Magnetic Resonance Imaging and Genomic Mutation in Diffuse Intrinsic Pontine Glioma : Machine Learning Approaches for a Comprehensive Analysis - Institut Curie Accéder directement au contenu
Thèse Année : 2024

Magnetic Resonance Imaging and Genomic Mutation in Diffuse Intrinsic Pontine Glioma : Machine Learning Approaches for a Comprehensive Analysis

Imagerie par résonance magnétique et mutations génomiques dans le gliome infiltrant du tronc cérébral : méthodes d'apprentissage automatique pour une analyse de données détaillée

Fahad Khalid
  • Fonction : Auteur
  • PersonId : 1382073
  • IdRef : 277506549

Résumé

The diagnosis of diffuse intrinsic pontine glioma (DIPG) in children stands as one of the most harrowing within pediatric oncology. Despite numerous clinical trials exploring various treatments, the prognosis remains bleak, with most patients succumbing between 9 to 11 months post-diagnosis. Key gene mutations linked to DIPG include H3K27M, ACVR1, and TP53. Each mutation has distinct characteristics, leading physicians to suggest tailored therapies, underscoring the importance of accurate mutation detection in guiding treatment. Located in the crucial region of the brainstem, the pons, DIPG tumors pose significant biopsy risks due to potential neurological damage. Hence, MRI could become a primordial diagnostic tool for these tumors, assessing their spread and gauging therapy responses. Its use to predict accurate gene mutation, and identify long-term survivors, could enhance patient care significantly. Within this framework, radiomics transforms images into vast data sources, extracting features like shape and texture to aid decision-making. The objective of this thesis is to refine mutation prediction and pinpoint long-term survivors, emphasizing image normalization and the applicability of radiomic models. Our study utilized a retrospective database from Gustave Roussy Institute, encompassing 80 patients MRI data and their respective clinical data. These MRI images highlighted issues in radiomic studies, such as bias field inhomogeneity and the "scanner effect". To address these challenges, a dedicated MR image normalization pipeline was implemented, and radiomic features underwent ComBat harmonization. Given the dataset's missing modalities, a multi-model strategy was employed, leading to 16 distinct models based on various radiomic and clinical feature combinations. This approach was then streamlined into a multi-modal method, reducing the number of models to five. The results from the ensemble of these models proved to be the most promising. This multi-modal strategy incorporated a feature selection phase, pinpointing the most pertinent features. Additionally, this method was applied to identify long-term survivors and was complemented by the ICARE framework for a nuanced survival analysis output.
Le diagnostic du gliome infiltrant du tronc cérébral (GITC) chez les enfants est l'un des plus éprouvants en oncologie pédiatrique. Malgré de nombreux essais cliniques explorant divers traitements, le pronostic reste sombre, la plupart des patients succombant entre 9 et 11 mois après le diagnostic. Les mutations génétiques clé associées au GITC incluent H3K27M, ACVR1 et TP53. Chaque mutation a des caractéristiques distinctes, poussant les médecins à suggérer des thérapies personnalisées, soulignant l'importance d'une détection précise des mutations pour guider le traitement. Situées dans la région cruciale du tronc cérébral, les tumeurs GITC présentent des risques significatifs liés à la biopsie en raison de potentiels dommages neurologiques. L'IRM est une méthode indispensable pour le diagnostic de ces tumeurs, évaluant leur extension et permettant de mesurer l'évolution de la maladie au cours de la thérapie. Une prédiction des mutations, combinée à l'identification des patients survivant plus de deux ans, pourrait améliorer la thérapie proposée à ces patients. Dans ce contexte, la radiomique transforme les images en vastes sources de données, extrayant des caractéristiques comme la forme et la texture pour aider à la prise de décision. L'objectif de cette thèse est de prédire les principales mutations génétiques et d'identifier les survivants à long terme, en mettant l'accent sur la normalisation des images et l'applicabilité des modèles radiomiques. Notre étude a utilisé une base de données rétrospective de l'Institut Gustave Roussy, comprenant les données IRM de 80 patients et leurs données cliniques respectives. Les données d'IRM ont mis en évidence des problèmes pour les études radiomiques, tels que l'inhomogénéité du champ de biais et l'effet "scanner". Pour répondre à ces défis, un pipeline de normalisation d'images IRM a été mis en place, et les caractéristiques radiomiques ont été harmonisées par la méthode ComBat. Pour faire face au problème de modalités manquantes dans l'ensemble de données, une stratégie multi-modèles a été employée, conduisant à 16 modèles distincts reposant sur diverses combinaisons de caractéristiques radiomiques et cliniques. Cette approche a ensuite été rationalisée en une méthode multimodale, réduisant le nombre de modèles à cinq, après une phase de sélection de caractéristiques indépendantes. Les résultats de l'approche multimodale se sont avérés être prometteurs. Cette stratégie multimodale a été essentielle pour identifier les patients survivant plus de deux ans et a été complétée par l'approche ICARE pour une analyse de survie détaillée.
Fichier principal
Vignette du fichier
132461_KHALID_2024_archivage.pdf (41.24 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04573926 , version 1 (13-05-2024)

Identifiants

  • HAL Id : tel-04573926 , version 1

Citer

Fahad Khalid. Magnetic Resonance Imaging and Genomic Mutation in Diffuse Intrinsic Pontine Glioma : Machine Learning Approaches for a Comprehensive Analysis. Cancer. Université Paris-Saclay, 2024. English. ⟨NNT : 2024UPAST006⟩. ⟨tel-04573926⟩
0 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More