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Introduction 

La technologie et l’innovation humaine ne cessent de surprendre et d’étonner. La médecine a  

toujours été l’un des domaines les plus dynamiques de l’innovation scientifique et l’un de ceux  

où les avantages de cette innovation sont le plus clairement visibles. Il y a cent ans, consulter 

un radiologue pour diagnostiquer une métastase osseuse aurait probablement entraîné une 

intervention chirurgicale extrêmement défigurant et un taux de survie à cinq ans de seulement 

40%. Aujourd’hui, les taux de survie à cinq ans dépassent les 90% et une bien meilleure 

compréhension de la maladie permet d’adapter le traitement à chaque cas. Ce rythme de 

changement et de développement se poursuit au XXIe siècle. La période actuelle a été qualifiée 

de quatrième révolution industrielle, car des technologies plus avancées et l’utilisation de 

grandes quantités de données transforment la fabrication et les processus industriels. En 

médecine, l’intelligence artificielle (IA) et les techniques basées sur les données promettent de 

changer fondamentalement la façon dont la médecine clinique est menée. Il s’agit d’un domaine 

de recherche naissant, volatile et fluide, un creuset de différentes professions, avec de 

nombreuses questions sans réponse. Ma motivation pour entreprendre ce doctorat était 

d’apporter mon expertise scientifique et mon enthousiasme à ce domaine, de faire partie de  

cette nouvelle révolution et d’y contribuer.  

 

Description du Sujet 

 Les métastases sont un groupe de cellules anormales qui se développent en dehors de leurs 

limites normales et se propagent à d’autres organes. En particulier, les métastases osseuses sont 

des cancers qui prennent naissance dans les organes du corps, tels que le sein, le poumon ou la 

prostate, et qui se propagent dans les os. Dans 90% des décès dus au cancer, les métastases ont 

été considérées comme un facteur contributif. Les os occupent la troisième place, derrière le 

foie et les poumons, parmi les sites de métastases les plus courants [16]. Les statistiques 

montrent que plus de 70% des patients atteints d’un cancer du sein ou de la prostate présentent 

des métastases osseuses [21]. À cet égard, la détection précoce des cancers des os est essentielle 

pour prendre la bonne décision [6]. Le suivi des métastases osseuses nécessite l’utilisation de 



l’imagerie médicale pour diagnostiquer les maladies et déterminer l’efficacité des traitements. 

Plusieurs modalités d’imagerie médicale ont été utilisées, notamment la tomodensitométrie  

(CT), l’IRM (imagerie par résonance magnétique), la scintigraphie osseuse et la TEP, chaque 

modalité d’imagerie ayant ses avantages et ses inconvénients [27]. En particulier, les 

tomodensitogrammes ont une résolution spatiale élevée, ce qui permet de détecter les grandes 

lésions osseuses ainsi que les lésions légères et de petite taille [21]. Ils offrent également une 

évaluation simultanée des os primaires et des os métastatiques. En outre, les 

tomodensitogrammes sont couramment disponibles à un coût relativement faible [9]. En 

clinique, la tomodensitométrie est la modalité d’imagerie la plus couramment utilisée pour les 

tests de starification de base et la surveillance en série des patients atteints de cancer [11]. 

Cependant, la détection des métastases osseuses à partir des tomodensitogrammes est à la fois 

difficile et longue pour les raisons suivantes : (i) les os étant présents dans tout le corps, les 

radiologues doivent examiner toutes les coupes [19] ; (ii) l’aspect radiologique de la MO dépend 

des types de lésions [11]. Par conséquent, aucun paramètre de fenêtre unique ne peut représenter 

correctement toutes les métastases osseuses ; et (iii) les imitations bénignes telles que les 

fractures, les îlots osseux et les changements dégénératifs peuvent être confondus avec des 

lésions de la moelle osseuse, ce qui complique le diagnostic [28]. Le diagnostic assisté par 

ordinateur (CAO) peut aider les radiologues à trouver de petites lésions qui pourraient 

autrement passer inaperçues [12]. Par conséquent, il existe une forte demande de systèmes de 

diagnostic assisté par ordinateur pour les métastases osseuses sur les tomodensitogrammes. Les 

méthodes d’apprentissage profond ont récemment fait l’objet d’une grande attention pour 

résoudre plusieurs tâches liées à la vision [15, 4]. En particulier, plusieurs solutions sont 

proposées pour résoudre le problème de la détection des métastases osseuses à l’aide de 

l’apprentissage automatique. Ce travail vise à créer un ensemble de données de référence pour 

la segmentation et la classification des os à partir de tomodensitogrammes. En outre, nous 

proposons un nouveau système CAD pour la segmentation et la classification des métastases 

osseuses afin d’améliorer les performances dans le domaine de la détection des métastases 

osseuses. 

Objectifs 

Les principaux objectifs de ce projet de doctorat sont les suivants : 

- Examen des techniques de pointe actuelles en matière de diagnostic médical et des défis 

existants en matière de diagnostic des métastases osseuses. 



- Exploration de diverses méthodologies d'apprentissage automatique, y compris 

l'apprentissage profond et les méthodes d'ensemble, afin d'identifier leurs applications 

potentielles dans le diagnostic des métastases osseuses. 

- Collecte de nouveaux ensembles de données sur les métastases osseuses afin de faciliter 

la segmentation et l'identification des métastases osseuses. Cet ensemble de données 

vise à aider la communauté des chercheurs à améliorer leurs évaluations des métastases 

osseuses. 

- Proposition d'une approche innovante d'apprentissage profond adaptée pour optimiser 

la segmentation des métastases osseuses. 

- Exploration de l'utilisation de méthodologies avancées d'apprentissage profond pour 

améliorer la précision et l'efficacité de la segmentation et la classification des métastases 

osseuses. 

- Création d'un cadre d'évaluation standardisé pour la classification automatique des 

métastases osseuses et déploiement d'une approche innovante pour classifier les lésions 

métastatiques. 

- Évaluation des modèles proposés en comparaison avec les approches existantes et étude 

de leur capacité à fournir un aperçu des caractéristiques et modèles sous-jacents qui 

contribuent au diagnostic des métastases osseuses. 

- Discussion des implications cliniques et de l'applicabilité des modèles proposés dans le 

monde réel, en tenant compte des défis et des opportunités potentielles pour le 

développement de nouveaux modèles. 

 

Contributions 

Pour répondre à ces objectifs, les principales contributions de ce travail sont résumées comme 

suit : 

- Nous présentons tout d'abord une revue des techniques utilisées pour classer et segmenter les 

métastases osseuses. Dans cette revue, nous donnons un aperçu des métastases osseuses, y 

compris l'importance de l'oncologie médicale et des modalités d'imagerie médicale. Nous 

présentons ensuite l'état de l'art des méthodes actuelles de classification et de segmentation des 

métastases osseuses. Nous nous concentrons sur la comparaison de ces méthodes en termes de 

divers paramètres tels que l'évaluation des performances et les ensembles de données. 



- Nous proposons un ensemble de données de référence pour l'analyse des métastases osseuses. 

Cet ensemble de données a été créé à partir de tomodensitogrammes de plus de 57 patients de 

l'hôpital Hedi Chaker de Sfax, en Tunisie, avec plus de 102 614 images. À notre connaissance, 

il s'agit du premier ensemble de données accessibles au public dans le domaine du diagnostic 

des métastases osseuses qui inclut la tomodensitométrie comme modalité d'imagerie. Ainsi, des 

avancées potentielles dans le domaine des métastases osseuses pourraient être réalisées grâce à 

notre base de données. 

- Nous proposons une nouvelle approche de segmentation pour détecter les métastases osseuses.  

C’est une architecture hybride AttUnet++ qui contient des décodeurs doubles et la methode de 

fusion. Nous évaluons notre technique avec la nouvelle base de données proposée. Les résultats 

obtenus montrent une meilleure performance dans la segmentation des lésions par rapport aux 

techniques traditionnelles. 

- La dernière contribution comprend une comparaison complète des principales architectures 

CNN telles que InceptionV3, EfficientNet, ResNext50 et DenseNet161 avec des architectures 

de transformers, à savoir ViT et DeiT pour la classification des métastases osseuses. Ceci 

s'ajoute à l'introduction d'une approche innovante afin de fournir un cadre d'évaluation 

standardisé pour la classification automatique des métastases osseuses. 

- Pour assurer la reproductibilité des résultats, nous avons mis notre ensemble de données et 

nos codes à la disposition du public à l'adresse suivante GitHub - Marwa-Afnouch/EH-AttUnetplus 

 

Etat de l’art dans le domaine  

Ces dernières années, l’évaluation automatique de la moelle osseuse à partir de différentes 

modalités d’imagerie médicale telles que les scintigraphies osseuses, les tomodensitométries et 

les tomographies par émission monophotonique (SPECT) a suscité un intérêt considérable. Les 

travaux les plus récents se concentrent sur deux tâches principales : (i) la classification des 

scanners de la moelle osseuse en cas normaux et anormaux et (ii) la segmentation des lésions. 

Récemment, plusieurs travaux de recherche ont traité de la classification des BM en utilisant 

des méthodes d’apprentissage profond [24, 2, 17, 25, 13, 8, 1]. D’autre part, la segmentation 

automatisée des lésions métastatiques n’en est qu’à ses débuts. [26] a proposé un système 

d’interprétation d’images pour la segmentation du squelette et l’extraction des points chauds 

d’un os métastatique à partir d’un scintigramme osseux du corps entier basé sur l’apprentissage 

https://github.com/Marwa-Afnouch/EH-AttUnetplus


profond. [29] a développé un algorithme de segmentation basé sur UNet avec un mécanisme 

d’attention pour la segmentation des os SPECT, qui peut automatiquement identifier 

l’emplacement de la BM. [18] a comparé différentes approches des os et des lésions 

métastatiques osseuses dans la segmentation du cancer du sein. Deux méthodes d’apprentissage 

profond basées sur UNet ont été développées et entraînées pour segmenter soit les os et les 

lésions osseuses, soit les lésions osseuses seules sur les images PET/CT. Plus tard, [7] a proposé 

un algorithme d’apprentissage profond pour les métastases spinales du cancer du poumon. Ils 

ont proposé un modèle de réseau en U convolutionnel dilaté (DC-U-Net) pour segmenter les 

images CT énergétiques/spectrales. Plus récemment, [20] a utilisé des images de 

tomodensitométrie et a proposé une approche de segmentation basée sur trois réseaux 

neuronaux convolutionnels (CNN) : un réseau 2D basé sur UNet pour segmenter les os, un 

réseau 3D basé sur UNet pour segmenter les régions candidates, et un réseau 3D basé sur 

ResNet pour réduire les résultats faussement positifs. Bien que les méthodes de pointe aient 

obtenu des résultats prometteurs, leur impact est limité par l’utilisation d’ensembles de données 

privés, ce qui empêche la communauté d’exploiter les données et de s’appuyer sur leurs 

résultats. En outre, les travaux existants ont utilisé plusieurs modalités d’imagerie, notamment 

l’IRM, la scintigraphie osseuse et la TEP, tandis que peu de travaux ont utilisé la 

tomodensitométrie malgré ses avantages distincts. Le tableau 1 présente une comparaison des 

ensembles de données BM existants. D’après le tableau 1, la principale limitation des ensembles 

de données existants est leur petite taille, qui peut conduire à un sur ajustement. Pour surmonter 

ces problèmes, nous avons créé un nouvel ensemble de données de segmentation BM et l’avons 

mis à la disposition de la communauté des chercheurs. 
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A B ST R AC T

Metastases are a group of abnormal cells that develop outside the original organ bound-
aries and spread to other organs. Bone metastases in particular originate in one organ of
the body, e.g. the breast, lung or prostate, and spread to the bone. Although this disease
was discovered more than a century ago, it is still not well defined and existing treatments
are only weakly effective, possibly because it is difficult and time-consuming to detect.
To help physicians, new deep learning technologies promise to improve overall accuracy.
This dissertation aims to assist radiologists in the routine detection of bone metastases
using deep learning algorithms. The discovery of methodological biases in studies on
the diagnosis of bone metastases and the lack of consensus on the interpretability of
deep learning has shifted the focus of this dissertation. It now focuses primarily on
data collection and overcoming the challenges of validation and interpretability of deep
learning. To properly assess the ability of deep learning to detect bone metastases, three
main contributions were made. First, we collected the BM-Seg dataset, the first bench-
mark dataset for the segmentation and classification of bone metastases using CT-scans
images with 102,614 images from 57 patients. This novel open-source dataset was used
to improve the reproducibility of deep learning experiments. Second, we propose one of
these deep learning experiments, a novel segmentation approach based on the attUnet++
architecture with dual decoders for bone lesion localization called Hybrid-AttUnet++.
In addition, we use an ensemble of trained hybrid attUnet++ models, which we call
EH-AttUnet++, to optimize the segmentation performance.

Finally, we compared several pre-trained CNN models with pre-trained Transformers
models for the classification of bone metastases. The last study highlights the lack of
robustness of classification using deep learning methods and proposes a method to
improve accuracy based on both CNN and Transformer approaches.

The results of the various preliminary studies are encouraging and promising.

Keywords: Deep Learning, Bone metastasis, Segmentation, Classification, Medical
Imaging, Dataset, Computer Tomography, CNN, Transformer, Unet.



R E S U M É

Les métastases sont un groupe de cellules anormales qui se développent en dehors des
limites de l’organe d’origine et se propagent à d’autres organes. Les métastases osseuses,
en particulier, proviennent d’un organe du corps, par exemple le sein, le poumon ou la
prostate, et se propagent à l’os. Bien que cette maladie ait été découverte il y a plus
d’un siècle, elle n’est toujours pas bien définie et les traitements existants ne sont que
faiblement efficaces, probablement parce qu’elle est difficile et longue à détecter. Les
nouvelles technologies d’apprentissage profond promettent d’améliorer la précision glo-
bale pour aider les médecins. Cette thèse vise à aider les radiologues dans la détection
de routine des métastases osseuses à l’aide d’algorithmes d’apprentissage profond. La
découverte de biais méthodologiques dans les études sur le diagnostic des métastases
osseuses et l’absence de consensus sur l’interprétabilité de l’apprentissage profond ont
déplacé l’objectif de cette thèse. Elle se concentre désormais principalement sur la col-
lecte de données et sur la résolution des problèmes de validation et d’interprétabilité
de l’apprentissage profond. Pour évaluer correctement la capacité de l’apprentissage
profond à détecter les métastases osseuses, trois contributions principales ont été ap-
portées. Premièrement, nous avons collecté l’ensemble de données BM-Seg, le premier
ensemble de données de référence pour la segmentation et la classification des méta-
stases osseuses à l’aide d’images de tomodensitométrie, avec 102 614 images provenant
de 57 patients. Ce nouvel ensemble de données open-source a été utilisé pour améliorer
la reproductibilité des expériences d’apprentissage profond.

Ensuite, nous proposons l’une de ces expériences d’apprentissage profond, une nou-
velle approche de segmentation basée sur l’architecture attUnet++ avec des décodeurs
doubles pour la localisation des lésions osseuses, appelée Hybrid-AttUnet++. En outre,
nous utilisons un ensemble de modèles attUnet++ hybrides entraînés, que nous appelons
EH-AttUnet++, pour optimiser les performances de segmentation.

Enfin, nous avons comparé plusieurs modèles CNN pré-entraînés avec des modèles
Transformers pré-entraînés pour la classification des métastases osseuses. La dernière
étude met en évidence le manque de robustesse de la classification à l’aide de méthodes
d’apprentissage profond et propose une méthode pour améliorer la précision basée à la
fois sur les approches CNN et Transformer.



Les résultats des différentes études préliminaires sont encourageants et prometteurs.

Mots-clés : Apprentissage profond, métastase osseuse, segmentation, classification,
base de données, imagerie médicale, tomodensitométrie, CNN, Transformer, Unet.
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In recent years, machine learning and artificial intelligence have had a revolutionary
impact on healthcare, particularly in the field of medical image analysis. These advances
have the potential to significantly improve diagnostic accuracy, which is a critical factor
in patient outcomes and overall quality of care. In this work, we explore the profound ca-
pabilities of machine learning algorithms in medical diagnosis, focusing on the important
area of bone metastases in cancer treatment. Accurate identification and characterization
of bone metastases is a major challenge in this field. This phenomenon, in which cancer
cells spread to the bone, is a major medical problem due to its frequency, complex mani-
festations, and significant impact on patient prognosis and quality of life. Addressing this
challenge requires the use of sophisticated computational methods that can be seamlessly
integrated into clinical workflows and provide reliable diagnostic support.

1.1 thesis context

The advent of Deep Learning has ushered in a new era in medical imaging. It offers
the ability to uncover intricate patterns and relationships in medical data that were
previously beyond the reach of conventional methods. In this landscape, metastases
refer to a group of abnormal cells that develop outside their normal boundaries and
spread to other organs. In particular, bone metastases are cancers that originate in organs
of the body such as the breast, lung, or prostate, and spread to the bone. Metastases
have been identified as a contributing cause in 90 % of cancer deaths [2, 3]. Bones
are the third most common site of metastasis after liver and lung [4]. Statistics show
that more than 70 % of patients with breast and prostate cancer have bone metastases
[5]. Bone metastases represent a major medical problem because of their widespread
prevalence, complex manifestations, and profound impact on patient prognosis and well-
being. Timely detection and accurate diagnosis of bone metastases play a critical role
in tailoring effective treatment approaches, tracking disease progression, and increasing
patient survival rates.

The tasks of segmentation and classification of bone metastases, which are critical for
accurate diagnosis, treatment formulation, and continuous monitoring, have undergone a
profound revolution with the application of deep learning techniques. Conventional diag-
nostic techniques, while having their merits, can be hampered by subjectivity, variability,
and time-consuming procedures. These challenges are exacerbated by the varying man-
ifestations of lesions and complicated anatomical structures. Therefore, the integration
of state-of-the-art technologies, such as machine learning, is urgently needed to improve
current diagnostic methods and skillfully overcome these obstacles.
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1.2 motivations

Bone metastasis tracking requires medical imaging to diagnose disease and determine
treatment efficacy. Several medical imaging modalities have been used, including com-
puted tomography (CT), MRI (Magnetic Resonance Imaging), bone scans, and PET
scans, each imaging modality having its advantages and disadvantages [6]. In particular,
CT-scans have a high spatial resolution, allowing the detection of both large and mild
and small bone lesions [5]. They also provide simultaneous assessment of primary bone
and bone metastatic lesions. In addition, CT-scans are usually available at relatively low
cost [7]. In clinical practice, CT-scans are the most commonly used imaging modality
for both baseline staging tests and serial monitoring of cancer patients [8].

However, detection of bone metastases using CT-scans is both difficult and time-
consuming for the following reasons: (i) because bones are located throughout the
body, radiologists must examine all slices [9]; (ii) the radiological appearance of bone
metastases depends on lesion types [8]. Therefore, no single window parameter can
adequately represent all bone metastases; and (iii) benign mimics such as fractures,
bone islands, and degenerative changes can be confused with bone metastatic lesions,
making diagnosis difficult [10]. Computer-aided diagnosis (CAD) can help radiologists
find small lesions that might otherwise be missed [11]. Consequently, there is a great
demand for CAD systems for bone metastases on CT-scans.

Recently, Deep Learning methods have attracted much attention to solve various visual
tasks [12, 13, 14, 15]. In particular, Convolutional Neural Networks (CNNs) achieved
top performance on several types of image recognition problems, including the diagnosis
of bone metastases.

The motivation for this work lies in the potential of machine learning algorithms to
provide faster, more accurate, and more objective diagnoses of bone metastases. By
harnessing the power of these algorithms, physicians can make more informed decisions
that lead to timely interventions and better patient outcomes. In addition, integrating
machine learning into the medical diagnostic process has the potential to reduce the
workload of physicians and improve the overall efficiency of the healthcare system,
allowing more patients to receive timely and appropriate care.
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1.3 objectives

The primary objectives of this PhD project are as follows:

• Review of the current state-of-the-art techniques in medical diagnosis and the
existing challenges in diagnosing bone metastasis.

• Exploration of various machine learning methodologies, including deep learning,
and ensemble methods, to identify their potential applications in diagnosing bone
metastasis.

• Collecting new bone metastasis datasets to facilitate the segmentation and identi-
fication of bone metastasis. This dataset aims to assist the research community in
enhancing their evaluations of bone metastasis.

• Proposing an innovative deep learning approach tailored to optimize bone metas-
tasis segmentation.

• Exploration of the use of advanced deep learning methodologies to enhance the
accuracy and efficiency of bone metastasis classification in medical imaging.

• Creation of a standardized evaluation framework for the automatic classification of
bone metastases and deployment of an innovative approach to classify metastatic
lesions.

• Evaluation of the proposed models in comparison to existing diagnostic approaches
and investigation of their ability to provide insight into the underlying features and
patterns that contribute to the diagnosis of bone metastases.

• Discussion of the clinical implications and real-world applicability of the proposed
models, considering potential challenges and opportunities for integration into
clinical practice.

1.4 contributions

To address these objectives, the main contributions of this work are summarized as
follows:
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• We first provide a comprehensive overview of the techniques used to classify and
segment bone metastases. In this review, we provide an overview of bone metas-
tases, including the importance of medical oncology and medical imaging modal-
ities. We then present the state-of-the-art in current methods for classification and
segmentation of bone metastases. We focus on the comparison of these methods
in terms of various parameters such as performance evaluation and datasets.

• We propose a benchmark dataset for bone metastasis analysis. This dataset was
created using CT-scans from more than 57 patients from Hedi Chaker Hospital in
Sfax, Tunisia, with more than 102.614 images. To our knowledge, this is the first
publicly available dataset in the field of bone metastasis diagnosis that includes
CT-scans as an imaging modality. Thus, potential advances in the field of bone
metastases could be made with our dataset.

• We propose a new segmentation approach to detect bone metastasis where we
propose a hybrid AttUnet++ architecture, Dual-decoders, and ensemble approach.
We evaluate our technique with the newly proposed dataset. The obtained results
show higher performance in lesion segmentation compared to the state-of-the-art
techniques.

• The last contribution includes a comprehensive comparison of leading CNN ar-
chitectures such as InceptionV3, EfficientNet, ResNext50, and DenseNet161 with
transformer architectures, namely ViT and DeiT, for the purpose of bone metasta-
sis classification. This is in addition to the introduction of an innovative approach
using a benchmark dataset to provide a standardized evaluation framework for the
automatic classification of bone metastases.

• For results reproducibility, we made our dataset and codes publicly available at
https://github.com/Marwa-Afnouch/EH-AttUnetplus

1.5 thesis outline

This thesis is organized as follows.

In Chapter 2, the current state of the art is presented by first placing the topic of
bone metastases in the context of machine learning. In addition, an overview of bone
metastases and the relatively most important challenges in this area is provided. Ma-

https://github.com/Marwa-Afnouch/EH-AttUnetplus
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chine learning applications in bone metastasis segmentation and classification are then
presented.

Chapter 3 presents the collected dataset. This chapter details the implementation
in terms of the imaging modality used, the acquisition and labeling process, and the
respective challenges.

Chapter 4 discusses in more detail the development of a CAD system for bone metas-
tases. In this chapter, we present a new architecture derived from Unet++ that combines
attention gates and dual decoders. It efficiently segments both bone metastases and
bone regions. To improve the segmentation of metastatic bone, we propose a ensemble
approach. We perform extensive experiments on our dataset and obtain good results
compared to other CNN-based segmentation architectures.

In Chapter 5, we perform a comparative study using state-of-the-art techniques for
bone metastasis classification. We then present a novel classification approach that
incorporates dual deep-learning models. The obtained results are discussed in detail in
this chapter.

Finally, the conclusions of this work and some perspectives are presented in Chapter
6.
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2.1 introduction

In this chapter, we first present the current state of the science regarding bone metastases,
including the importance of medical oncology and its clinical impact on patients’ quality
of life. We then provide a detailed overview of machine learning methods for bone
metastases, including classification and segmentation methods.

This chapter is organized as follows. Section 2.2 presents an overview of bone metasta-
sis that includes definition, primary cancer sites, and the clinical implications surround-
ings bone metastasis. The ML methods in the bone metastasis field are deeply detailed
in Section 2.4. Finally, section 2.5 refers to the conclusion of this chapter.

2.2 overview of bone metastasis

2.2.1 Bone Metastases in Medical Oncology

Bone metastases (BM), also referred to as bone mets or bone metastatic disease, are
a medical condition in which cancer cells from a primary tumor spread to the bone.
Although they can occur in any type of cancer, they are commonly seen in breast and
prostate cancer [16]. The invasion of cancer cells into the bones can cause significant
damage and fragility, resulting in severe pain, fractures, and other complications. In
addition, cancer cells can disrupt normal bone function, resulting in decreased bone
strength and an impaired ability to heal itself. In addition, BM can attack the nerves
and spinal cord, causing numbness, tingling and even paralysis [17]. This is a serious
complication of cancer that is a major health problem and can be difficult to manage.
BM is a major cause of morbidity in people with cancer.

Skeletal metastases tend to occur in body regions where red bone marrow is most
abundant, suggesting that the greater blood supply to red bone marrow compared with
yellow bone marrow is an important factor. The most commonly affected sites include
the vertebrae, favoring the lumbar spine over the thoracic and cervical spine, as well
as the pelvis, proximal femur, ribs, and scapula, as shown in Figure 4.11. On the other
hand, metastases to distal limb sites, such as the elbow and knee, are rare. In summary,
the distribution of BM in the body is not random and tends to occur in areas with a high
concentration of red bone marrow. This underscores the importance of understanding the
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underlying mechanisms that drive the development and spread of cancer cells to these
areas.

Figure 2.1: Anatomic localization of skeletal metastases from lung cancer [18]

BM may occur by hematogenous or lymphatic routes or by direct spread of tumors to
the bone. Regardless of the route of spread, BM results in both bone loss and bone for-
mation, leading to different patterns of bone destruction and remodeling. BM can adopt
one of three dominant patterns, including lytic (osteolytic), sclerotic (osteoblastic), or
mixed lytic and sclerotic metastases. In addition, BM may also have different morpho-
logical features, including diffuse, focal, or expansive. While lytic metastases cause bone
destruction, sclerotic metastases promote bone formation. Figure 2.1 illustrates lytic and
sclerotic bone lesions.

Diagnosis of BM can sometimes be difficult, especially in elderly patients with degen-
erative diseases and osteoporosis. Imaging tests and serum tumor markers are critical for
diagnosis; in some cases, a bone biopsy may be required. Treatment of BM is aimed at
relieving symptoms, as a cure is rarely possible. Treatment options include external beam
radiation therapy, endocrine treatments, chemotherapy, targeted therapies, radioisotopes,
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Figure 2.2: Metastatic Bone Lesions [19]

and orthopedic surgery for structural complications. The choice of treatment depends
on the extent of bone disease, the presence of metastases outside the skeleton, and the
underlying malignancy. As the disease progresses, resistance to systemic treatments may
develop, necessitating a change in therapy. Artificial intelligence can help us improve
the detection of bone metastases and potentially diagnose them earlier, leading to better
treatment outcomes.

2.2.2 Common Primary Cancers Leading to Bone Metastases

BM happens when cancer cells migrate to the bones from other parts of the body.
According to [20], breast, prostate, and lung cancers account for about 80% of all
primary cancers that metastasize to the skeleton. In addition, bone metastases from
thyroid and kidney cancers are also conceivable. Bone is the third most common site for
metastatic disease after the lung and liver. According to the [4] study, breast and prostate
cancers can cause up to 70% of skeletal metastases. Lung cancer, renal cell carcinoma,
and prostate cancer are the top three cancers that most commonly cause bone metastases.
When the tumor and microenvironment are susceptible, bone metastases occur more
frequently. Skeletal problems associated with advanced cancer are common in patients
[21]. Indeed, the presence of bone metastases significantly shortens patient survival and
makes it challenging to live beyond a relatively short period of time, as seen in Table
2.1.
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Table 2.1: Incidence of BM in cancer (Data in the table based on [4] and [22])

Primary cancer type Relative incidence in bone Median survival from diagnosis
Breast 65%–75% 19–25 months
Prostate 65%–75% 12–53 months
Lung 30%–40% 6 months
Thyroid 40%–60% 48 months
Bladder 40% 6–9 months
Renal 20%–25% 12 months
Melanoma 14%–45% 6 months

2.2.3 Clinical Impact of Bone Metastases on Patient Quality of Life

Clinically, the presence of bone metastases can have a significant impact on a patient’s
prognosis and overall quality of life. Moreover, bone metastases can give rise to malaise, a
decline in performance status, and a lower quality of life [23]. Pathologic fractures, spinal
cord compression, and hypercalcemia are among the common skeletal-related events
(SREs) associated with bone metastases. These events necessitate radiation therapy
and/or surgical intervention targeting the affected bone. As the prevalence, incidence,
and survival rates of patients with bone metastases continue to rise, the consideration
of quality of life has become integral to their management. The impairment of quality
of life is frequently attributed to heightened bone pain at the time of diagnosis and the
presence of bone metastases [24]. Metastatic bone disease in individuals with advanced
cancer is typically associated with skeletal problems and can result in debilitating pain.
The general quality of life and emotional functioning of patients with metastatic bone
disease deteriorated significantly during the COVID-19 pandemic due to disruptions in
healthcare services, increased isolation, limited access to support systems, and fear of
infection [25]. It is widely accepted that bone metastasis is one of the most important
factors that affect the quality of life and survival in patients with HCC [26]. Therefore,
it is important to consider the clinical implications of bone metastases when developing
treatment plans for patients with cancer.
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2.3 imaging modalities for bone metastasis diagnosis

There are several types of medical imaging modalities that have been used to diagnose,
detect, and segment BM. The main imaging modality used for the detection and eval-
uation of BM is a combination of positron emission tomography (PET) and computed
tomography (CT)). In addition to PET/CT, other imaging modalities such as magnetic res-
onance imaging (MRI) and bone scans are also used in the evaluation of bone metastases.
It is important to note that the choice of imaging modality depends on various factors,
including the primary cancer site, the suspected extent of metastatic disease, and the
specific clinical scenario. Each imaging modality has its own strengths and weaknesses,
and combining different modalities can increase sensitivity and specificity, leading to
improved diagnostic accuracy. Therefore, a multidisciplinary approach involving radiol-
ogists, oncologists, and other healthcare professionals is crucial in determining the most
appropriate imaging strategy for each individual patient. In the following sections, we
will detail deeply some of the imaging modalities that are used in BM diagnosis.

2.3.1 Bone Scintigraphy

Bone Scintigraphy, also called Bone Scan, is an imaging modality that involves injecting
a radioactive substance into a patient’s body. It is used to examine the various bones of
the skeleton. Two gamma cameras are placed in front and behind the patient to detect
radiation emitted from the injected radioactive substance. The two resulting images will
show hotspots with high intensities. As the bone scan is widely available and less expen-
sive, it continues to be the most widely used radionuclide technique to evaluate skeletal
metastases [27]. The main advantage of bone scintigraphy is its ability to visualize the
whole skeleton. This is important given that bone metastasis is often found in regions of
the appendicular skeleton that are neglected during routine skeletal examinations [28].
Bone scan has the disadvantage of making it difficult to identify metastatic lesions from
other possible hotspots which can lead to a false positive diagnosis. A further limitation
is that the image resolution of nuclear medicine images may not be as high as MRI or
CT.
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2.3.2 Computed Tomography (CT)

CT-scans use X-rays and computer technology to create detailed images of the body.
CT-scans have a high spatial resolution, which allows the detection of bone metastases
by showing detailed images of the bone structure, including changes in bone density
and the presence of tumors [5]. They are also useful in guiding needle biopsy, especially
in spinal lesions. A further advantage of CT-scans is that they can detect bone marrow
metastases before they destroy bone, resulting in an earlier diagnosis and an improved
prognosis [29]. Besides, CT-scans are commonly available at a relatively low-cost [7].
However, CT-scans are relatively insensitive in showing small lesions, and it has the
disadvantage of limited skeletal coverage.

2.3.3 Magnetic Resonance Imaging (MRI)

MRI is a radiation-free, noninvasive imaging modality that uses a magnetic field and
radio waves to create precise images of the inside of the body and provide 3D visualization
of tissues. With excellent soft tissue resolution, MRI allows the direct visualization of
bone marrow and is useful for determining the extent of local disease before surgery or
radiation [30]. It is also possible to detect metastatic lesions using MRI before changes
in bone metabolism become detectable on bone scans. Although the whole-body MRI
is an accurate technique, it is currently limited by its high cost and takes more than 30
minutes which makes image acquisition more difficult mainly for restless people.

2.3.4 Positron Emission Tomography (PET)

PET is a nuclear medicine imaging technique that produces 3D anatomic information
or map of functional processes in the body. A small amount of radioactive material is
injected into the patient’s bloodstream, and the gamma rays emitted by the radioactive
material uses detected by the PET scanner. Because bone metastases often have increased
blood flow, PET can be used to detect the abnormal metabolic activity of cancer cells
in multiple locations throughout the whole body in a single scan. The applicability
and utility of PET images lie in the radiopharmaceutical used, among other reasons,
however, PET images have a higher resolution compared with conventional planar and
SPECT techniques [27]. PET scan has proved to be a noninvasive modality, which
means that they do not involve any incisions or radiation exposure [31]. Despite its high
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functional assessment, PET scan is available in only very few centers and is a high-
cost, sophisticated test that requires special expertise. It’s important to note that despite
these disadvantages, PET scans can provide important information for the diagnosis and
management of bone metastases, and may be used in conjunction with other imaging
modalities for better results.

2.3.5 Single Photon Emission Computed Tomography (SPECT)

SPECT is one of the most commonly used techniques that uses trace concentrations
of radioactively-labeled compounds to provide insight into physiological processes. In
SPECT examination, imaging equipment captures the emitted gamma rays from radionu-
clides that were injected into a patient’s body in advance to generate a map of the inside
of a body [8]. Unlike conventional skeletal scintigraphy where planar imaging is limited
by the superimposition of structures, SPECT images can show axial slices through the
body, which is more precise in localizing abnormal radionuclide uptake [32]. Moreover,
SPECT scan is a widely used tool due to the low-cost equipment. It can also provide an
accurate assessment of disease stage and severity. However, SPECT imaging is charac-
terized by inferior spatial resolution and low signal-to-noise ratio. Furthermore, manual
analysis of SPECT scan findings by radiologists is time-consuming and subjective [33].

2.3.6 Hybrid imaging methods

Molecular and hybrid imaging has an increasing role in the early detection of metastatic
bone and in monitoring response at early time points [34]. In this sense, functional
imaging such as SPECT/CT, PET/CT, and PET/MRI provides a standardized uptake
value and allow the fusion of anatomic data from cross-sectional imaging with functional
information from nuclear medicine studies. As a result, the radiologist can determine
if focal radiotracer uptake on a nuclear medicine study corresponds to a discrete bone
lesion. Similarly, diagnostic confidence increases when an osseous lesion suspicious for
metastasis on cross-sectional imaging avidly accumulates radiotracer. Hybrid modalities
allow imaging of the skeleton with high contrast and spatial resolution. Compared to
conventional imaging methods, these modalities offer enhanced diagnostic precision for
evaluating stage and response, as they can quantify the biological processes affecting
the bone environment and tumor cells [35]. A potential weakness of hybrid imaging
methods compared with standard imaging methods is that Additionally, hybrid imaging
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Table 2.2: Imaging modality comparison
Imaging Modality Advantages Limitations

Bone Scan
- Sensitive to early bone changes
- Whole-body coverage
- Detects multiple lesions simultaneously

-Low specificity
- Cannot provide precise anatomical detail
-Requires radiotracer injection

CT Scan
- High spatial resolution
- Detailed visualization of bone structures
-Rapid scanning

- Ionizing radiation exposure
- Limited soft tissue contrast
- May miss small lesions

MRI
- Excellent soft tissue contrast
- Multiplanar imaging capability
- No ionizing radiation exposure

- Expensive and time-consuming
- Not widely available
- Motion artifacts may affect images

Hybrid Methods
- Combined advantages of different modalities
- Improved sensitivity and specificity
- Enhanced anatomical and functional data

- Costly
- Limited availability
- Longer scan times

modalities may also be associated with higher radiation exposure compared to standard
modalities.

2.4 machine learning techniques in bone metastasis

Machine learning has been used in various ways to predict and differentiate bone metas-
tases and to classify bone tumors. In this section, we will detail some examples of
machine learning applications to bone metastases. Figure 2.3 shows a literature-based
taxonomy for bone metastasis analysis.

While there are numerous applications of machine learning in bone metastases, includ-
ing detection, prediction, and classification, we will specifically address the classification
and segmentation of bone metastases. Classification is about developing models that can
accurately distinguish between benign and malignant bone tumors or classify different
types of bone metastases based on imaging data. Segmentation, on the other hand, is
about accurately delineating the boundaries of bone metastases in medical images to
enable precise localization and measurement of lesions. By focusing on these two as-
pects, we aim to contribute to the evaluation of bone metastases and provide insights to
improve diagnosis and treatment planning for patients.
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Figure 2.3: Literature Taxonomy of Bone Metastasis Using Deep Learning

2.4.1 Existing Bone Metastasis Classification Methods

The classification of BM using machine learning methods has been the subject of several
recent research works. In the following, we describe papers about BM classification
based on imaging modalities.

a. Bone Scan

One of the first CAD systems to classify bone scans was BONENAVI® [36], a software
tool that can automatically detect hot spots in bone scans and classify the hot spots as BM
or non-malignant. The BONENAVI software achieved a sensitivity of 90% [36]. Later,
Tokuda et al. [37] investigated the diagnostic capability of the fully automated CAD
system “BONENAVI version 1” by focusing on two different patterns. The first pattern
was dedicated to the detection of metastases per region, and the second to the detection
of metastases per patient. The results obtained showed that the BONENAVI system
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is able to reduce the number of false positives, which depends on the primary cancer
lesion. Similarly, Mitsuru Koizumi et al. [38] used BONENAVI version 2 to evaluate the
accuracy of BM diagnosis using a ANN model with a threshold of 0.5. The sensitivity
and specificity were 85% and 82%, respectively, while the highest accuracy was 72%
for BM of prostate cancer. In addition, Kikushima et al. [39] showed that bone scans
analyzed with BN2-B accurately detected the presence of BM in cancer patients. They
reported that the sensitivity and specificity for BN2 were 94% and 88% in male patients
and 86% and 85% in female patients, respectively. BONENAVI® has a prognostic effect
in prostate cancer patients [40], although the sensitivity of BONENAVI is not as high in
cases with disseminated skeletal metastasis [41].

Another automatic diagnostic system for identifying possible metastases in cancer
patients was proposed by Aslantas et al. [42] "CADBOSS". CADBOSS used image
rasterization to extract features from whole-body bone scans and then employed a ANN
classifier at the lesion level. The calculated specificity, sensitivity, and accuracy of
CADBOSS were 87%, 94%, and 92%, respectively.

Recently, a new parallelepiped classification method (PC) was proposed to automat-
ically detect BM in bone scan images [43]. The method PC involved mapping the
radionuclide distribution in the images and generating color maps of the scintigraphic
images. It was evaluated using images from 12 patients with BM. The results showed that
the PC method could distinguish metastatic bone from normal tissue with an accuracy
of 87.58% and a K coefficient of 0.8367.

The use of CNNs in classifying BM has shown considerable potential in several studies.
For example, Belcher [44] used CNNs to classify hot spots as benign or malignant,
achieving an AUC of 0.9739. Hot spots were hand-extracted from 2164 prostate cancer
patients, and 10,428 hot spots from the lower spines were included because they were
considered easiest to classify. In the same way, Dang et al. [45] used an ensemble patch-
based CNN model to detect metastatic hot spots on bone scans with 89% accuracy. Later,
[46] introduced a CNN method for analyzing both anterior and posterior views on bone
scan examinations to detect BM in patients with different types of cancer. The authors
employed a spatial attention feature aggregation operator to improve the extraction of
spatial location information. Their model was trained on a large dataset of 15,474 trials
from 13,811 patients. Results showed excellent performance metrics, including an F1
score of 0.933, accuracy of 95.00%, sensitivity of 93.17%, and specificity of 96.60%.

In [47], the authors propose a new lightweight CNN architecture for BM classification
in nuclear medicine, specifically for prostate cancer patients. The proposed method
achieved 97.41% accuracy with a dataset of 778 images. Papandrianos et al. performed
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two studies to classify bone scintigraphy images of prostate cancer patients into three
classes: normal, malignant, and degenerative. In the first study [48, 49], they developed a
CNN architecture to diagnose BM and achieved an accuracy of 91.61% ± 2.46% and an
F1 score of 0.938. In the second study [50], they used VGG16 and DenseNet to classify
bone scintigraphy images. They found an accuracy of 92.08% ± 2.81% for Densenet and
92.14% ± 2.91% for VGG16. These results are consistent with two similar studies by
the same authors [51, 52]in which they performed a dual classification: Metastases and
non-metastases. The approach in [51] used CNNs to classify 908 images from breast
cancer patients and achieved 92.50% accuracy. In addition, the CNN model in [52]
achieved 97.38% accuracy for prostate cancer patients.

In a study by Zhao et al. [53], the authors collected bone scans from 12,222 patients
with 40 cancers, with 42.1% of the scans viewed at BM to detect malignant bone
disease using the ResNet-50 model. Their results showed an overall AUC of 96.4% for
diagnosing various cancers. In another study, Hajianfar et al. [54] used a dataset of 2253
patients with suspected bone disease and metastases and two assessment strategies, one
for detecting normal vs. abnormal bone and another for distinguishing metabolic bone
disease from BM. Six CNN models, including ResNet50, Inception-V3, and Inception
ResNet50-V2, were used to analyze the images. The model with the best performance
achieved an AUC of 0.68 for discrimination between normal and abnormal and 0.65 for
discrimination between metabolic and metastatic.

Similarly, Liu et al. [55] constructed an AI-assisted identification of suspicious bone
metastases from bone scan images using CNNs. The proposed CNN model achieved
an accuracy of 81.23%. Similar to most studies, the results showed that complicated
models such as DenseNet did not perform better, which may be due to the relatively
simple nature of bone scan images. In [56], the authors presented an object-oriented
classification for the interpretation of bone scan images. The method used the spatial
and textural information of pixel groups to classify images with higher accuracy. Han et
al. [57] proposed two different CNN architectures for analyzing bone scans of patients
with prostate cancer: whole-body-based (WB) and global-local uniformly emphasized
(GLUE). Both were trained on limited data to analyze 9113 images. The achieved
accuracy was 88.9% for the WB model and 90% for the GLUE model . Recently, [58]
developed a DL algorithm to classify areas of increased uptake on bone scans to improve
the diagnosis of metastatic bone disease. The DL algorithm showed high performance
in detecting BM with a specificity of 0.80 and sensitivity of 0.82 on the external test
set. The DL algorithm outperformed the nuclear medicine physicians in terms of time
efficiency. It took only 2.5 minutes to classify 134 BS scans compared to 30 minutes for
the physicians.
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Tables 2.3, 2.4 and 2.5 present a summary of all papers in the literature dealing with
bone metastasis classification.

b. SPECT

Using SPECT images, Lin et al. have proposed different methods for BM classifica-
tion. In [61], they presented a deep network called dSPIC for automated multi-disease
and multi-lesion diagnosis. The network was designed to extract optimal features from
images and classify them into classes such as metastasis, arthritis, and normal. The eval-
uated network achieved a value of 77.47% for accuracy, 78.83% for precision, 78.63%
for sensitivity, 88.20% for specificity, and 78.60% for F1 score on the testing samples.
Then, they proposed a self-defined CNN called Dscint [62], which used a hybrid at-
tention mechanism to classify whole-body scintigraphic images into different disease
categories. They included AlexNet, ResNet, DenseNet, VGGNet and Inception-v4 as
backbones to make multi-class classifications. The accuracy of Dscint outperformed
several classical deep classification networks with a value of 98.01%. Based on popular
deep networks such as ResNet, VGG and DenseNet, they also developed deep classifiers
[63] to automatically diagnose metastases in 251 thoracic SPECT bone images. They
achieved an AUC of 0.98. More recently, three distinct two-class classifiers are proposed
in [64] based on the VGG 16 model. These classifiers autonomously identify whether a
SPECT image contained lesions or not. Experimental outcomes showcased an accuracy
of 83.80%, a precision of 92.90%, a sensitivity of 96.60%, an F1-score of 90.80%, and
an AUC value of 0.875.

In another study [66], the authors proposed a CNN-based classification model for
accurate diagnosis of bone metastases. They adopted the standard VGG model to de-
velop a classifier for SPECT images. The authors evaluated the created model using
a set of 624 SPECT images and found an accuracy of 99.6%. In [65], an automated
classification model based on the VGG model was proposed to determine whether an
image contains lesions or not. Experimental evaluation of a series of 642 SPECT images
showed that the VGG13 model used achieved 99.20% accuracy. Liu et al. [67] presented a
method for classifying multiple diseases including normal cases, bone metastases, arthri-
tis, and thyroid cancer using a customized CNN model called SPNT9. The SPNT9 model
achieved a precision of 78.06%, a sensitivity of 79.04%, and an F1 score of 78.99%.
More recently, [68] focused on thorax image classification using a self-defined CNN
called Att-ResNet24 with a hybrid attention mechanism. Experimental results showed
that Att-ResNet24 achieved an accuracy of 73.70%.

c. CT-scan
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The authors in [69] presented a CAD system for detecting sclerotic BM in the spine.
The system used a watershed algorithm and graph cut to detect lesions and an SVM
classifier to classify them. Similarly, Roth et al. [70] proposed a two-stage coarse-to-fine
cascade [80] to detect sclerotic spinal metastases. Using CNN classifiers, difficult false
positives were eliminated by an additional selection process. Compared with the high
sensitivity results of 60%, 70%, and 80% in their test set, the false-positive rate decreased
significantly from 4 to 1.2, 7 to 3, and from 12 to 9.5, respectively, while an AUC of 0.83
was achieved. Later, Mutlu et al. [71] used eight ML algorithms to classify osteolytic
bone lesions from 58 patients as malignant or benign. They found that KNN had the
best predictive performance with values for accuracy, AUC, sensitivity, and specificity
of 82.4%, 86.1%, 82.4%, and 81.5%, respectively. Also, a DL model [72] using 2,880
annotated CT scans from 114 patients with prostate cancer was able to detect bone
lesions and classify them as malignant or benign with an accuracy of 92.2%.

A CT -radiomics model that distinguishes BM from normal bone marrow was pub-
lished in [73]. After manually locating the lesions, they performed automatic segmen-
tation to collect sufficient information. In the study, BM was successfully distinguished
from healthy bone regions using various radiomic features and ML classifiers. More
recently, Naseri et al. [74] presented an approach combining NLP and radiomics to
discriminate between painful and painless BM lesions in simulated CT images of can-
cer patients. By automatically extracting pain scores from clinical notes using NLP and
identifying BM central points on CT images, the study extracted radiomics features from
these areas. The best model NNet achieved an accuracy of 82%, a sensitivity of 59%, a
specificity of 85%, and an AUC of 83%.

Using PET /CT images, Acar et al. [75] focused on the use of CT texture analysis in
combination with ML methods to distinguish between metastatic bone lesions and fully
addressed sclerotic areas in prostate cancer patients with BM. With an AUC of 0.76,
they found that the weighted KNN was the best algorithm.

d. MRI

The authors in [77] evaluated the diagnostic performance of ML classifiers in the
differential diagnosis of spinal lesions using radiomics data. Lesions were classified
into two groups: benign and malignant (2-label classification) or three groups: benign,
primary malignant, and metastatic (3-label classification). For 2-label classification, D-
ANN, the best model, achieved 94% accuracy on internal test data and 86% on external
data. For 3-label classification, the best model, the Iteratively Optimized Logit Boost
decision stump tree (IOLB), provided an accuracy of 80% for the internal test data and
69% for the external test data.
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In the same context, Liu et al. [78] and Xiong X et al. [76] conventional T1-weighted
(T1W) and fat-suppressed T2-weighted (T2W) MRI sequences to discriminate between
spinal metastases and multiple myeloma(MM). [76] combined the radiomics models
with a variety of ML algorithms to predict the probability of spinal metastases. The
accuracy, sensitivity, and specificity of the radiomics model developed by Xiong X
et al were 81.5%, 87.9%, and 79.0%, respectively, in their validation cohort. On the
basis of logistic regression [78], the model of Liu et al performed well with 10-EPV
(events per independent variable) in discriminating MM from spinal metastases with
an AUC of 0.85. Recently, Hallinan et al. [79] developed an automated classification
system for metastatic epidural spinal cord compression (MESCC) on MRI using Bilsky
classification. Compared with specialized readers on internal and external datasets, the
model showed near perfect agreement with kappas of 0.92–0.98.

2.4.2 Segmentation methods for metastatic bone lesions

Automatic segmentation of metastatic lesions is still in its infancy. A variety of imaging
modalities have been explored for BM segmentation using machine learning approaches.
Various methods, including deep learning models, segmentation algorithms, and combi-
nation techniques, have been used to address the challenges of automatically identifying
and delineating bone metastases. Below, we describe the current state of the art in bone
metastasis segmentation using the most commonly used imaging modalities, including
bone scans, CTs, MRIs, and PET /CTs.

a. Bone Scan

Among the various imaging modalities that have been explored in the field of BM
segmentation, the most commonly used modality is bone scanning. As can be seen in
Table 2.6, subsequent work has utilized bone scanning imaging modalities to advance
the field of BM segmentation. In [81], an automated method for segmentation of BM
was proposed that takes into account the characteristics of different anatomical regions
and has comparable sensitivity and significantly improved overall specificity. In [82],
the authors proposed a method for diagnosing BM using fuzzy C-Means clustering and
image processing techniques. The method was evaluated using bone scintigraphy from
twelve patients with breast and prostate cancer and was able to determine the locations
and areas of bone involvement as well as abnormalities of disease along the times. [83]
used a Sparse autoencoder and CNNs to train an image-level classifier that classified
input images as normal or suspicious, resulting in a 95 percent accuracy rate. Next, an
image-level classifier was trained to produce a probability map of the hot spots. Finally,
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level set segmentation was applied to the probability map to identify hot spots. The test
data set contained 68 suspicious thoracic images with 572 hot spots and a Jaccard index
of 0.8051.

Later, [84] proposed an image interpretation system for skeletal segmentation and
extraction of hotspots of a metastatic bone from a whole-body bone scintigram based on
Deep Learning. [85] provided a literature review on the Constrained Local Model (CLM)
and its applications in medical image segmentation. CLM is a technique for modeling
a class with a particular set of corresponding features. The proposed approach, which
employs CLM with regularized landmark mean shift (RLMS), effectively mitigates ambi-
guity and outperforms the general CLM-based method, as shown by experimental results.
[86] proposed a novel neural network model called MaligNet for bone lesion instance
segmentation and bone cancer metastasis classification in breast using bone scintigraphy.
The authors in [87] proposed a network to evaluate the bilateral difference of a whole-
body bone scintigram and then integrate it with their previous network extracting the
hotspot from a pair of anterior and posterior images. [88] developed an automatic fine-
grained skeletal segmentation method for whole-body bone scintigraphy (WBS) using
atlas-based registration. The proposed method includes four steps: denoising, restoration,
standardization, and registration. Experimental results show that the proposed method
outperforms the traditional registration method, with a decrease in mean square error,
an increase in signal-to-noise ratio, and an increase in mean structural similarity. [89]
presented a comprehensive approach to automate the analysis of BM on bone scintigrams
by applying deep learning technology. The study includes several models, including a
classification model to identify BMs, a segmentation model to automatically delineate
lesion regions, an assessment model to quantify tumor burden, and a model to generate
diagnostic reports. The approach is evaluated on a dataset of patients with and without
BMs and demonstrates high sensitivity, specificity, and accuracy in classifying BMs,
outperforming less experienced physicians. The segmentation model achieves remark-
able accuracy in identifying the spatial extent of BMs. In addition, the study introduces
a novel Bone Scan Tumor Burden Index (BSTBI) to quantitatively assess the severity of
BMs.

The paper [90] presents a new end-to-end multi-task deep learning model for au-
tomatic lesion detection and anatomical localization in whole-body bone scintigraphy.
The authors conducted several experiments to evaluate the effectiveness of the proposed
method on a dataset with 62 test volumes. They also used a 7:3 ratio for 5-fold cross-
validation to evaluate the degree of overfitting. The experimental results show that the
proposed architecture achieves the highest precision in the finest bone segmentation in
both anterior and posterior whole-body scintigraphy images. The proposed approach
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reliably balances unsupervised label generation with supervised learning and provides
useful insights for weak label image analysis.

Recently, [91] proposed a Deep Learning-based segmentation method for imaging
bone lesions using Swin Transformer as a decoder to extract feature information in the
image. The authors conducted a literature review and found that Swin Transformer has
demonstrated excellent remote information acquisition capability in various domains,
including natural language processing and computer vision. The authors also compared
the proposed algorithm with other segmentation algorithms in the test set under the same
experimental conditions. The proposed method achieved 97.65%, 77.81%, and 35.59%
of accuracy, dice coefficient, and IOU, respectively. [92] presented a simulation of the
post-market fine-tuning of a computerized bone scintigram detection system and its per-
formance analysis. The study identifies the factors affecting the performance changes
and provides useful information for deriving an effective design scheme for continuous
learning in artificial intelligence systems. [93] developed a CNN-based diagnostic sys-
tem for automatic segmentation of BM regions in bone scintigraphy. The system was
developed using a dataset of 100 breast cancer and 100 prostate cancer patients. The
Double U-Net model was adapted by incorporating background removal, addition of
negative samples, and transfer learning methods for BM detection. The performance of
the system was examined using 10-fold cross-validation and calculated on a pixel-wise
scale. The best model achieved an accuracy of 63.08%, a sensitivity of 70.82%, and an
F1-score of 66.72%.

b. SPECT

In addition to bone scans, single-photon emission computed tomography (SPECT)
images are also widely used for segmentation of metastatic bone lesions. The authors in
[94] introduced three different algorithms, namely the K-Means clustering method, the
region growth method, and the C-V model, for segmenting lesions in SPECT bone scan
images. This study focuses on the region of BM lesions in SPECT imaging. The authors
experimentally determined different parameters for the above three algorithms, result-
ing in three different segmentation algorithms. The study concludes that the proposed
methods are suitable for lesion segmentation in SPECT imaging. The three methods
achieve a value of 0.7307, 0.7768, and 0.8076 for the Tanimoto similarity coefficient,
respectively. The segmentation method based on the C-V model is able to provide more
helpful information to oncologists in the diagnosis of tumors and other related diseases.
The U-Net method has been shown to be able to segment bone metastases.

In an attempt to automatically assess metastases, [95] used two deep learning models to
segment hotspots in bone SPECT images based on U-Nets and Mask R-CNNs. The results
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show that the segmentation models created achieve a value of 0.9920 for PA, 0.7721 for
CPA, 0.6788 for Rec, and 0.6103 for IoU. [96] applied improved U- NET algorithms
to segment BM on SPECT images. By adding an attention mechanism between jump
links, the algorithm improves data feature selection, prevents feature redundancy, and
makes the model more suitable for training. The proposed approach achieved 0.633
from MIOU and 0.571 from DSC. In addition, [97] uses U-Net as the base model
while conducting research to optimize the model performance. The attention mechanism
is integrated to segment BM in the pelvic region. Through a series of comprehensive
experimental validations, it is shown that the synergistic fusion of the U-Net network with
the attention mechanism significantly improves the segmentation of BM in the pelvic
region when applied to SPECT images. Experimental results show that the integrated
model exhibits significant improvements in key metrics, specifically achieving values
of 0.6045, 0.7214, and 0.7564 for IoU, DSC, and Precision, respectively. Later, [98]
presented a study on automatic segmentation of lung cancer bone metastases from
SPECT images using UNet based models. The authors performed experiments with real
clinical SPECT nuclear medicine data and proposed an improved U-net model that takes
into account the residual structure and the attention mechanism. The obtained pixel
accuracy PA, average pixel accuracy mPA, and average cross-merge ratio MIoU were
0.9955, 0.7824, and 0.7291, respectively.

Lin et al [99] have proposed a custom semi-supervised segmentation model for iden-
tifying and delineating lesions of skeletal metastases on augmented SPECT images.
The model includes a feature extraction subtask and a pixel classification subtask. The
feature extraction stage uses cascaded layers, including dilated residual convolution, in-
ception connection, and feature aggregation, to learn hierarchical representations from
low-resolution SPECT images. The pixel classification stage classifies each pixel into
categories in a semi-supervised manner and delineates pixels belonging to an individual
lesion using a closed curve. A DSC score of 0.6920 can be achieved when the model is
trained with 37% of labeled samples.

Recently, [100] proposed a self-defined five-layer segmentation network based on the
U-Net++ model for spine lytic lesion detection in CT scans. They also developed a view
aggregation method to enhance the high uptake area in the image while leaving the
background area unchanged. The experiment was evaluated on 260 images from SPECT,
and the results showed mean values of 0.6556, 0.6257, and 0.6885 in terms of DSC,
CPA, and sensitivity, respectively. [101] developed an automated segmentation model
based on the U-Net++ model to identify and segment BM lesions in bone SPECT images.
The authors used feature fusion and attention mechanisms to improve feature learning in
important regions. The performance of the proposed model was evaluated using clinical
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data with 306 SPECT images, obtaining DSC, CPA, and sensitivity values of 0.6221,
0.6612, and 0.5878, respectively. A comparative analysis with classical segmentation
models highlights the superiority of the proposed approach and highlights the advantages
of integrating attention gates and feature fusion to improve the overall segmentation
performance.

c. CT-scan

[102] noted that noisy CT images led to misclassification of BM and some lesions could
not be detected in some areas. The authors suggested that developing a segmentation
method to identify the contour and location of lesion areas of BM in CT images by
modifying the HED network could eliminate these problems. The proposed method
achieved a TP rate of 79.8% and a IoU rate of 69.2%. [103] demonstrated the ability
of the U-Net in segmenting spine sclerosis BM on CT images. The proposed CNN
demonstrated high sensitivity (95% global, 92% local) and positive predictive value (97%
local) with a Dice score of 0.83. This work illustrated the potential of CNN to aid in lesion
detection while acknowledging the need for continued refinement and broader validation.
Later, [noguchi_2022deep] developed and evaluated a deep learning-based algorithm
(DLA) for automatic detection of BM at CT. They proposed a segmentation approach
based on three convolutional neural networks (CNNs): a 2D UNet-based network for
bone segmentation, a 3D UNet-based network for candidate region segmentation, and a
3D ResNet-based network for reducing false positives. The clinical efficacy of the DLA
was evaluated in an observational study with board-certified radiologists. The study
found that the algorithm improved radiologists’ overall performance in detecting BM
while decreasing interpretation time.

Recently, [104] discussed the development, training, and testing of a CNN for auto-
matic detection of lytic lesions of the spine in chest, abdominal, and pelvic images CT.
The authors manually segmented the images into three classes: lesion, normal bone, and
background. The trained model yielded promising results with a mean Dice score of
0.61 for lytic lesions, 0.95 for normal bone, and 0.99 for background. Using a U-Net
architecture implemented in Keras/TensorFlow, the model showed a mean global sensi-
tivity of 90.6% for detecting lesions on a single image, 74.0% local sensitivity, 78.3%
positive predictive value for detecting all lesions, and a global specificity of 63.3% for
false-positive rates in nonpathologic bone. The study concluded that the CNN-based
approach has high sensitivity for detecting lytic lesions of the spine in axial CT images.
[105] presented a retrospective study on the development of an automated deep learning
method for bone tumor segmentation and classification using CT imaging. The study
used a dataset of 84 femoral scans CT with final histologic confirmation of bone le-
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sions and incorporated a deep-learning architecture that predicted a segmentation mask
over the estimated tumor region and a corresponding class as benign or malignant. The
approach demonstrated comparable specificity (75%) and sensitivity (79%) despite un-
balanced datasets, along with an average Dice score of 56% for segmentation and up to
80% for individual image slices. The study highlights the potential of machine learning
tools to improve the accuracy of musculoskeletal tumor diagnosis by helping physicians
decide whether a biopsy is necessary. Similarly, spectral CT (dual-energy) images have
been used to identify and segment spinal metastases in lung cancer using a deep learning
DC-U-Net model [106]. The energy spectral CT scan, also known as dual-energy CT or
spectral CT, is a type of CT scan that uses two separate X-ray energy spectra to create
two sets of data. This technique allows the study of materials with different attenuation
properties at different energies.

d. PET/CT

Using a hybrid imaging modality, [107] compared the effectiveness of two approaches
for segmenting bone lesions in metastatic breast cancer using the nnUnet [108] archi-
tecture. The first method used lesion annotations with images from PET and CT as
two-channel input, while the second method used both reference bones and lesion masks
as ground truth. The inclusion of bone masks resulted in higher precision and a slight
improvement in the Dice score for bone lesion segmentation. In addition,in [107] two
nnUnet segmentation models were introduced that aimed to calculate imaging biomark-
ers to assess treatment response based on baseline and follow-up images. Because experts
typically assess treatment response using baseline and follow-up images, the models in-
corporated baseline images PET and lesion segmentation on baseline PET as input
channels to the follow-up network. The resulting calculation of four imaging biomarkers,
from both manual and automated segmentations, showed promising results in predicting
response to treatment.

[109] discussed the use of deep learning algorithms for automated PET /CT lesion
segmentation in oncology. They also mentioned the challenges of manually annotating
tumors in whole-body scans FDG-PET and the potential of DL-based automated tumor
segmentation to solve this problem. The authors used the AutoPET Challenge 2022
platform to develop and test their deeplearning models for automatic segmentation of
PET lesions. They applied 5-fold cross-validation on residual UNETs to automatically
segment lesions and used the results of an adaptive ensemble of highly contributing
models as the final segmentation. Their method achieved a dice score of 0.5541 in the
test data set (N=150 studies).

e. MRI
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In a routine radiological examination to detect suspected PCa,[110] identified and
segmented pelvic bone metastases using dual 3D UNET DLAs based on T1-weighted
and diffusion-weighted images. After two rounds of evaluation, the DSC value for pelvic
bone segmentation was above 0.85, while the AUC value for metastasis detection was
0.85, indicating high accuracy in pelvic bone metastasis detection and segmentation.
In addition, [111] found that automatic segmentation of vertebral metastases on MRI
was almost as accurate as expert annotation using deep convolutional neural networks
(U-net-like architecture). Their proposed segmentation solution achieved a DSC of up to
0.78 and a mean sensitivity of up to 78.9% with a DSC of 0.79 for inter-reader variability.
Recently, [112] focused on improving the accuracy of spinal metastasis segmentation
by contrast-enhanced magnetic resonance imaging (CE-MRI) using an improved U-
Net and Inception-ResNet architecture. They investigated the combination of CE-MRI,
radiomics, and deep learning techniques to distinguish between spinal metastases and
primary malignant bone tumors of the spine. The proposed approach combined a region-
growing algorithm for lesion segmentation with improved U-Net and Inception-ResNet
models. The results showed that the diagnostic accuracy of Radiomics reached 0.74,
while the improved U-Net achieved an impressive average diagnostic accuracy of 0.98.
Notably, the proposed model exhibited a precision accuracy of 98.001%, highlighting its
potential to support the differential diagnosis of spinal metastases and primary malignant
bone tumors of the spine.

Tables 2.6, 2.7 and 2.8 present a summary of all papers in the literature dealing with
bone metastasis segmentation.

2.4.3 Others ML Tasks for Bone Metastasis Diagnosis

In addition to classification and segmentation, many works have attempted to develop
new approaches for various tasks such as detection, prediction, identification, prognosis,
and so on. To detect sclerotic, lytic, and mixed spinal lesions, Yao et al. [113] used an
SVM classifier with sensitivities (with a false positive rate per patient) of 81% (2.1),
81% (1.3), and 76% (2.1), respectively. The same group achieved a sensitivity of 75%
with a false-positive rate of 5.6 for identifying sclerotic rib lesions by using a different
SVM classification system [114].

Cheng et al. [115, 116] used YOLO models to detect chest and pelvis bone metastasis
lesions in scintigraphic images of prostate and breast cancer patients. The CNN-based
classification models they developed achieved a mean precision of 90% for classification
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of detected lesions in the chest [115] and a precision of 70% (81%) for classification of
detected lesions in the chest (pelvis)[116].

The authors in [117] have proposed an algorithm to reduce false positives in auto-
matically detected hotspots on bone scintigraphy images. The algorithm is designed to
work in a semi-supervised manner, as the construction of a fully annotated database is
challenging. The classification sensitivity, specificity, and false-negative rates achieved
were 63%, 58%, and 37%, respectively.

In a study by Fan et al. [118] on the differential diagnosis of spinal metastases using
18F-FDG PET /CT, there were 51 texture parameters that meaningfully differentiated
between benign and malignant lesions, four of which had AUC higher than SUVmax.
The texture parameters were used to build a classification model with logistic regres-
sion, support vector machine, and decision tree. The accuracy of manual diagnosis was
84.27%.

2.4.4 Challenges and Limitations in Previous Works

Over the past decade, numerous articles have been published on the topic of bone
metastases, focusing on lesion detection, segmentation, and classification in various
imaging modalities. However, there are still some open research areas with few studies.
In these open research areas, there are several challenges that should be addressed in
future research.

• (1) Absence of common dataset

One of these challenges is benchmark datasets. The results of previous studies are
based on their own datasets. However, we believe that it is not straightforward to
evaluate and numerically compare different studies based solely on their reported
results because they use different datasets, evaluation methods, and performance
metrics. To compare studies numerically, it is definitely necessary to develop
benchmark datasets. These datasets should consist of samples obtained from a
large number of patients and annotated by different radiologists. This would allow
a numerical comparison of the results of the different studies and identify the
distinguishing features.

In ML, models are trained to make predictions based on known datasets, from
which the machine then “learns”. After developing a model, it applies its knowledge
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to perform diagnostic tasks on unknown datasets [119]. Application of ML requires
collection of data labeled by experts (usually radiologists) or direct data extraction
through various computational methods.

As far as we know, we have found only one open-source dataset: BS80K [120].
The BS -80K benchmark dataset consists of bone scan images that can be used
to evaluate the performance of new advanced computer vision methods. The data
includes anterior view (ANT) and posterior view (POST), along with 13 region-
wise slices for vulnerable body parts. Tasks include detection, classification, and
tracking. This dataset illustrates that working with common professional digital
image databases allows us to overcome any bias in the tested images and enable
accurate publication. We all still have a long way to go to achieve clinically
acceptable results with the best results, because for images of BS -80K they
retained only 0.2484 of the average detection accuracy of about 3247 original
candidates.

• (2) Small scale

The datasets used in existing studies are generally not large enough, barely exceed-
ing 1000 images [107, 106, 105, 101, 93, 87, 74, 52]. Obviously, such a small
amount of data is far from sufficient to build a generalized and robust ML model.

One of the major challenges of using such small datasets is the high risk of
overfitting. Overfitting occurs when a model is fitted too closely to the specific
features and noise in the training data, such that it memorizes those features
instead of learning the underlying patterns. This can result in a model that performs
exceptionally well on the limited training data, but fails to generalize to unseen data,
rendering it virtually useless in real-world applications. To address the problem
of overfitting and increase the amount of data used, several solutions have been
proposed, such as using data augmentation techniques [97, 91] or transfer learning
[121, 122]. While data augmentation and transfer learning are valuable tools in
the ML toolbox, dealing with overfitting often requires a holistic approach that
combines multiple techniques, data quality improvements, and ongoing model
maintenance to achieve robust and reliable AI systems.

In addition, small datasets also limit the diversity and quality of training data.
ML models thrive best when confronted with a variety of examples that include
different scenarios, conditions, and variations. A small dataset cannot adequately
represent the full range of real-world complexity, which is critical for developing
robust models that can handle multiple situations and variations.
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• (3) Non generalization

Most of the current BM with ML works suffer from the nongeneral problem, i.e.,
they contain only images derived from a specific cancer type, a specific body
region, or a specific metastatic bone lesion. For example, the datasets used in [63,
98] contain only bone scan images of the thoracic spine. In [97], the dataset used
contains bone scans of the pelvis with annotations indicating only the presence
or absence of metastases, which is obviously insufficient to provide an accurate
and comprehensive diagnostic aid. In addition, the study dataset in [68] is limited
to patients with lung cancer and thoracic bone metastases, which may limit the
generalizability of the model to broader cancer types or anatomic regions. The
authors in [104] focused exclusively on lytic spinal metastases and did not consider
other types of lesions or organs, which could limit the applicability of the proposed
method to other medical imaging tasks.

Other problems related to standardization and experimental methods include (i)
different scanners used for image acquisition having different image resolution
and pixel size, (ii) different staining characteristics, (iii) different illumination
conditions, (iv) different magnification levels, (v) different number and size of
images (frames, whole slide images, and regions of interest are examples of the
types of images used by different authors).

In addition, several works have used radiomics as a feature extraction technique
from medical imaging [78, 73, 77, 74]. Although radiomics has demonstrated
its potential in several applications, it encounters several limitations [123]. First,
radiomic feature values are affected by patient variability, imaging artifacts, and im-
age reconstruction algorithms. Poor data quality can lead to inaccurate radiomic
features, which can affect the reliability and validity of the analysis. Therefore,
most studies lack external validation and require further evaluation. Second, radio-
graphic studies are often not reproducible due to lack of standardization, inadequate
reporting, and limited open-source code. The lack of adequate validation and the
possibility of false-positive results also hinders clinical implementation. In addi-
tion, a large number of radiomic features can complicate interpretation of results
for specific clinical questions. Further research is also needed to better understand
the biological mechanisms underlying the observed radiomic changes.

Another limitation of the works on classification, segmentation, and detection
of BM is that they have not been compared with other state-of-the-art methods.
This means that the results of these works may not be as reliable as they could
be because they were not compared to other methods that may have been more
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accurate. Comparing the results of different methods can help identify the strengths
and weaknesses of each method and provide a more comprehensive understanding
of the problem. Therefore, future studies should consider comparing their methods
to other modern methods to ensure the accuracy and reliability of their results.

In response to these limitations, we have taken the initiative to create a new dataset for
BM and make it available to the broader research community. This proactive step aims
to foster collaboration, improve transparency, and facilitate the development of a more
robust and universally applicable computer-aided diagnostic system for BM.

However, the challenges in ensuring the generalizability of these CAD systems to
broader patient populations and diverse medical centers, as well as the lack of trans-
parency in the decision-making process, raise important questions about their broader
clinical applicability. Further research and validation efforts must be undertaken to
address these limitations and ensure the reliability and practicality of the proposed
automated analysis framework in a clinical setting.

To improve the performance and generalizability of these systems, collaboration with
other medical centers is urgently needed. This collaboration will allow more diverse and
comprehensive data to be collected, ultimately leading to more effective CAD systems.

To advance the field and facilitate the adoption of these cutting-edge technologies into
clinical practice, future research efforts should prioritize the inclusion of comprehensive
comparative assessments. This approach will contribute to a deeper understanding of the
current state of the art and promote advances in the field of bone metastasis diagnosis
and treatment.

2.5 conclusion

In this chapter, we have presented the current state-of-the-art classification, segmentation,
and detection techniques for BM, highlighting both their promising results and existing
limitations. Our discussion highlighted the importance of addressing challenges related
to dataset availability, model generalizability, and transparency in clinical applicability.
In the next chapter, we will explore the data aspect of this area in more details by
examining datasets commonly used in research from BM. In addition, we are pleased
to present our own carefully developed BM dataset tailored to improve research in this
area. We will then provide an overview of the datasets used in this research area and
introduce our BM developed dataset. Then we will present a BM segmentation system.
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3.1 introduction

As we mentioned in the previous chapter, most of the machine-learning approaches
used in the BM field are based on supervised learning. Accordingly, datasets including
labeled ground-truth are needed in order to train such methods, so, to develop bone
metastasis detectors. This chapter summarizes numerous published real-world datasets
regarding imaging modality, their size, and labels. Consequently, we detail our proposed
BM dataset and the challenges related to databases in the field of BM.

Section 3.2 refers to an exhaustive overview of the database concept in the medical
imaging field. In section 2.3, the most commonly used imaging modalities in the field
of BM are discussed. After that, available private and public BM databases are detailed
in section3.3. Finally, our proposed dataset for BM is introduced in section 3.4.

3.2 background

Public datasets play a vital role in driving advancements in autonomous medical diagno-
sis, particularly in the field of medical imaging. Over the years, numerous datasets have
been generated, enabling the development and evaluation of computer-aided medical di-
agnosis systems (CAD). While the use of datasets for radiological decision-making can
be traced back to the 1960s [124], recent breakthroughs in algorithm development and
computational resources have paved the way for the application of artificial intelligence
(AI) and deep learning techniques in this domain.

In the realm of medical imaging, datasets have been instrumental in addressing a wide
range of diseases and conditions. For instance, in the field of Alzheimer’s disease research,
datasets containing neuroimaging scans have been essential for studying the progression
and early detection of the disease [125]. These datasets enable researchers to analyze
patterns and biomarkers associated with Alzheimer’s, facilitating the development of
more accurate diagnostic tools.

Breast cancer, another significant area of study, has also benefitted from the avail-
ability of diverse datasets [126, 127]. These datasets include mammograms, ultrasound
images, and histopathological data, enabling researchers to investigate different aspects
of breast cancer detection, classification, and treatment. Such datasets have helped in
the development of CADx systems that assist radiologists in accurately identifying and
diagnosing breast cancer, leading to improved patient outcomes. Similarly, datasets in
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the field of COVID-19 have played a crucial role in advancing radiological diagnosis
[128, 129]. CT scans and radiographs, combined with clinical and demographic informa-
tion, have formed the basis for developing computational models that aid in COVID-19
detection, lesion classification, and treatment planning. These datasets have significantly
contributed to the development of automated systems that assist radiologists in making
accurate and timely diagnoses, ultimately enhancing patient care.

While several medical sectors have benefited from the availability of robust datasets,
it is important to acknowledge that some fields of medicine still face challenges due to
the scarcity of data. One such example is bone metastasis [120, 130], which involves
the spread of cancer from primary tumors to the bone and suffers from a lack of large-
scale, diverse datasets. The scarcity of data poses obstacles to developing accurate
imaging-based tools for detecting and characterizing bone metastasis, impacting patient
management and outcomes.

The availability of public datasets has been instrumental in driving advancements
in autonomous medical diagnosis, particularly in the field of medical imaging [131,
132]. These datasets help in improving the automatic detection of diseases, creating
study protocols, improving image quality, decreasing radiation dose, decreasing MRI
scanner time, and optimizing staffing and scanner utilization, thereby reducing costs,
and offering the possibility of performing expensive and time-consuming screening
programs in countries that otherwise cannot afford them [133]. Access to big data of
medical images is needed to provide training material to AI devices so that they can
learn to recognize imaging abnormalities. The absence of adequately annotated extensive
datasets for the education of artificial intelligence algorithms in domains such as bone
metastasis introduces obstacles that necessitate resolution through cooperative endeavors
and initiatives for data exchange.

3.3 existing bone metastasis databases

Bone metastasis is a common condition characterized by the spread of cancer cells from
primary tumors to the bones. It is very necessary to diagnose it at a very early stage,
therefore, the research community has introduced various datasets and methods based
on deep learning for the identification of bone metastasis. These datasets can help in the
early identification and characterization of BM by extracting significant features. Using
these extracted features, different CADs can be performed to improve the accuracy and
efficiency of diagnosing bone metastases, leading to rapid interventions and better patient
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outcomes. In this section, we review various BM databases by detailing and observing
the characteristics of each one. Table 3.1 exhibits an overview of various BM datasets.

Papapandrios and his team have conducted a series of studies aimed at proposing
different datasets related to bone metastasis. In their first work [52], they utilized a
dataset consisting of 586 consecutive whole-body scintigraphy images of men, sourced
from 507 different prostate cancer patients. These images were carefully selected and
diagnosed by a nuclear medicine specialist. Out of the 586 bone scan images, 368 were
from male patients with bone metastasis, while 218 were from male patients without
bone metastasis. The nuclear medicine physician categorized all the patient cases into
two categories: 1) metastasis absent and 2) metastasis present. Building upon their
initial work, in their second study [49], Papapandrios and his team aimed to expand
the dataset by including additional bone scan images. They retrospectively reviewed
a total of 778 planar bone scan images from patients with known prostate cancer. Of
these, 328 bone scans were from patients with bone metastasis, 271 were benign cases
with degenerative changes, and 179 were from normal patients without bone metastasis.
The nuclear medicine physician classified these cases into three categories: healthy,
degenerative, and malignant. In another endeavor to gather more data on bone metastasis,
Papapandrios, and his team [51]collected information specifically related to breast cancer
as the primary tumor. They conducted a retrospective review of 422 consecutive whole-
body scintigraphy images obtained from 382 different breast cancer patients (women).
Out of the total 408 bone scan images the nuclear medicine specialist selected, 221 were
categorized as malignant and 187 as benign, without bone metastasis.

In [46], Pi et al. utilized a vast dataset comprising more than 15,000 bone scan images
from 13,811 patients to investigate the identification of bone metastasis. The dataset
included 9595 benign diagnoses and 5879 malignant cases. The patients in the dataset
consisted of 6699 males and 7112 females. However, currently, only the validation subset
with limited access is available.

The dataset used in [86] consisted of medical data from a total of 9,824 patients.
The dataset was utilized for two main purposes: chest detection and lesion instance
segmentation. For chest detection, 680 whole-body images were used for training, with
200 for validation and 240 for testing. In the case of lesion instance segmentation, the
dataset consisted of 19,648 chest images, of which 1,088 were labeled and the remaining
18,560 were unlabeled.

Cheng et al. [115] conducted a study on BM identification using 524 whole-body
bone scans collected from China Medical University Hospital. The dataset included 194
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scans from prostate cancer patients and 371 scans from breast cancer patients. However,
the study suffered from insufficient data as only 524 bone scan images were utilized.

The datasets conducted by Shimizu et al. [84], Cheng et al. [115], and Aslantas
[42] were characterized by their relatively small size with 130,246,524 bone scans
respectively.

Using the same imaging modality as previous works, bone scan, BS-80K [120]
emerged as a significant breakthrough in the field of datasets, addressing the lack of
publicly available resources until November 2022. This dataset consists of a vast collec-
tion of 82,544 bone scan images obtained from 3,247 patients at West China Hospital.
Each patient contributes two whole bone scan images, representing the anterior view
(ANT) and posterior view (POST), along with 13 region-wise slices for susceptible body
parts. Expert specialists meticulously annotated the images using an authorized labeling
criterion, providing accurate labels for bone metastasis presence. Furthermore, multiple
bounding boxes containing suspectable hot spots and their corresponding annotations
are included within each whole body image. The availability of BS-80K has greatly
facilitated research in bone metastasis, offering a comprehensive dataset that aids in
algorithm development and analysis for improved detection and understanding of this
medical condition.

In addition to bone scans, the previous works in the field incorporated various imaging
modalities including CT, SPECT, and PET/CT. Using CT scans, Samira et al. conducted
a study in which they utilized 2,880 annotated bone lesions from CT scans of 114 pa-
tients diagnosed with prostate cancer. Among these patients, 41 had histopathologically
confirmed metastatic bone lesions. Additionally, another study [1] collected a total of
269 positive CT scans, consisting of 1,375 bone metastases, and 463 negative scans
for lesion segmentation purposes. Despite the limited number of patients and scanners
available, their study’s authors in [95, 100] used SPECT, a medical imaging technique,
to detect bone metastases. While in [107], authors used PET/CT images from 24 breast
cancer patients to detect and segment automatically bones and metastatic bones.

The analysis of existing work in the field of computer-aided diagnosis highlights
several challenges regarding BM datasets that hinder further research progress. These
challenges can be summarized as follows:

• Lack of a standardized dataset: Despite the promising results achieved by individ-
ual studies using local datasets, the absence of common datasets creates obstacles
in terms of communication, mutual learning, and data sharing among researchers.
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Table 3.1: Summary of existing Bone Metastasis Datasets

Dataset Data Modality Dataset description Availability

[52] Bone Scan 586 scans [368 BM;18 Normal]
507 patients

Private

[49] Bone Scan 778 scans [328 BM; 271 degenerative; 179 normal]
817 patients

Private

[51] Bone Scan 408 scans [221 BM; 187 Normal]
382 patient

Private

[46] Bone Scan 15,474 images
13.811 patients [9595 benign; 5879 malignant]

Partly available
with restricted access

[86] Bone Scan 1088 labeled chest ; 18.560 unlabeled
9.280 patients

Private

[57] Bone Scan 9133 images [2991 BM; 6142 Normal]
5342 patients

Private

[42] Bone Scan 130 images [ 30 Normal;100 BM]
60 patients

Private

[84] Bone Scan 246 bone scans Private

[115] Bone Scan 524 scans
524 patients

Private

[120] Bone Scan 82544 images
3247 patients

Open Access

[72] CT 2.880 scans
114 patients [41 BM]

Private

[1] CT 269 BM scans
169 patients

Private

[107] PET/CT 24 patients Private

[100] SPECT 260 scans
130 patients

Private

[95] SPECT 76 patients
112 scans

Private

[130] CT 102,614 images
57 patients

Open Access
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This limitation also reduces the reliability of research contributions, potentially
leading to a stagnation of advancements in this particular area.

• Limited dataset scale: The datasets employed in current studies are typically small
in scale, with the number of images hardly exceeding 1000 [95, 100, 107, 1,
115, 84]. Such a small amount of data is inadequate for building generalized and
robust machine-learning models that can effectively address the complexities of
BM detection.

• Lack of generalization: Many existing BM image datasets suffer from a lack of
generalization, as they primarily consist of whole-body or specific-body region
images or data from a specific primary tumor. For example, the dataset used in
[86] only includes bone scan images of the thoracic spine. In [46], the dataset
comprises solely whole-body bone scan images, and their annotations merely
indicate whether metastasis is present or not. Such limited information hampers
the accuracy and comprehensiveness of diagnostic assistance.

To address these challenges and advance the field, we took the initiative to develop
a new BM dataset. This dataset was meticulously curated to include a comprehensive
range of imaging modalities, including CT-scans, to leverage their distinct advantages.
Furthermore, we have made this dataset publicly available to the research community,
ensuring that researchers from diverse backgrounds can access and utilize this resource
to foster advancements in the BM field. By providing this new dataset, we aim to facilitate
the development of more accurate and robust models while promoting collaboration and
knowledge sharing within the research community. With sufficient and manifold data,
we believe the open-accessed BM-Seg dataset will galvanize the wide research about
computer-aided CT-scan image analysis in the field of bone metastasis.

3.4 collected dataset

As mentioned in the previous section, the extent of research efforts in the BM field
emphasizes the need for datasets that explore complementary images. Consequently, in
this section, we introduce our proposed dataset and provide comprehensive information
about its implementation, along with the associated challenges and opportunities.
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3.4.1 Imaging modality

As previously mentioned in section 2.3, several imaging modalities are being used in
Bone metastasis detection such as bone scan, MRI, SPECT, and CT. CT-scan was selected
as the imaging modality for this study due to the following reasons:

• CT-Scan is a global modality and the first examination physicians need to get a
clear overview of primary and metastatic cancers.

• Because radiologists know the specific types of primary cancers, they can focus
their examinations on specific areas of the bone to detect lesions.

• CT-Scan can provide the right tradeoff between cost, time, and resolution.

• CT-Scan allows radiologists to visualize different types of metastases in a single
scan.

Considering the above factors and the fact that images from CT-scan are the most
accessible modality at Hedi Chaker Hospital, Sfax, Tunisia, we have chosen this modality
in mutual agreement with the radiologists.

Figure 3.1: Computed tomography imaging acquisition process

CT-Scan is a medical imaging technique for obtaining reconstructed cross-sectional
images based on measurements of X-ray beam attenuation coefficients in the volume
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under consideration [134]. It uses X-rays and detectors to measure how different tis-
sues block the X-ray beams. By gathering these measurements from various angles, the
elemental surfaces of the image are reconstructed from the data projected onto a recon-
struction matrix [135]. With the help of a calculator, a more or less important tonality
is assigned to these elemental surfaces according to attenuation coefficients. The X-ray
scanner analyzes how X-rays are absorbed as they pass through the body section being
examined [136].

3.4.2 Data Aquisition

A thoracic-abdominal-pelvic CT scan was systematically performed, including the entire
spine, pelvis, and proximal extremities of all four limbs. Patients underwent CT scans
using a Siemens 64-bar unit in the Radiology Department of Hôpital Hedi-Chaker Sfax.

3.4.3 Labeling Process

The labeling process for our dataset begins with the collection of CT scans from each
patient at the Hedi Chaker Hospital in Sfax, Tunisia. These CT scans serve as the primary
source of medical imaging data for our dataset.

After obtaining a series of high-quality CT scan images from each patient, we first
transform the DICOM images into the JEPG format for two primary reasons. Firstly,
the DICOM image always contains sensitive patient-related information, necessitating a
crucial de-identification process through transformation. Secondly, compared with the
DICOM format, the standard JEPG is more convenient as it offers enhanced convenience
for compatibility with various image-processing libraries including OpenCV.

All CT-scans were collected retrospectively from UHC (University Hospital Center)
Hedi Chaker, Sfax, Tunisia. The data had been collected from November 2020 to June
2023. Each CT-scan is reviewed by three expert radiologists using the Radiant Dicom
Viewer tool [137]. Based on the location of bone pain, the patient’s health, and any
prior trauma history, two doctors annotated the slices of each CT-scan as infected or
not infected. Then, an expert radiologist (more than 20 years of diagnostic imaging
experience) supervised the annotated slices that had been originally evaluated by the
two other doctors. Finally, the radiologists selected the regions that correspond to BM
lesions in each CT-scan infected slice. This process involves a meticulous review of the
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CT images, slice by slice, to identify any signs of bone metastasis or other abnormalities.
The examination was excluded if there was no clear diagnosis agreement between the
three radiologists. Using the annotations we receive from doctors, we further organize
the CT scan images based on that information. For each CT scan image, its label is
determined by whether there is a metastatic lesion within it or not. The image is classified
as abnormal if it contains at least one lesion, otherwise, it is classified as normal.

Figure 3.2: Some of the images from the proposed dataset

Once the labeling process is completed, the labeled CT scan patients are organized and
categorized into two main folders. The first folder contains CT scan images of healthy
patients who do not show any signs of lesions in any of their slices. These patients
are classified as "Normal". The second folder contains patients with metastatic lesions
that belong to an abnormal class (bone metastasis). There are two subfolders in this
folder, one for normal slices and one for metastatic slices. Through this subdivision, it
is possible to distinguish CT scan images of normal bones from those that depict bone
metastases clearly. Some images from our dataset are presented in section 3.2.
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3.4.4 Dataset Description and Statistics

The primary objective of our dataset is to train and evaluate a model for metastatic bone
detection specifically to differentiate between normal and metastatic bone based on the
CT-scan images. The proposed dataset consists of CT scan images obtained from 46
patients. More specifically, except in a few cases where relevant information is uncertain,
the dataset includes 32 males with a mean age of 59.03 ± 15.19 and 25 females with a
mean age of 53.55 ± 13.06. The age and gender distributions of the patients are visually
represented through intuitive histograms and statistical data in Figure 3.3.

Figure 3.3: Gender and age distribution in our proposed dataset

Our dataset, available for analysis, encompasses two distinct groups: 26 healthy indi-
viduals and 31 patients with metastatic bone conditions. The healthy group contributes a
total of 40,257 slices to the dataset, while the metastatic bone group provides a substan-
tial set of 62,357 CT-scan slices. In total, our dataset comprises 102,614 CT-scan slices.
It is noteworthy that this dataset has the potential for easy augmentation with additional
slices from healthy patients, further enhancing its scope and utility. It’s worth noting
that the patients in this dataset were treated as separate and distinct entities during the
analysis process. This means that the data from each patient was kept independent of
the data from other patients, ensuring that the scans from each patient were considered
unique instances.

As we previously discussed in Chapter 2, the bone lesion can be the result of multiple
primary tumors such as lung, breast, prostate, and liver. Furthermore, cancerous cells
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Figure 3.4: Primary tumors distribution in our proposed dataset

can propagate in various sites in the bone such as the pelvis, spine, or ribs. To gain
deeper insights into the characteristics of metastatic bone patients in our dataset, we
compiled a summary of primary cancer types in figure 3.4. Although the majority of
patients have lung tumors as their primary cancer, the vertebrae represent the bone area
most commonly affected by lung tumors, making spinal sections the most common.
In addition, our dataset followed a real distribution without excluding cases, unlike
previous studies that excluded misleading examples and focused on only one type of
primary cancer. Therefore, it is expected that a trained system using our dataset would
be more suitable for routine clinical applications.

Currently, we are still working on collecting more data to enlarge our dataset. Part of
our dataset, which we have already collected, has been published as a benchmark in the
field of bone metastasis segmentation under the name BM-Seg. This benchmark dataset
serves as a standardized reference for evaluating and comparing different algorithms and
methods for accurately segmenting bone metastases. It includes a diverse range of CT
scan images annotated with ground truth labels for the presence and location of bone
metastases. In Section 3.4.6, we will provide a more detailed description of the BM-
Seg benchmark dataset, including its composition, annotation guidelines, and evaluation



3.4 collected dataset 50

protocol. We will also discuss the significance of this benchmark in advancing the field
of bone metastasis segmentation and its potential applications in clinical practice.

Finally, We are planning to publish a second version of our dataset that will cover more
types of patients and can be used for many tasks. Consequently, this dataset will provide
a substantial amount of CT-scan data from both healthy individuals and patients with
bone metastasis, enabling researchers and practitioners to develop and test algorithms
for automatic bone abnormality segmentation, detection, and classification.

3.4.5 Dataset challenges

An expert radiologist must look at clinical and anatomical contexts to evaluate bone
metastasis from CT-scan. The most accurate assessment comes from comparing and
contrasting CT-scan with other medical imaging modalities such as MRI and SPECT
scans. The main challenges that face the radiologist when examining the CT-scans are:

• Bone lesions can occur in various regions and sites of the body, including the
ribs, pelvis, and spine. In order to accurately identify and distinguish these bone
lesions, healthcare professionals need to thoroughly examine CT scans. This com-
prehensive analysis ensures a meticulous examination and enables the detection of
lesions that may be present in different areas and locations of the skeletal structure.

• BM lesions are classified as osteoblastic, osteolytic, and mixed [138]. While
osteolytic lesions are responsible for bone resorption and show a lower density
than the normal cancellous bone, osteoblastic lesions cause too many bone cells
to form, which makes the bone very dense. According to [7], it is challenging
and time-consuming to detect bone lesions at an early stage on CT-scan images
especially when a variety of benign bone lesions with an osteolytic appearance are
present. As a result, each lesion type has a different appearance, which complicates
the annotation process and makes the segmentation task more challenging.

• Benign processes such as inflammation, degenerative activity, fracture, and injury
will show hotspots. In addition, primary malignant and benign bone tumors will
show similar appearances, i.e. increase in radiotracer uptake.

To overcome the above challenges, annotation by different radiologists is essential to ob-
tain redundant information or complementary data that can compensate for the challenges
present in each CT-scan. Figures 3.5 and 3.6 highlight the most introduced challenges in
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Figure 3.5: Osteolytic lesion appearance (circled in green) vs Disc appearance (circled in red) in
our dataset

Figure 3.6: Osteoblastic lesion appearance (circled in green) vs Degenerative bone appearance
(circled in red) in our dataset.

our dataset. As shown in Figure 3.5, it is difficult to distinguish between disc in CT-scan
and bone lesion, especially osteolytic lesions where radiologists have to spend consider-
able time verifying one patient scan. Figure 3.6 shows an additional issue in metastatic
bone labeling which is the difficulty to differentiate between osteoblastic lesions and
degenerative bones as they have similar appearances.
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3.4.6 BM-Seg Dataset

In the previous section, we mentioned that the BM-Seg is part of our dataset dedicated
to segmentation purposes. Therefore, in this section, we present our proposed dataset
BM-Seg and we detail its label processing and data preparation process.

3.4.6.1 BM-Seg Description

The BM-Seg benchmark dataset [130] is a valuable resource for researchers and practi-
tioners in the field of medical image analysis. It allows them to assess the performance
of their segmentation algorithms and techniques against a common set of evaluation
metrics. By using this benchmark, researchers can identify their approaches’ strengths
and weaknesses and contribute to advancing bone metastasis segmentation methods.

As a part of our main dataset, the BM-Seg dataset consists of CT-scans from 23
metastatic bone patients with 9 female and 14 male subjects, ranging from 18 to 83
years old. All CT-scans were collected retrospectively from UHC (University Hospital
Center) Hedi Chaker, Sfax, Tunisia. The data had been collected from November 2020
to January 2023.

Table 3.2: Types and incidences of primary tumors among CT scan examinations in our dataset

Primary Tumors Type Lung Breast Kidney Prostate Stomach Liver Others
Nb 8 6 1 2 1 1 4

Lesion location Type Full Bone Vertebrae Pelvis Rib Humerus Foot
Nb 490 639 128 112 175 78

It’s important to note that this dataset includes detailed patient demographics, such
as gender and age, providing valuable information for potential analyses. Moreover, the
retrospective data collection from a reputable healthcare center enhances the dataset’s
reliability and potential clinical relevance. The majority of patients included in the BM-
Seg dataset presented with lung and breast primary cancer as shown in table 3.2. Other
common primary cancers that can spread to the bone include prostate, kidney, liver, and
stomach cancer are also present in BM-Seg. This dataset provides valuable CT-scans of
patients with these types of metastatic bone cancer, allowing for further research and
analysis in the BM segmentation field.
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3.4.6.2 Data Collection and Labelling

In the same way as the main dataset, the labeling of BM-Seg was carried out using
a similar approach, with additional steps to obtain masks for each image. The steps
performed are summarized in Figure 3.7.

Figure 3.7: Process of building BM-Seg Dataset for Segmentation

Initially, a contrast substance is injected into the patient’s veins to highlight any bone
lesions. Once a patient exits the CT scanner, the CT images are sent to three radiologists
for examination. After interpreting data by doctors, the selected slices were converted to
JPEG format. The regions of interest (RoIs) that represent the bone and lesion regions
for each CT-scan slice are manually marked using Apeer software to extract ground truth
(GT) masks.

Figure 5.3 shows four extracted CT-scan images from BM-seg with their corresponding
ground truth masks. The selected images in the figure belong to different sites in the
human skeleton and have various BM lesion sizes. Since the labeling process is time-
consuming, 70 infected slices were randomly selected from each CT-scans. On the other
hand, in the CT-scans that have less than 70 infected slices, all infected slices are selected.
In total, 1517 slices were annotated by creating the bone metastasis and bone masks.
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Figure 3.8: Examples of CT images with various BM sizes and different positions in the bone
skeleton.

Figure 3.9: BM examples from BM-Seg. The first row contains BM images, and the second row
contains an annotation of each example (colors refer to lesion locations).
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At the end of the process of building the BM-Seg dataset, we obtain both bone and
lesion masks for each BM image. Figure 5.2 shows examples of BM-Seg images with
their corresponding annotated lesions.

3.5 conclusion

In this chapter, we have presented state-of-the-art of available datasets that were intro-
duced for bone metastasis. By analyzing the characteristics of each dataset, we have
concluded that there is no published dataset that employs CT-scans. Following, we repre-
sented our proposed dataset by detailing its challenges, its implementation, opportunities,
etc. Then, we presented our published dataset, denoted as BM-Seg, a part of our dataset
dedicated to the segmentation task. To validate our dataset, we conducted various ex-
periments using machine learning algorithms that will be detailed in the next chapter.
Within, we will focus on segmenting BM using Unet models and their variants. Then,
we will detail the classification of BM using CNN and Transformer algorithms.
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4.1 introduction

Accurate identification and delineation of BM on medical imaging is of paramount im-
portance for both diagnosis and treatment planning. This chapter presents a breakthrough
approach to BM segmentation using advanced techniques and methods. Conventional
methods for segmenting BM are often inadequate to capture the full extent and subtleties
of these lesions. In response to this pressing need, we present an innovative system that
leverages the power of DL and CT imaging modality. Our approach improves the preci-
sion and efficiency of BM segmentation and opens new avenues for improved clinical
decision-making and patient care.

In this chapter, we will explain the intricacies of our proposed methodology and
discuss the underlying principles, data preprocessing steps, model architecture, and
validation techniques. We will also present the promising results obtained through ex-
tensive experimentation to demonstrate the potential impact of our novel approach on
the medical imaging field. In section 4.2, an overview of existing traditional and deep
learning-based methods for medical imaging segmentation is presented. In section 4.3, a
novel AttUnet++-based method is proposed for BM segmentation. Following, we exhibit
a comparison of our results with the state-of-the-art techniques in section 4.4. Afterward,
We discuss our results and their potential impact in section 4.5. We conclude the chapter
in section 4.6.

4.2 image segmentation: an overview

Figure 4.1: A segmentation system in which CT scans of the vertebrae bone are fed into a deep
CNN architecture that not only classifies and localizes the tumor region but also
highlights the anatomical structure.

In the medical field, there are numerous cases where it is difficult to distinguish between
two different lesions because they present little differences. In order to effectively treat
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these lesions, they must be recognized as separate entities. Such subtle differences
between lesions can be challenging, but they are not impossible to detect. An image
is classified pixel-by-pixel and localized, providing an outline of the object. With the
help of this precise process, known as image segmentation, we can make these vital
distinctions, which ensures that the right treatment strategy is followed. For example,
when a CT scan image is input into the model, the result will classify the tumor type and
highlight its anatomical structure, as shown in Figure 4.1. There are various applications
for image segmentation, e.g., blood vessels [139], lung cancer [140], cardiovascular
structures [141], etc. Further, as illustrated in Figure 4.2, multiple types and techniques
are used for image segmentation. These types and techniques will be discussed in depth
in the following sections.

Figure 4.2: Overview of types and techniques of image segmentation [142]

4.2.1 Image Segmentation Types

Image segmentation ways are divided into three categories, depending on the amount
and type of information to be extracted from the image: semantic, instance and panoptic
[143].

a. Semantic Segmentation

In semantic segmentation, each pixel in an image is assigned a corresponding class
label without considering any other information or context. The goal is to assign a label
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to each pixel in the image, resulting in a dense labeling of the image. The algorithm takes
an image as input and generates a segmentation map in which the pixel values (0,1,...255)
of the image are converted into class labels (0,1,...n). It is useful for applications where
the identification of the different classes of objects on the road is important [144].

b. Instance Segmentation

Instance segmentation is similar to semantic segmentation, but it goes a step further
by distinguishing between different instances of the same object class. As with object
detection, this method is also concerned with segmenting the boundaries of an object. The
algorithm has no knowledge of the region’s class, but it separates overlapping objects.
This technique is useful in various applications such as object tracking, autonomous
driving, and robotics [145].

c. Panoptic Segmentation

Panoptic segmentation is a combination of semantic and instance segmentation. It
involves assigning a class label to each pixel and identifying each object in the image.
This type of image segmentation provides maximum high-quality granular information
from ML algorithms. It is useful for applications where the computer vision model needs
to recognize and interact with different objects in its environment, such as an autonomous
robot [146].

4.2.2 Image Segmentation Techniques

Fine-grained segmentation is a critical step in image-guided treatment and computer-
aided diagnosis. The widely used architectures for image segmentation are U-Net [147],
Masked R-CNN [148], DeepLab [149], etc. The use of these segmentation models de-
pends on the problem to be solved. For example, for objects with multiple scales in
the image, DeepLab and its various structures are a wise choice. Another problem in
image segmentation is the lack of labeled data, so researchers are considering more
unsupervised approaches, but they are still under development [150]. Generally, im-
age segmentation techniques are classified into three categories: traditional, DL, and
foundation model techniques.

a. Traditional Methods

Computer vision has long used traditional segmentation techniques to extract mean-
ingful information from images. These techniques rely on mathematical models and
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algorithms that identify regions of an image with common features such as color, texture,
or brightness. They are usually computationally efficient and relatively easy to imple-
ment. Traditional techniques are commonly used for applications such as recognition,
tracking, and object detection that require fast and accurate segmentation of images. In
the following, we will examine some of the most common techniques.

Figure 4.3: Traditional Techniques for Image Segmentation

• Thresholding is a basic image segmentation method that divides pixels into two
classes based on their intensity relative to a fixed threshold. Global thresholding
assigns pixels above the threshold to the foreground and those below to the back-
ground. Adaptive thresholding, on the other hand, adjusts the threshold locally for
smaller regions and is therefore suitable for images with uneven illumination or
contrast variations, which are often used in tasks such as document scanning and
image binarization.

• Region-based segmentation in image processing divides images into regions based
on similarity criteria such as color, texture, or intensity. Split and merge segmenta-
tion recursively divides the image into smaller regions and merges similar regions
but may have problems with complex, irregular regions. Graphical segmentation
represents the image as a graph where the nodes are pixels and the edges represent
similarity. It divides the graph into regions by minimizing a cost function.

• Edge-based segmentation is an image processing technique that focuses on identi-
fying and delineating object boundaries from the background by detecting abrupt
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changes in intensity or color values. Canny edge detection is a widely used method
that employs multi-level processing, including Gaussian smoothing, gradient cal-
culation, non-maximum suppression, and hysteresis thresholding, to accurately
detect edges. Sobel edge detection, on the other hand, uses a gradient-based ap-
proach that employs the Sobel operator to compute horizontal and vertical edge
information. Finally, Laplacian of Gaussian (LoG) edge detection combines Gaus-
sian smoothing and the Laplacian operator for robust edge detection, but can be
very computationally intensive and may not be suitable for complex edge struc-
tures.

• Clustering is a widely used image segmentation technique in which pixels with
similar features are grouped into clusters or segments. Various clustering algo-
rithms are used for this purpose, including K-means clustering and mean shift
clustering. K-means assigns pixels to K clusters based on their similarity while
mean shift shifts pixels toward local density maxima. These techniques are fast
and memory efficient but may require adjustments and are best suited for simpler
segmentation tasks, with limited accuracy for complex scenes.

b. Deep Learning Methods

Neural networks also provide solutions for image segmentation by training them to
recognize which features are important in an image, rather than relying on matched
features as in traditional algorithms. Neural networks that perform the task of segmen-
tation typically use an encoder-decoder structure. The encoder extracts features of an
image through narrower and deeper filters. When the encoder has been pre-trained for
a task such as image or face recognition, it uses this knowledge to extract features for
segmentation (transfer learning). The decoder then uses a series of layers to inflate the
encoder’s output into a segmentation mask that resembles the pixel resolution of the
input image. Several models that are inspired by FCNs and encoder-decoder networks
have been originally developed for medical image segmentation, but are now used for
image segmentation outside the medical domain as well.

U-Net [147] proposed by Ronneberger et al (Figure 4.4) is one of the most used
algorithms for efficient segmentation of biological microscopy images. The U-Net archi-
tecture consists of a contracting path to capture the context and a symmetric expanding
path that enables precise localization. The U-Net training strategy relies on the use of
data expansion to effectively learn from very few annotated images. It was trained on 30
transmitted light microscopy images and won the 2015 ISBI Cell Tracking Challenge
by a large margin. Several extensions of U-Net have been developed for different types
of images and problem domains. For example, Zhou et al [151] developed a nested
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U-Net architecture and Zhang et al [152] developed a U-Net-based algorithm for road
segmentation.

Figure 4.4: U-Net Architecture [147]

While U-Net is a widely used algorithm in the field of segmentation in medical
imaging, other algorithms have gained popularity. One such algorithm is V-Net, a fully
convolutional neural network based model proposed by Milletari et al [153]. for seg-
mentation of 3D medical images. V-Net uses a new loss function based on the Dice
coefficient to deal with situations where there is a strong imbalance between the number
of voxels in the foreground and background. Another popular algorithm is DeepLab
[149], a semantic image segmentation model that uses atrous convolution to increase
the field of view of the filters without increasing the number of parameters. DeepLab
has been used for a variety of medical imaging tasks, including brain tumor and retinal
vessel segmentation. These algorithms, along with U-Net, are widely used in the field
of medical image segmentation and continue to be the subject of ongoing research and
development.

c. Foundation Model Techniques

Foundation models have also been used for image segmentation, which divides an
image into distinct regions or segments. Unlike language models, which are typically
based on transformer architectures, foundation models for image segmentation often use
CNNs designed to handle image data.
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Figure 4.5: SAM Model [154]

The Segment Anything Model (SAM) [154] is widely regarded as the inaugural
foundational model designed specifically for the purpose of image segmentation. SAM
is built on the largest segmentation dataset to date, with over 1 billion segmentation
masks. It is trained to return a valid segmentation mask for any prompt, where a prompt
can be foreground/background points, a rough box or mask, or general information
indicating what to segment in an image. Under the hood, an image encoder produces
a one-time embedding for the image, while a lightweight encoder converts any prompt
into an embedding vector in real-time. These two information sources are combined in
a lightweight decoder that predicts segmentation masks.

4.3 proposed approach

Our proposed approach consists of two main contributions. First, we propose Hybrid-
AttUnet++ architecture built from the following blocks: BCBlocks, Attention Gates, and
Dual Decoders. In addition to the Hybrid-AttUnet++, the Ensemble approach is used
to improve the performance and robustness of our system. The Ensemble approach is
referred to as EH-AttUnet++. In the following, we’d like to describe the details of our
proposed approach.

4.3.1 Hybrid-AttUnet++

Our proposed Hybrid-AttUnet++ is an extension version of the AttUNet++ architecture
[155]. As described in [155], AttUnet++ consists of an encoder, nested layers, and a
decoder that share the same Basic Convolution Block (BCBlock). Although AttUnet++
has improved performance in medical imaging tasks compared to many Unet variants
[155], it does not show this superiority in BM segmentation, as shown in Section
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4.5. In our proposed Hybrid-AttUnet++, two significant changes are made to improve
the performance of AttUnet++. First, the main BCBlock is modified by adding batch
normalization and residual skip connection. Second, we proposed dual decoders to
segment BM and bone regions together. The proposed Hybrid-AttUnet++ architecture
consists of an encoder, nested layers, and two decoders. The overall architecture of the
proposed Hybrid-AttUnet++ model is shown in Figure 4.6 and described in detail below.

Figure 4.6: Hybrid-AttUnet++ Architecture

4.3.1.1 BCBlocks

The BCBlock is a residual convolutional block that converts shallower, lower, and coarse-
grained features into deeper, semantic, and fine-grained ones. For xi,j features represent-
ing the output of the BCBlock Xi,j, where i refers to the feature depth in the encoder
and j refers to the convolutional layer depth in the nested block, we define the extracted
feature map of the convolutional layer xi,j as follows:
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xi,j =

H[xi−1,j] j = 0

H[
∫ j−1

n=0 Ag(xi,n), Up(xi+1,j−1)] j > 0
(4.1)

where H[.] is a cascaded operation that includes convolution, BN, ReLU activation
function, and residual skip connection. Ag () denotes the attention gate function, and
Up() is a linear up-sampling.

Figure 4.7: The used BCBlock structure of the proposed Hybrid-AttUnet++.

In our Hybrid-AttUnet++ architecture, each BCBlock is modified by adding a Batch
Normalization (BN) and a residual skip connection, as shown in Figure 4.7. The residual
skip connection is a 1-by-1 convolution layer followed by a ReLU activation function and
BN, to convert the input feature map dimension to the desired output feature map dimen-
sion. Experimentally, the modified BCBlock has significantly improved performance
over the BCBlock presented in AttUnet++ [155], as shown in Section 4.5.

4.3.1.2 Encoder

The encoder consists of a series of BCBlocks and pooling layers that increase the number
of channels and downsample the spatial dimensionality of the input image, respectively.
The encoder is constructed of four BCBlocks, each followed by a 2 by 2 max pooling
layer, except for the last BCBlock. The BCBlock learns higher features from the previous
layers and expands the feature maps with 32, 64, 128, 256, and 512 filters, respectively.
This doubles the number of feature maps after each BCBlock. The structure of the
encoder allows higher-level features to be learned and then transferred to the decoders of
the corresponding layers. We used nested layers, which allow more efficient extraction
of hierarchical features.
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4.3.1.3 Nested layers

The feature maps extracted by the encoder pass through a number of nested layers
depending on the pyramid level. For example, the skip path between nodes X1,0 and
X1,3 consists of two nested layers. Each nested layer consists of two main components: a
nested convolutional block (a BCBlock) and an attention gate (AG). As shown in Figure
4.7, the nested convolutional block combines features from its corresponding AG and
from previous layers, depending on its position in the network. For example, the X0,1

input features are the concatenation of the AG output, up-sampled features of the lower
hop path X1,0. For the nested convolutional block X2,1, it obtains the concatenation of
two deep features coming from the previous AG and the up-sampling of X3,0. In addition,
up-sampling and skip connections are used in nested layers to adjust the input features
and allow the combination of features from different layers.

The AG is integrated between BCBlocks to find the most relevant spatial parts from
the encoding layers before transferring them to the decoding part. Each AG combines
the output of the previous BCBlock with the output of the corresponding high-sampled
low-density block. The architecture of AG is shown in Figure 4.8.

Figure 4.8: Schematic representation of the Attention Gate (AG). The g and xl denote the gating
signal vector and the feature map of layer l, respectively. Wx, Wg and ψ represent
linear transformations. The β refers to the attention coefficient.

Let xl be the feature map of the lth layer and g be the gating signal. Denoting β as the
attention coefficient in the range 0 to 1, the output of Ag() is calculated from xl and β as
follows:

xout = xl.β (4.2)

The attention coefficient can be calculated as:

β = σ2[ψ
Tσ1(WT

x xl + WT
g g + bg) + bψ] (4.3)
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where σ2 denotes Sigmoid function, σ1 denotes ReLU activation function. Wx, Wg and
ψ are linear transformations and bg and bψ are bias terms.

4.3.1.4 Dual decoders

Our proposed Hybrid-AttUnet++ contains two decoders. The feature maps of the encoder
are transmitted to the decoders through the nested layers. These features are used by the
first decoder to segment the BM regions, while the second decoder uses them to segment
the bone regions. The two decoders in the proposed model are based on BCBlocks. In
each decoder, the number of channels is reduced from 512 to 256, 128, 64, 32, and 1,
respectively, using five BCBlocks. Unlike the pooling layer in the encoder, each decoder
uses an upsampling layer to up-sample the extracted deep features. The upsampling
layer reshapes the feature maps of adjacent dimensions into a feature map with higher
resolution. In this way, the network can reconstruct the spatial dimensions to obtain the
same dimensions as the input images for the segmentation head.

Hybrid Loss Function: To make Hybrid-AttUnet++ pay more attention to lesion
segmentation than bone segmentation, we design a hybrid loss function that combines
bone and lesion losses based on the cross-entropy loss function (BCE) to calculate each
loss part [11]. BCE is known to be suitable for classification and semantic segmentation
and is expressed as follows:

LBCE(y, ŷ) = −(y log(ŷ) + (1 − y) log(1 − ŷ)) (4.4)

where y ∈ [0, 1] is the prediction, and ŷ ∈ [0, 1] is the ground truth.

Testing different weighting values for the segmentation tasks BM and Bone, we found
that α1 = 0.7 and α2 = 0.3 are the most appropriate weights for lesion loss (LossL) and
bone loss (LossB), respectively. The insight behind these values is that assigning a larger
weight than 0.3 for bone segmentation results in discarding the segmentation of bone
metastasis lesions (main task) since they have a smaller number of pixels compared to
the bone class. On the other hand, selecting a smaller weight for bone segmentation will
cause the secondary task (bone segmentation) to be overlooked, rendering the proposed
dual decoders useless. The proposed hybrid loss function is defined as follow:

Loss = α1 · LossL + α2 · LossB (4.5)
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LossL = LBCE(yL, ŷL) (4.6)

LossB = LBCE(yB, ŷB) (4.7)

where yL and yB are the bone metastasis and bone predictions, respectively. ŷL is the
lesion mask and ŷB is the bone mask.

4.3.2 EH-AttUnet++

Figure 4.9: The proposed ensemble framework for BM segmentation.

Ensemble models are created in ML by combining the predictions of different inde-
pendent models to improve the overall predictions. The goal of the ensemble method is
to reduce generalization errors in ML algorithms and improve the segmentation result
by taking lessons from the results of the individual models. To improve the performance
and robustness of our system, we propose an ensemble method consisting of five Hybrid-
AttUnet++ models as shown in Figure 4.9. To ensure model diversity, which is critical
for ensemble performance, we used a k-fold cross-validation technique, where k, the
number of folds, was set to 5. To create the partitions, we first randomly divided the
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dataset into five folds. Of these folds, one was used for validation, and the remaining
four for training. Then we created five splits with different training/validation subsets.
For each of these five splits, Hybrid-AttUnet++ was trained from scratch. After training,
the models were used to make individual predictions. Then, an ensemble approach was
used by averaging the predictions of the five trained models.

4.4 experiments and results

4.4.1 Methodology

4.4.1.1 Experimental Setup

The model is implemented using the PyTorch framework with NVIDIA GPU Device
Quadro RTX 5000 with 16 GB from RAM. A total of 60 epochs are used to train the
models with an initial learning rate of 0.01 for the first 20 epochs, 0.005 for the next 20
epochs, and 0.001 for the last 20 epochs. A batch size of 8 is used in the training phase.
The loss function used is the hybrid loss function for the dual decoder approach, while
the BCE loss is used for the other architectures.

4.4.1.2 Evaluation Metrics

Various evaluation metrics are used to assess the performance of the proposed BM
segmentation model on BM-Seg. The evaluation metrics include F1-score (Eq. 5.2),
Accuracy (Eq. 5.3), Precision(Prec) (Eq. 5.4), Specificity (Spec) Eq. 4.11), Sensitiv-
ity (Sens) (Eq. 5.5), Intersection-Over-Union (IoU)(Eq. 4.13) and Dice Coefficient
(Dice)(Eq. 4.14).

In bone metastasis segmentation, TP (True Positive) indicates that the image is ma-
lignant and has been correctly classified. FP (False Positive) indicates that the image
is benign but is classified as malignant. TN (True Negative) indicates that the image is
benign and is classified as such. FN (False Negative) means that the image is classified
as benign even though the label is malignant.

F1-score =
2 × TP

(2 × TP + FP + FN)
(4.8)
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Accuracy =
TP + TN

(TP + TN + FP + FN)
(4.9)

Precision =
TP

(TP + FP)
(4.10)

Specificity =
TN

(TN + FP)
(4.11)

Sensitivity =
TP

(TP + FN)
(4.12)

IoU =
(Target ∩ Predicted)
(Target ∪ Predicted)

(4.13)

Dice-score =
1
N

N

∑
i=1

2 × TPi

(2 × TPi + FPi + FNi)
(4.14)

Where N is the number of testing images.

4.4.1.3 Comparison with the State-of-the-art Approaches

The comparison with the state of the art includes two groups of approaches to investigate
the performance of the model from different angles. First, we compare EH-AttUnet++
with Unet [147] and three of its variants, including AttUnet [156], Unet++ [151], and
AttUnet++[155]. Furthermore, we compare the performance of our approach with the
sequential scenario [1], where bone regions are segmented first and then BM is seg-
mented from bone regions. For this purpose, three sequential combinations are tested,
denoted Sequential (Unet, AttUnet), Sequential (Unet, Unet++), and Sequential (Unet,
AttUnet++), with the first architecture for bone segmentation and the second for bone
metastasis segmentation.
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4.4.2 Experimental results

To evaluate our approach, we perform 5-fold cross-validation using 80% of the combined
dataset as training data and the rest as test data. The average results of the five-fold
cross-validation are then calculated and summarized in Table 4.1. In it, the quantitative
experimental performance of Hybrid-AttUnet++ and EH-AttUnet++ is compared with
the state-of-the-art models on BM-Seg. The results show that our proposed Hybrid-
AttUnet++ performs better than the four Unet variants in terms of F1-score, Dice and IoU,
which are commonly used to evaluate segmentation tasks. More specifically, F1-score
was improved by 2.81%, 2.86%, 2.53% and 13.49% compared to Unet, AttUnet, Unet++
and AttUnet++, respectively. Similarly, Dice scores improved 3.44%, 3.94%, 3.71%,
and 16.96% compared to Unet, AttUnet, Unet++, and AttUnet++, respectively. Hybrid-
AttUnet++ outperforms Unet, AttUnet, Unet++, and AttUnet++ by 3.96%, 4.03%, 3.58%,
2.83% for the IoU metric. In terms of accuracy, specificity, sensitivity and precision
metrics, Hybrid-AttUnet++ is still the most effective. Furthermore, the results in Table
4.1 show that EH-AttUnet++ further improves the performance of Hybrid-AttUnet++,
improving the F1 score, Dice and IoU results by 1.4%, 1.35% and 2.03%, respectively.

Table 4.1: Performance comparison of our proposed approach with state-of-the-art approaches
(Unet, AttUnet, Unet++, AttUnet++) using the average results of the five cross-
validations in terms of F1 score, Dice, IoU, accuracy, specificity, sensitivity and
precision.

Model F1-score Dice IoU Acc Spec Sens Prec
Unet [147] 79.46 72.26 65.93 98.91 78.75 99.46 80.22
AttUnet [156] 79.41 71.76 65.86 98.90 79.20 99.44 79.64
Unet++ [151] 79.74 71.99 66.31 98.92 79.41 99.46 80.16
AttUnet++ [155] 68.78 58.74 52.47 98.29 99.06 70.23 67.36
Hybrid-AttUnet++(Ours) 82.27 75.70 69.89 99.05 81.88 99.53 82.68
EH-AttUnet++ (Ours) 83.67 77.05 71.92 99.13 99.59 82.68 84.68

Table 4.2 shows a comparison between EH-AttUnet++ and the three sequential com-
binations. It can be seen that EH-AttUnet++ performs better than Sequential (Unet,
AttUnet) in terms of F1-score by 6.25%, Dice by 10.16% and IoU by 8.76%. Moreover,
our approach outperforms Sequential (Unet,Unet++) by 6.13%, 9.29%, and 8.6% for
F1-score, Dice, and IoU, respectively. An improvement of 5.94%, 8.44%, and 8.34% for
F1-score, Dice, and IoU relative to EH-AttUnet++ is observed compared to Sequential
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(Unet, AttUnet++). Therefore, EH-AttUnet++ achieves higher performance compared to
the sequential approaches.

Table 4.2: Performance comparison between our proposed approach (EH-AttUnet++) and the
sequential approach similar to that proposed in [1](‡). The present results are the aver-
age of the five cross-validations in terms of F1-score, Dice, IoU, accuracy, specificity,
sensitivity, and precision.

Model F1-score Dice IoU Acc Spec Sens Prec
Sequential (Unet, AttUnet) ‡ 77.41 66.88 63.16 98.83 74.54 99.50 80.63
Sequential (Unet, Unet++) ‡ 77.54 67.75 63.32 98.83 75.14 99.49 80.12
Sequential (Unet, AttUnet++) ‡ 77.73 68.60 63.58 98.83 76.33 99.45 79.24
EH-AttUnet++ (Ours) 83.67 77.05 71.92 99.13 99.59 82.68 84.68

To compare the performance of our approach with state-of-the-art approaches at the
level of individual fold performance, Table 4.3 summarizes the F1-score results obtained.
These experiments show that EH-AttUnet++ not only has a higher mean F1-score than
the baseline models but also has a higher F1-score and high reliability for each fold.

Table 4.3: Performance comparison between our proposed approach and the state-of-the-art ap-
proaches using the first fold with F1- score indicator.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
Unet [147] 80.41 77.52 79.27 80.65 79.44 79,46
AttUnet [156] 79.17 77.79 79.04 80.63 80.39 79,41
Unet++ [151] 80.12 80.21 78.44 80.27 79.67 79.74
AttUnet++ [155] 70.34 65.99 68.65 72.59 66.32 68.78
Sequential (Unet, AttUnet) 78.23 76.81 75.86 78.67 77.49 77.41
Sequential (Unet, Unet++) 76.49 77.58 78.93 76.84 77.84 77.54
Sequential (Unet, AttUnet++) 78.19 78.26 76.04 77.87 78.29 77.73
EH-AttUnet++ (Ours) 84.19 83.49 83 83.96 83.69 83.67

4.5 discussion and ablation study

BM detection on the CT-scan is a common but difficult task for radiologists. Moreover,
the diagnosis of BM by imaging is further complicated by the rarity of data sets available
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at BM. In this study, we created our BM-Seg dataset and used a deep-learning algorithm
combining dual decoders and an ensemble method to solve these problems. As mentioned
in Table 4.2, the F1-score, Dice, and IoU of the segmentation of BM were 83.67%,
77.05%, and 71.92%, respectively, which were higher than the results of the baseline
models. The visual comparison of EH-AttUnet++ with state-of-the-art algorithms is
shown in Figure 4.10. The images from left to right show the raw infested CT-scan
images and the segmentation results of Unet, AttUnet, Unet++, AttUnet++, our proposed
EH-AttUnet++, and the GT-masks. The comparison of the masks clearly shows that
EH-AttUnet++ has fewer false detection pixels compared to the baseline algorithms
and is thus more successful in segmenting BM. Moreover, EH-AttUnet++ effectively
suppresses background noise and preserves lesion details. In Figure 4.10, row 1 shows
that EH-AttUnet++ is less affected by noise in the bone region because it removes noise
in irrelevant locations. In addition, lines 2 and 3 show that the Unet, AttUnet, Unet++, and
AttUnet++ methods cannot detect small lesions on complex BM-Seg images. Although
details of small lesions can be easily lost, these details were better preserved with EH-
AttUnet++. Similarly, EH-AttUnet++ shows a lower misinterpretation rate on images
where the bone is completely infected compared to the reference models, as shown in
lines 4 and 5.

In Figure 4.11, the results of five runs of Hybrid-AttUnet++ are compared with the
results of the ensemble method. It is clear that EH-AttUnet++ consistently gives the best
result in terms of F1-score, regardless of lesion location and size. For example, in the
second line, EH-AttUnet++ achieves 77.44% of the F1-score, while Hybrid-AttUnet++
did not exceed 75% in the five runs (M1-M5). In particular, for small metastases, as
shown in the third row, our model is able to extract more lesion features with a higher
F1-score, demonstrating its ability to learn less redundant information and integrate
global context. Consequently, metastatic bone segmentation using EH-AttUnet++ can be
significantly improved by extracting more comprehensive background features, providing
more detailed information, and obtaining a more comprehensive semantic representation.

For a comprehensive analysis, we perform ablation experiments to evaluate the ef-
ficiency of the modified BCBlock, dual decoders, and ensembling approach. The At-
tUNet++ architecture [155] is considered as the baseline approach. The ablation results
are shown in Table 4.4, which indicates that the modified BCBlock (MB), the Dual-
Decoder structure (DD), and the ensembling approach (EN) significantly improve the
F1-score, Dice, and IoU metrics. In particular, the modified BCBlock can improve the
F1-score, Dice, and IoU by 11.49%, 13.89%, and 14.59%, respectively, compared to the
original AttUnet++. This shows that the BN and the residual skip connections are very
important to prevent overfitting since the dataset is small and AttUnet++ has a higher
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Figure 4.10: Visual comparison of BM segmentation results.

number of parameters to be optimized compared to the other variants of Unet [155].
Similarly, the dual decoder improves the F1-score, the Dice, and the IoU by 2.0%, 3.0%,
and 2.0%, respectively. This demonstrates the importance of the proposed dual decoder
to focus on the object of interest (BM regions), where the second task allows the network
to focus attention on the bone regions and discard the non-bone regions. Finally, the en-
semble approach improves the F1-score, Dice, and IoU results by 1.0%, 2.0%, and 2.0%,
respectively, compared to Hybrid-AttUnet++. This proves that the ensemble approach
leads to a better and more stable decision by coping with outliers in the prediction of
individual models.

Both the visualization results and the test metrics show that the proposed approach can
capture semantic information from both bone and metastatic bone regions. Moreover,
the model outperforms other state-of-the-art models in complex scenarios where lesions
of different sizes coexist and small lesions can be easily overlooked due to their similar
appearance. Although our research has shown the benefits and prospects of using deep
learning to segment BM from the CT-scan, more work needs to be done to analyze BM.
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Figure 4.11: Comparison of segmentation performance of five Hybrid-AttUnet++ models (M1-
M5) and EH-AttUnet++ model on BM-Seg (F1=F1-score, GT =Ground Truth).

Table 4.4: Ablation study of our proposed approach components on BM-Seg dataset (MB=
Modified BCBlock, DD= Dual-Decoders, EN= Ensemble method)

Architecture
Ablation Dataset

MB DD EN F1-score Dice IoU
AttUnet++ (Baseline) ✗ ✗ ✗ 68.78 58.74 52.47
AttUnet++ ✓ ✗ ✗ 80.27 72.63 67.06
Hybrid-AttUnet++ ✓ ✓ ✗ 82.27 75.70 69.89

EH-AttUnet++ ✓ ✓ ✓ 83.67 77.05 71.92

4.6 conclusion

In this chapter, we focused on BM segmentation. Thus, we reviewed the existing meth-
ods to detect BM using Deep learning. In addition, we proposed an ensemble method
(EH-AttUnet++) that highlighted areas of high uptake in CT-scan images to improve seg-
mentation performance. The proposed approach outperformed the popular cutting-edge
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models evaluated in our experiments and significantly improves the F1-score. In the next
chapter, we will discuss deeply the methods used for BM classification.
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5.1 introduction

Automatic classification of BM is a major challenge that is receiving increasing attention
from the research community. One of the major challenges is the accurate classification
of medical images, especially the distinction between benign and malignant images,
which can greatly help physicians in decision making. Recently, several deep-learning
techniques have been proposed for medical image classification. However, their perfor-
mance is affected by both the dataset and the imaging modality. In this chapter, we
investigate the performance of several state-of-the-art CNN architectures, namely In-
ceptionV3, EfficientNet, ResNext50, and DenseNet161, as well as the ViT and DeiT
transformer architectures. We trained and tested these algorithms on our dataset. We
then present a combined approach based on DL models to improve the BM classification
results.

In section 5.2, an overview of existing shallow and deep learning methods for classify-
ing BM is given. In section 5.3, we show a comparison between CNN and Transformer
models for classifying BM. Then, in section 5.4, we add a complementary experimental
study. We conclude the chapter in section 5.5.

5.2 image classification: an overview

Physicians make their diagnosis by analyzing medical images to determine the presence
and nature of the disease. This traditional way of diagnosis can be supported by ML
techniques. Through these techniques, the ambiguity of diagnosis between different
physicians can be mitigated and the results will be more accurate. Thus, the results
obtained with CNNs are not only time-saving, but can also help medical professionals.
When using CNN models, an input image is fed into the network, which is then evaluated,
analyzed, and interpreted to determine the target and object of the different modes [157].
This process is called image classification. For example, in Figure 5.1, CT scan images
are given as input and the model classifies them into normal and BM images. Currently,
there are various applications for image classification in the medical field, such as skin
cancer [158], tuberculosis [159], etc.

The importance of image classification using the algorithms of ML is evident in
the above applications. Considerable results have been achieved in medical applications
using these ML algorithms and DL networks, but resource improvements are still needed.
ML Algorithms for medical image classification can be divided into shallow and deep
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Figure 5.1: Medical image classification pipeline in which CT-scan images are fed into a Deep
CNN architecture, which assigns each image a class, such as BM patient or healthy
patient.

learning methods. The development history and main algorithms of these two methods
are discussed in more detail in the next subsections.

5.2.1 Shallow Methods

Shallow learning describes all machine learning algorithms that do not use layered neural
networks or multilayer perceptrons. Despite the fact that almost any technique can be
tested under the guise of ’shallow learning’, we chose to focus on k-nearest neighbors
(KNN), logistic regression, SVM, random forest, and ANNs. The patterns in the data
are almost entirely responsible for the success of these algorithms.

• KNN (K-Nearest Neighbors): a classification algorithm used to classify data
points based on their proximity to their neighbors [160]. KNN does not assume an
underlying data distribution and is therefore referred to as non-parametric. KNN
is a simple technique to implement. It is a flexible and suitable classification
scheme for many modalities. However, classifying unknown datasets using k-
nearest neighbors can be very computationally intensive as it involves computing
the distance between the unknown dataset and its k-nearest neighbors in the training
data. KNN is considered a lazy learner since it does not generalize the training
data and keeps all the data. Nevertheless, KNN can handle large datasets efficiently
and perform computations without significant slowdown.
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• Artificial Neural Networks (ANNs): ANNs are computer programs inspired by
the way the human brain processes information. They learn from experience by
recognizing patterns and relationships in data, not by programming. ANNs are
made up of many individual units called artificial neurons, or processing elements,
connected by weights and organized into layers. Each neuron has weighted inputs,
a transfer function, and an output. During training, the connections between units
are optimized until the error in predictions is minimized. ANNs can be used
for classification, prediction, and modeling and have many applications in the
pharmaceutical sciences.

• Random Forest (RF): RF is an ensemble learning method that aims to reduce
noise and overfitting by creating multiple decision trees based on random, indepen-
dent samples of variables and data [161]. In this technique, known as bootstrapping,
random samples with replacement are selected from a learning sample of size n
and the trees are matched to these samples using a modified tree learning algorithm.
At each candidate split in the learning process, a random subset of predictors is
selected to decorrelate each tree and reduce the intercorrelation between them. The
final estimate is obtained by aggregating the information from each tree. The use
of randomized models helps to reduce generalization error and reduce variance,
making Random Forest a powerful tool for classification and regression problems.
By mixing information from randomized models, Random Forest achieves better
results than a single non-randomized model. Overall, Random Forest is an effec-
tive ensemble classifier that uses randomization to improve its predictive power
and overcome the limitations of traditional decision tree algorithms.

• Support Vector Machines (SVM): SVM can handle classification and regression
problems [162]. It uses a hyperplane as a decision boundary to separate objects
belonging to different classes. SVM can handle structured and semi-structured data
and scales with high-dimensional data. However, SVM’s performance can degrade
with large datasets and noisy data. SVM does not provide likelihood estimates, and
understanding the final model can be difficult. SVM is used in cancer diagnosis,
fraud detection, handwriting recognition, face recognition, and text classification.
When choosing between logistic regression, decision trees (random forests), and
SVM, logistic regression is tried first, followed by decision trees, and finally SVM
for high-dimensional data.

• Logistic Regression: Logistic regression is a statistical algorithm used for binary
or multinomial classification problems where the response variable is categorical
and has two or more possible outcomes [163]. It provides the probability of an
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event occurring based on the values of the input variables. For example, it can
predict whether a tumor is malignant or benign, or classify e-mail as spam or
not. Logistic regression has several advantages, including ease of implementation,
computational efficiency, ease of regularization, and the fact that no scaling is
required for the input features. This algorithm is widely used to solve real-world
problems, such as predicting the risk of developing a certain disease, diagnosing
cancer, or predicting the mortality of injured patients. However, it has some limi-
tations, such as the inability to solve nonlinear problems, the tendency to overfit,
and the need to identify all independent variables.

5.2.2 Deep Learning Methods

Deep Learning (DL) is gaining popularity in scientific research due to its ability to learn
from context and adapt to different types of data in different domains [164, 165]. It is
widely used in applications such as image recognition[166], prediction problems[167],
object recognition [168, 169], smart homes [170], and self-driving cars [171, 172, 173] .
Deep Learning mimics the human brain by filtering information through multiple layers,
which contributes to accurate decision-making. These multilayered filters act as feedback
loops, similar to neural networks in the brain, with each layer providing feedback to the
next. The process continues until the exact output is achieved. To accomplish this, weights
are assigned to each layer and adjusted during training to achieve accurate results. In
the techniques of DL, "deep" refers to the transformation of data over a large number of
layers.

Convolutional Neural Network (CNN) is a widely used DL algorithm for image
classification, object recognition, and other computer vision tasks [174]. CNNs are
specifically designed to analyze image data by extracting features and patterns from
images through a series of convolutional layers that apply learned filters to the input
images. These filters enable the network to recognize and understand complex visual
patterns such as edges, shapes, and textures.

A CNN usually consists of three layers: a convolutional layer, a pooling layer, and
a fully linked layer. The convolutional layer has a high weighting, while the pooling
layer performs subsampling to produce the output of the convolutional layer and reduce
the data rates of the underlying layers. The output of the pooling layer is used as input
to multiple fully connected layers. Convolutional features, also known as feature maps,
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are the result of a convolutional filter applied to the dataset. Below is an equation that
describes the convolution process:

y(i, j) = (W ∗ X)(i, j) =
K

∑
k=1

L

∑
l=1

W(k, l)X(i − k, j − l) (5.1)

Where W represents the input image, X represents the kernel or filter used in the
convolution, k represents a series of images, and l represents the column of images.

The use of convolutional layers in CNNs has greatly improved the accuracy and
efficiency of image classification tasks, making them a popular choice for many computer
vision applications. There are several variants of CNN such as VGG [175], AlexNet [176],
Xception [177], Inception [178], ResNet [179] and others. Depending on their learning
capabilities, these models can be used in different application domains. As for image
segmentation, UNet, a variant of CNN, is the most popular architecture with variants
such as Unet++, AttUnet, etc. used for medical image analysis.

DL has enormous potential in various fields, such as smart cities [180] and healthcare
[181], although its evaluation depends on the amount of data to be processed and
the computational power. In healthcare, DL helps in faster analysis of complex medical
images and comprehensive data interpretation, which supports early diagnosis of diseases
and reduces manual workload [182].

5.3 comparison of cnn and transformer architectures for bm clas-
sification

In this section, we review the differences between CNN and Transformers algorithms,
more specifically, the use of these algorithms for the BM classification problem. Figure
5.2 shows the structure of the proposed deep learning framework for classifying BM
using CT -scan images.

5.3.1 Background

5.3.1.1 Pre-trained CNN Models for BM Classification

Over the past decade, CNN has demonstrated its effectiveness for a variety of computer
vision tasks such as detection, recognition, and segmentation [183, 184]. CNN’s strength
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Figure 5.2: The abstract organizational structure of the proposed deep learning framework for
classification of bone metastases from CT-scan images. The pre-trained CNN and
Transformers models serve as deep feature extractors while the fully connected layer
is tuned.

lies in its ability to automatically identify relevant features from raw data without compli-
cated and expensive feature engineering. By using convolutional layers with small filters,
CNNs can capture local patterns and gradually learn more global features. The spatial
hierarchy of CNN is particularly advantageous for medical imaging tasks where spatial
relationships between structures are important [183]. In addition, using transfer learning
with pre-trained CNNs is particularly useful when there is limited labeled medical data
and allows for more accurate classification.

The selected CNN pre-trained models are :

• DenseNet [185] is a CNN architecture that ensures the flow of information between
the layers of the network by connecting each layer to every other layer in a feed-
forward manner. For each layer, the feature maps of all previous layers are used as
inputs, and their own feature maps are used as inputs for all subsequent layers [121].
DenseNet201 is one of the variants of the DenseNet architecture, which consists
of several design variants such as DenseNet121, DenseNet169, DenseNet201, and
DenseNet264.

• InceptionV3 [186] is the third edition of the GoogLeNet [178] architecture, orig-
inally introduced during the ImageNet Recognition Challenge. The InceptionV3
architecture consists of 48 layers and was designed to allow for deeper networks
while keeping the number of parameters from becoming too large. The inclusion
of factorized convolutions was a key strategy to improve computational efficiency.
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InceptionV3 was trained on ImageNet and compared to other current models,
achieving the lowest error rates compared to its competitors.

• EfficientNet [122] is a CNN that achieves high performance through clever scaling
in depth, width, and resolution. By carefully balancing model size and computa-
tional cost, EfficientNet achieves the highest accuracy on various image classifi-
cation tasks while requiring fewer resources. The architecture includes a novel
combination of depth-separable convolutions and squeeze-and-excite blocks that
significantly reduce the number of parameters and computations without compro-
mising accuracy.

• ResNext50 [187] is an extension of the ResNet [179] architecture. In this algorithm,
the residue blocks are modified and parallel convolutional layers with fewer filters
are added. The output of each filter is combined by summation and then used
as input to the next residual filter. This allows ResNext50 to learn more diverse
and sophisticated features than ResNet while keeping the number of parameters
similar.

5.3.1.2 Transformer Pre-trained Models

Transformers are a new attention-driven building block for machine translation intro-
duced by Vaswani et al. [188] These attention blocks are layers of neural networks that
combine information from the entire input sequence [189]. In recent years, these models
have shown excellent performance on various natural language processing (NLP) tasks,
making them the first choice over recurrent models. They have also shown promising
results in medical image classification. Transformers have recently been introduced and
have been shown to be more powerful and robust, taking into account both spatial pixel
correlation and distance relationships for more accurate and context-aware classification.
In addition, transformers provide a flexible architecture that can handle inputs of different
sizes and allow processing of images with different resolutions [190].

The selected Transformers pre-trained models are :

• ViT (Vision Transformer) [191] is based on the vanilla transformer model [188]
and cascades multiple transformer layers to capture the global context of an input
image. This architecture consists of a series of self-observation layers followed
by a feed-forward network. The image is interpreted as a series of patches that
are then encoded by a transformer encoder, similar to natural language processing.
Due to the availability of large datasets combined with improved computational
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capabilities, these ViT models continue the trend of removing hand-crafted visual
features and inductive biases from models.

• DeiT (Data efficient image Transformers) [192] is a novel native distillation
approach for Transformers that uses a CNN as a teacher model to train the Trans-
former model on medium-sized datasets. DeiT introduces a distillation token that
uses the teacher model’s attention maps to provide contextual guidance to the
student model to learn from both labeled data and distilled knowledge, leading
to better performance. By leveraging knowledge distillation and distillation token,
DeiT achieves impressive results on image classification tasks while requiring sig-
nificantly less computational resources and labeled data compared to traditional
vision transformers. It demonstrates the potential for more data-efficient training
of large-scale transform models, making them accessible to a wider range of
applications and domains.

5.3.2 Experimental setup

The proposed deep learning models were trained, validated, and evaluated using our
dataset, which is described in detail in Chapter 3. Our dataset consists of 46 patients,
each of whom underwent CT-scans. The dataset includes 23 healthy individuals with
33,424 slices and 23 patients with metastases with 46,109 slices. The dataset contains CT
-scan images representing a binary classification scenario with the two classes normal
vs. metastasis (Abnormal Bone). A total of 79,533 slices are available for analysis. The
patients in this dataset were split independently to ensure that each patient’s scans were
treated as separate and distinct entities for analysis. The dataset is split into two separate
parts: 80 % of the data is used to train each model, while 20 % is assigned to the test set.
Using this test set, we can assess the model’s ability to generalize and make predictions
for unseen data. The CT -scan images were resized to 224 × 224 pixels prior to the
training process to allow for magnification of the data. Each internally used pre-trained
model is designed to resize the input images to fit its specific structure. Random rotation
within a 35-degree boundary is applied to allow the model to learn from images with
different orientations. Horizontal and vertical flipping creates mirrored versions of the
images and increases the diversity of the dataset.

The model was implemented using the PyTorch framework with the NVIDIA GPU
Quadro RTX 5000 device with 16 GB from RAM. To effectively train the CNN models,
a total of 60 epochs are used to train the models with an initial learning rate of 0.01 for
the first 20 epochs, 0.005 for the next 20 epochs, and 0.001 for the last 20 epochs. It
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was experimentally found that the Transformers were more difficult to train and needed
to be trained for more epochs and used a different learning schedule. To improve the
performance of the Transformer model, the learning rate was adjusted during training.
The initial setting of 0.001 for ten epochs provided stable and accurate early training. After
10 epochs, the learning rate was increased to 0.01 for faster updates and convergence.
At 20 epochs, it was set back to 0.001 to avoid glitches. After 30 epochs, it was reduced
to 10−3 to refine the parameters. Finally, at 70 epochs, it was reduced to 10−5 for fine
tuning. In the training phase, a stack size of 8 is used for all models. In the study, a focal
loss function was used as described by Mushava et al [193]. This particular loss function
effectively handles the class imbalance problem by giving more weight to difficult or
misclassified examples during the training process.

To evaluate and compare the performance of the algorithms used in this study, four
evaluation metrics were used: Precision, recall, F1-score, and Accuracy. These metrics
are defined below:

F1-score =
2 × TP

(2 × TP + FP + FN)
(5.2)

Accuracy =
TP + TN

(TP + TN + FP + FN)
(5.3)

Precision =
TP

(TP + FP)
(5.4)

Recall =
TP

(TP + FN)
(5.5)

Where TP (True Positives) indicates the number of metastases successfully detected
by the algorithm. TN (True Negatives) indicates the number of non-metastases correctly
classified as normal. FP (False Positives) indicates the number of non-metastases that
were incorrectly detected as metastases. FN (False Negatives) indicates the number of
metastases that the algorithm did not detect as metastases.

5.3.3 Results and discussion

The comparison between the performance of the CNN and the Transformer architectures
is summarized in Table 5.1. Within the context of ViT, the variations between "Tiny"
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and "Small" versions pertain to architectural compactness and computational efficiency.
Similarly, the distinctions between DeiT Small and Tiny models revolve around their
scale and efficiency.

From this table, it can be seen that ViT Tiny performs the best on all evaluation
metrics. Specifically, the ViT Tiny architecture outperformed the best-performing CNN
architecture (ResNeXt50) by 5.13% and 6.49% in terms of accuracy and F1-score metrics,
respectively. On the other hand, it is observed that the four CNN architectures achieved
similar results in terms of accuracy. In terms of F1-score, it is observed that DenseNet201
and EfficientNet have lower scores than ResNext50 and Inception-V3 by about 3%. This
shows that both DenseNet201 and EfficientNet are more sensitive to data imbalances. In
contrast, Transformer architectures performed differently on all evaluation metrics. As
can be seen in Table 5.1, ViT Tiny achieved the best performance, outperforming the two
Deit architectures by a large margin. This shows the suitability of ViT approaches for
the BM classification task. Interestingly, despite having a deeper architecture compared
to ViT Tiny, the ViT Small model achieves lower performance. This indicates that the
dataset used to train the ViT Small architecture is relatively small, which in turn leads
to over-fitting.

Table 5.1: Performance comparison between Pre-trained CNN approaches and Pre-trained Trans-
former approaches using accuracy, F1-score, recall, and precision.

Model Accuracy % F1-score % Recall % Precision %
ResNext50 81.81 80.08 92.32 70.69
DenseNet201 80.18 77.60 93.35 66.39
EfficientNet 79.90 77.07 93.92 65.34
Inception V3 80.96 79.34 90.37 45.17
Vit Small 79.36 78.47 85.16 72.76
Vit Tiny 86.94 86.57 92.44 81.40
Deit Small 73.07 67.82 88.75 54.88
Deit Tiny 70.09 62.79 88.03 48.80

For transformer-based models, it is difficult to determine the best model because the
behavior of the model may vary depending on the training parameters. However, we
found that ViT Tiny performs very well under different training settings, with accuracy
greater than 86%. ViT Tiny is the best model for classifying BM, but only if the learning
rate is well determined.
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Figure 5.3 shows the confusion matrix used to evaluate ViT Tiny, the best pre-trained
model for classifying BM. From the confusion matrix, it can be seen that ViT Tiny
has a commendable ability to accurately detect and classify normal bones. With a
high percentage of 92.88% for normal images, the model shows its ability to correctly
identify them. However, when it comes to abnormal images, the model encounters some
challenges and achieves a lower accuracy of 81.40%.

Figure 5.3: ViT Tiny Confusion matrix for BM Classification

Figure 5.4 is a visual representation to enhance understanding of how the ViT Tiny
model classifies BM lesions by presenting both misclassified and correctly classified
scans. The figure illustrates that when lesions are sporadically distributed across the
bone (as in example (a)) or are very small (as in example (b)), the model has difficulty
accurately categorizing such lesions. In images with intervertebral disks, as in example
(c), or degenerative changes, as in example (d), ViT Tiny often fails to classify them
correctly. This is because the presence of intervertebral disks or degenerative changes
in the bone can introduce additional complexity and variation into the image that can
confuse the model’s classification process. On the other hand, when the lesions are larger,
the model tends to achieve more accurate classifications, as seen in examples (e) and (f).
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Figure 5.4: Misclassfied vs. Correctly Classified images for ViT Tiny

In addition, the model also performs well when classifying normal images, as can be
seen in examples (g) and (h).

These results suggest that the model has difficulty correctly identifying and classifying
abnormal instances. Thus, further improvements are needed to increase the performance
of the ViT Tiny model in detecting and accurately classifying abnormal instances.

When comparing recall rates, the results in Figure 5.5 show that EfficientNet signif-
icantly outperforms the other pre-trained models (93.92%). Recall measures the ability
of the algorithm to detect all instances of bone lesions in the image. Unlike the other
pre-trained models, EfficientNet was able to more accurately extract all instances of
lesions in an image. This is due to the low rate of FN (false negatives), which is 4.53%.

5.4 complementary experimental study

The previous comparison of the CNN and Transformer algorithms showed that both
algorithms have their strengths and weaknesses. While the four pre-trained CNN models
are good at capturing local features and have proven to be effective in BM classification
tasks, Transformers have shown superior performance by capturing global dependencies.
Therefore, combining the best CNN algorithms with the best Transformers algorithms
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Figure 5.5: Recall Comparative Results of Pre-trained Deep Learning Architectures for BM
Classification

can lead to a more powerful and effective model that can achieve top results in different
domains.

5.4.1 Architecture

In this section, we present an architecture that leverages the strengths of two different
architectures, ViT-Tiny and ResNeXt-50, to achieve improved performance in image
classification. This combination aims to leverage the unique features of the two archi-
tectures, ultimately resulting in a more robust and accurate model. ViT-Tiny excels at
capturing global context and spatial relationships through self-observation mechanisms,
while ResNeXt-50’s deep convolutional layers are capable of extracting complex features
from images. By leveraging these complementary strengths, we seek to create a model
that performs exceptionally well on a wide range of images.

The procedure for combining the two models ViT Tiny and ResNext50 is shown
graphically in Figure 5.6.

Combining features from two models, ResNeXt and ViT Tiny, can result in a more
powerful image classification model. ResNeXt is a variant of ResNet that uses a split
transform merge strategy to improve the representational power of the network. ViT
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Figure 5.6: The flow diagram of the architecture combining ViT Tiny and ResNext-50

Tiny, on the other hand, is a variant of ViT that uses a smaller architecture and achieves
comparable performance to larger models. By combining the features of these two
models, we can leverage the strengths of both architectures and create a more robust
model.

To combine the features of ResNeXt and ViT Tiny, we used a concatenation operation.
Let x be the input image and fRN and fV iT be the feature maps obtained from ResNeXt50
and ViT Tiny, respectively. We concatenated these feature maps along the channel
dimension to obtain a combined feature map fcomb, as shown in equation 5.6:

fcomb = [ fRN; fViT] (5.6)

Where [; ] stands for the concatenation operation. We can then apply a global average
pooling operation to obtain a feature vector h, as shown in equation5.7:

h =
1
N

N

∑
i=1

fcomb,i (5.7)

Where N is the total number of spatial locations in the feature map. Finally, we can pass
this feature vector through a fully connected layer with softmax activation to obtain the
class probabilities as follows:
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p(y|x) = so f tmax(W f ch + b f c) (5.8)

Where W f c and b f c are the weight matrix and bias vector of the fully connected layer,
respectively.

5.4.2 Results and discussion

To ensure a fair and meaningful comparison between models, we adopted a consistent
approach to several critical aspects. These included using the same dataset for both
the classification portion of BM and the evaluation of our combined model, ensuring
consistent hardware settings, such as using the same GPU, and maintaining consistency
in hyperparameters, including learning rate, batch size, and training epochs. In addition,
we used a consistent set of evaluation metrics, including accuracy, precision, recognition,
and F1 score. By adhering to this dataset, hardware, hyperparameters, and evaluation
standards, we have created a robust and unbiased framework that minimizes potential
sources of divergence and allows us to effectively evaluate inherent architectural differ-
ences and model performance.

In Table 5.2 we present a performance comparison between ResNext50, Vit-Tiny, and
the proposed hybrid approach, evaluated using accuracy, F1 score, recall, and precision
as evaluation metrics.

Table 5.2: Performance comparison between Pre-trained CNN approaches and Pre-trained Trans-
former approaches using accuracy, F1-score, recall, and precision.

Model Accuracy % F1-score % Recall % Precision %
ResNext50 81.81 80.08 92.32 70.69
Vit Tiny 86.94 86.57 92.44 81.40
ViT Tiny + ResNext50 88.41 87.65 79.55 97.59

The comparison table shows that the combined model outperforms both individual
approaches in terms of accuracy, F1 score, recall, and precision. Specifically, the com-
bined approach achieves an accuracy of 88%, which is higher than the accuracy of ViT
Tiny (86%) and ResNeXt (81%). Thus, we can conclude that the proposed model is more
effective than the individual approaches in classifying images. It also outperforms the
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Figure 5.7: Confusion matrix of combined approach (0 refers to normal image and 1 refers to
abnormal image

individual models in terms of F1 score. The F1 score of our approach is 1.08% higher
than that of ViT Tiny and 7.57% higher than that of ResNeXt. Accordingly, our method
achieved a better balance between precision and recall than the individual methods.
In addition, the combined approach also achieved higher precision than the individual
approaches. This indicates that our approach is better at detecting true positives and
avoiding false positives.

The proposed approach aimed to improve accuracy by exploiting the key features of
both models. To illustrate the effectiveness of this approach, we show Figure 5.7, which
displays a confusion matrix. This matrix provides a comprehensive view of the model’s
performance in discriminating between different classes. The combined model correctly
predicted 5694 negative cases and 4952 positive cases. The high number of correct
positive and negative cases indicates that the proposed approach correctly identifies both
classes.

This suggests that while the model can identify both negative and positive instances,
there is room for improvement in reducing false positives and false negatives, which may
be critical in BM classification where accurate identification is critical.
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5.5 conclusion

In this chapter, we have compared different pre-trained models belonging to CNN and
Transformer architectures. We have also conducted a series of experiments to analyze
whether current advanced Deep Learning architectures can support the BM classifica-
tion task. The experimental results show that ViT Tiny outperforms the CNN-based
solutions. The performance of different architectures was evaluated for the BM classifi-
cation task and it was found that CNN architectures performed consistently well across
all tested models, while Transformer architectures showed more variable performance.
This highlights the stability and reliability of CNNs compared to Transformers. In addi-
tion, Transformers often require more extensive exploration of training hyperparameters
to achieve optimal results.

To further improve the classification of BM, we proposed to combine ViT Tiny and
ResNext50. The results showed that the combined model outperformed other models such
as single models like ResNext50 and ViT Tiny. This approach leveraged the strengths of
both architectures and achieved higher accuracy, F1 score, recall, and precision, making it
a promising approach for various image classification tasks. The success of this approach
encourages us to experiment with further improvements that can increase the accuracy
of the classification system of BM.
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6.1 conclusions and contributions

In this work, we conducted a broad study of machine learning-based algorithms for the
bone metastasis scenario to facilitate the clinical workflow by creating useful and relevant
guidance for users. The work in this manuscript can be divided into two halves. In the
first half, we were particularly interested in the problem of lack of data and annotations
and thus focused on collecting data. The second half focused on using deep learning
methods to automate medical imaging problems. In Chapter 4, we succeeded in creating
a model for automatic localization and segmentation of metastatic lesions that performs
comparably to a physician. We hope that in the not-too-distant future, a similar model
will help in the segmentation of bone lesions in real clinical situations as we perform
more data and testing. In Chapter 5, we developed a deep-learning model to distinguish
bone metastases from normal bone in CT scans. The method showed potential and we
hope to explore it further with more data. These results and a cursory glance at current
medical journals show the trend toward AI-based solutions. It is clear that automated
analysis is the future of medical imaging.

Our work resulted in multiple contributions:

• We conducted a comprehensive review of bone metastasis detection, classifica-
tion, and segmentation techniques, including a survey of AI algorithms in bone
metastasis diagnosis.

• We propose a benchmark dataset for bone metastasis analysis containing over
102,500 CT scan images, facilitating potential advancements in the field.

• We proposed a new segmentation approach based on Hybrid-AttUnet++ architec-
ture, dual-decoders, and ensemble approach, achieving superior bone metastasis
lesion segmentation performance.

• We conducted a comprehensive comparison of state-of-the-art CNN and Trans-
former architectures for bone metastasis classification, establishing a standardized
evaluation framework. To further improve BM classification, we proposed a new
approach combining ViT Tiny and ResNext50.

• To enhance the reproducibility of our findings, we have openly shared our dataset
and code at https://github.com/Marwa-Afnouch/EH-AttUnetplus.

Our research highlights the potential of machine learning to enhance the diagnosis
of bone metastasis. These advancements not only offer improved diagnostic accuracy

https://github.com/Marwa-Afnouch/EH-AttUnetplus
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but also have the potential to reduce the workload of medical practitioners and enhance
overall healthcare efficiency.

The integration of machine learning into clinical workflows holds great promise for
improving patient outcomes and the quality of care. However, it is essential to consider
the clinical implications and real-world applicability of these technologies, taking into
account potential challenges and opportunities for integration into clinical practice.

6.2 perspectives

Despite these advances made by our contributions, the field of bone metastases remains
an open research topic, and various improvements are conceivable. The main limitations
and perspectives to be considered are presented below.

Collecting data: The most important factor determining the success or failure of an
ML model is probably the amount of data available for training. While in other fields
networks are trained on millions of images, data sets for medical imaging are usually on
the order of hundreds of images. This is not because large data sets are not available -
hospital computer systems are filled with millions of images - but because these images
are not annotated. As a solution, we have created a benchmark for bone metastases
analysis named "BM-Seg" that would greatly improve access to BM data and results in
medical imaging. We will continue to collect more CT-scan images from patients with
different types of primary cancers and from different medical centers in order to publish
a new version of BM-Seg dataset. Another solution is to develop models that can directly
use unlabeled data (e.g., self-supervised or semi-supervised models) or even synthesize
data using GANs. We would like to see future work thoroughly test the effectiveness of
these methods.

Reproducibility of Publication Results:

Reproducibility of machine learning results is a major challenge, especially in the
context of medical imaging research, as data privacy limits data availability and important
hyperparameters for training cannot always be disclosed. This lack of reproducibility
means that it is difficult to compare different methods, and this hinders overall scientific
progress. In addition, articles too often report results without error estimates (without
which the results are meaningless). One possible solution is to encourage the use of
publicly available datasets with real medical data that allow independent validation. In
addition, comprehensive publication along with open release of the associated code
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would improve the quality of scientific publications and help other researchers. Such
measures would increase transparency and enable more robust, reproducible research
results in this important area.

Bridging the Gap of CAD Systems

The results of our experiments in Chapters 4 and 5 on the segmentation and clas-
sification of BM are very promising and encouraging, especially when it comes to
computer-aided diagnosis. The superior performance of the proposed models makes
them even more useful for routine clinical use, as they can help improve the accuracy
and efficiency of the diagnostic process. However, there is still room for improvement,
and further research could focus on exploring hybrid methods to improve the overall
performance of the BM CAD system. By combining segmentation and classification
aspects, we can leverage the strengths of the different architectures and improve the
accuracy and robustness of the system. This approach can also help to address the per-
formance variations observed in the individual models and provide a more reliable and
consistent diagnosis.

In summary, this work contributes to ongoing efforts to leverage the power of machine
learning for the benefit of patients and healthcare providers in the diagnosis and treatment
of bone metastases, ultimately improving the quality of care and patient outcomes in the
field of oncology.
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