Communication Dans Un Congrès Année : 2024

Improving Real Time Rail Monitoring with EMAT Sensors and Superlets Analysis

Résumé

The development of online and in filed ultrasonic testing tools for rail defects detection requires advanced signal processing analysis methodologies. The objective is to properly identify the Time of Flight (ToF) of the wave in high noise measurements. We propose an estimator of this physical parameter with the use of a novel time-frequency analysis technique, adapted from the Continuous Wavelet Transform (CWT), called the Superlet Transform (SLT). It provides higher accuracy even at low Signal to Noise Ratio (SNR). We apply this estimator on a simulated example to quantify the reached performances, in terms of errors and variances.
Fichier principal
Vignette du fichier
RAILENIUM_10102023_v4.pdf (928.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04905545 , version 1 (22-01-2025)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04905545 , version 1

Citer

Quentin Mayolle, Philippe Vanheeghe, Denovan Lampin, Valentin Vlieghe. Improving Real Time Rail Monitoring with EMAT Sensors and Superlets Analysis. TRA 2024, Apr 2024, Dublin, Ireland. ⟨hal-04905545⟩

Collections

IRT-RAILENIUM
0 Consultations
0 Téléchargements

Partager

More