiments. The algorithm’s working range is at few Hertz for pump wave and
at tens kHz for probe wave. Two variants of experiment have been done : when
a pump wave is synchronized with a probe wave (synchronized mode) and when
it is not (non-synchronized mode). For non-synchronized experiments, random sign
compensation technique was proposed to improve contrast of localization images.
Contrast was improved by up to 15 times comparing to incoherent imaging of the
initial algorithm. Derivation of formula for a contrast established relationship with a
CAN scattering cross-section. For synchronized experiments, coherent imaging based
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on classical synchronous detection was introduced. Contrast was improved by 3 to
5 times comparing to incoherent imaging of the initial algorithm. The proposed
algorithm is robust for various emitter positions. The closer the emitter to the defect
and to the center of the plate, the better localization image is obtained. The algorithm
functions for different defect locations including situations when it is close to plate’s
boundaries. The parameters (probe and pump frequencies, emitter position) for high
contrast images have been empirically optimized. Strain caused by probe wave ∼
10−8, which is three orders lower than for pump wave. Strain induced by pump
wave is proportional to displacement, i.e. our experiment remains in linear regime.
Nonlinearity of experiment is not in stress-strain dependency but essentially in pump-
probe interaction with a CAN.

Chapter 3 provides quantitative study of an artificial CAN scattering charac-
teristics and image contrast in the experiment described in chapter 2. It is shown
that the contrast depends monotonically on a defect scattering cross-section, and
is directly proportional to it at small scattering cross-sections. This statement has
been confirmed by experimental measurements, numerical simulation of scattering
in infinite plate and theoretical derivation for active static experiments. Scattering
cross-section of an artificial CAN is experimentally estimated under infinite plate ap-
proximation and isotropic scatterer assumption for the central excitation frequency.
CAN with scattering cross-section from the order of hundredths of a millimeter to
several millimeters can be resolved by the proposed localization algorithm. In pump-
probe experiment, image contrast can be improved by increasing pump amplitude
or changing the defect strength, i.e. angle between ruler and the plate. Number of
receivers and sources also affect image contrast according to the obtained theoretical
formula.

In the fourth chapter preliminary passive experiments are discussed which consti-
tutes a proof of concept of passive SHM in environment subjected to low frequency
vibrations. Algorithm developed in chapter 2 is applied for pump-probe experiment
with white noise from 1 to 30 kHz as a probe wave. Relative noise level is estimated
for the preliminary passive experiment with unsuccessful detection, the conclusion
from that was to increase number of noise sources, which is done in the next chapter
about passive dynamic experiments. Differential signals are replaced with differen-
tial correlations of short windows and are subjected to back-propagation procedure
and coherent summation. Dependencies of image contrast on the window duration,
number of receivers and noise sources, sources distribution are qualitatively studied.
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Preliminary localization images are obtained. Interaction between an artificial CAN
with white noise is weak compared to residual noise, therefore, the algorithm is
sensitive to many parameters and in the current setup configuration is hard to be
detected. Further developments are suggested to decrease relative noise level by op-
timizing noise sources and receivers distribution, modifying technique of summation
over loading states, conducting tests on larger plate.

The principal result of chapter 5 is the development of a modeling tool capable
of describing the dynamic CAN response to acoustic excitation and the subsequent
generation of the secondary waves to be used in SHM damage locating procedures.
Hertz-Mindlin contact response to acoustic wave is compared to a crack response.
First, semi-analytical algorithm accounting for friction was used to obtain force-
displacement relationship at the contact for both sphere pressed against the plate
(Hertz-Mindlin contact) and crack (planar contact model) in a thin plate excited by
Lamb A0 mode. Then these forces were applied as a point load on the plate top
surface and resulting acoustic field was measured by solving wave equation with a
finite element method. An artificial model CAN can be approximated by a crack
under particular physical conditions, namely, prestress, Lamb waves amplitude and
frequency, plate’s thickness, and mass of the sphere. The developed numerical tool
adequately describes physical nature of the CAN-wave interaction, but the considered
test geometry significantly differs from the experimental one.

In perspective, geometries closer to real SHM experiments can be considered (hi-
gher geometric aspect ratios of the computation domain, realistic suspensions/fixing
of the tested structure, excitation signals similar to the applied pump-probe scheme,
etc). These improvements would require significantly higher computation resources.
Parameters of the used CAN models can be matched to behaviors of real defects.
Mutual compromises from both modeling and experimental sides can help reach a
configuration which, on the one hand, assumes the application of the damage loca-
ting algorithms and visualizing damage, and, on the other hand, adequate modeling
is possible. 3D-modeling can bring the model closer to the current experimental
configuration and open the opportunity to numerically estimate the damage scatte-
ring cross-section, as well as to establish its dependence on CAN mechanical pro-
perties. However, this change would require higher computer performance. These
efforts would result in establishing a detailed theory and experiment agreement in
NDT/SHM problems.

We envisage to extend this method to a more realistic situation with using the
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secondary noise sources (see fig. 5.19) developed by G. Lacerra, F. Massi, E. Chatelet
(our project partners in LaMCoS, Lyon) [133] to convert a part of low-frequency plate
modal vibrations into high-frequency noise and then apply the proposed localization
algorithm to this converted noise. Similar experiments for passive static experiments
were already done by L. Chehami et al. [89]. Applying such conversion devices is of
interest, because this is the way to improve spatial stationarity of the noise sources
(here probe signal), and also because the noise common in nature, vehicles and
structures in service mostly exists in low-frequency range.

Figure 5.19 – Artificial secondary source : mass-spring resonator with a frictional
beam.

Another perspective of this work is to modify the proposed localization algorithm
for passive pump, i.e. instead of low frequency continuous harmonic modulation,
expose the plate to the low frequency noise. In this thesis, we studied cases of active
pump/active probe and active pump/passive probe. Using passive pump would be
a real challenge, and constitutes another step towards completely passive structural
health monitoring.

In this work, passive baseline-free localization algorithm is applied for model ar-
tificial contact acoustic nonlinearity. The next step is to try it on more realistic
contact defects such as cracks, delaminations, notches, etc. Also it would be possible
to quantify and optimize experimental parameters more, if the parameters of expe-
riment were similar to parameters in our wave-CAN interaction modeling tool, since
we would be able to predict the interaction regime.

The ultimate long term goal of this study is to apply the developed passive
localization in the field tests to find locations of real flaws in plate-like structures in
service such as a wing of an aircraft.
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Abstract

In structural health monitoring, acoustic methods without use of a reference intact sample are
nowadays of great interest due to variability of environmental and operational conditions. This thesis
presents an acoustic reference-free method for detecting and localizing defects in thin plates. The
proposed approach is based on pump-probe measurements and a differential signal processing
algorithm. The pump-probe scheme here means the simultaneous excitation of low-frequency
vibrations and high-frequency acoustic pulses generated by a piezoelectric transducer and recorded by
an array of transducers of the same kind. The role of pumping vibrations is in imposing changes to
loading conditions for a defect (here a model Hertzian contact i.e. a small ball pressed against the
tested plate) while the ultrasonic Lamb wave pulses probe the defect in various loading states. Then a
differential signal processing algorithm based on backpropagation of A0 Lamb mode is used to detect
and locate the defect. Two detection modes have been studied: the mode requiring the synchronization
between the pump and probe signals, and the non-synchronous mode. In the latter case, a correction
with the use of ad hoc weight coefficients improves the detection. Further, a parametric study was
performed by computing the image contrast as a function of the defect scattering cross-section that
allowed us to determine a minimum detection threshold. The application of the method to passive
imaging (i.e. using white noise instead of probe pulses) produced encouraging results for the price of
increasing the number of receivers. Finally, numerical modeling for the interaction of an ultrasonic
wave with a Hertz-Mindlin frictional contact was performed in 2D to compare the model defect (ball
pressed against the plate) with a more realistic one (crack).

Key words: structural health monitoring, Lamb waves, Green’s function, noise correlation, passive
imaging, baseline-free localization, beamforming, pump-probe experiment, Hertz-Mindlin contact,
method of memory diagrams.

Résumé

Le contrôle-qualité de matériaux par méthodes acoustiques sans référence suscite aujourd’hui
un grand intérêt en contrôle santé intégré (CSI) au vu de la variabilité des conditions
environnementales et opérationnelles. Dans ce manuscrit, nous proposons une méthode de détection
synchrone/non synchrone de défaut soumis à des sollicitations basses fréquences, permettant une
localisation sans état hypothétique "sans défaut". Une série de tests "pompe-sonde" a été menée sur
une plaque d'aluminium. Un pot vibrant est fixé sur cette dernière afin de la mettre en vibration à une
fréquence de quelques Hz. Une bille solidaire d'une lame en acier est pressée contre la plaque (contact
Hertzien) et joue le rôle d'un défaut (reproduisant ainsi un contact tel qu'on peut le rencontrer par
exemple entre deux fronts d'une fissure). Un réseau de transducteurs piézoélectriques est utilisé pour
faire l'imagerie ultrasonore. Le principe de la détection repose sur la modulation du contact entre la
plaque et la bille par la vibration pompe basse fréquence. Des mesures ultrasonores répétées (onde
sonde) permettent ainsi d'interroger le défaut dans plusieurs états de sollicitation. Un algorithme
d'imagerie différentielle permet alors de mettre en évidence et localiser le défaut. Deux modes de
détection ont été testés : 1) mode synchrone entre la pompe et les signaux ultrasonores et 2) mode non
synchrone. Dans ce dernier cas, une correction par des coefficients de pondération ad-hoc permet
d’améliorer la détection. Une étude paramétrique a été également réalisée en reliant le contraste des
images en fonction de la section de diffusion de défaut. Ceci a permis de définir un seuil minimal de
détection d’un défaut de type contact variable. L'application de cette méthode à l'imagerie passive par
corrélation de bruit a donné des résultats encourageants, à condition d'augmenter la densité du réseau
de capteurs ultrasonores. Enfin, des simulations numériques en 2D, modélisant l'interaction d'une
onde ultrasonore avec un contact de frottement type "Hertz-Mindlin" ont été réalisées afin de
comparer le défaut actuel (bille pressée sur la plaque) avec un défaut réaliste (une fissure).

Mots clés : contrôle santé intégré, ondes de Lamb, fonction de Green, corrélation du bruit,
imagerie passive, localisation sans référence, beamforming, expérience pompe-sonde, contact de
Hertz-Mindlin, méthode des diagrammes de mémoire.
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