Every centroaffine Tchebychev hyperovaloid is ellipsoid - Laboratoire de Mathématiques pour les Ingénieurs
Article Dans Une Revue Pacific Journal of Mathematics Année : 2021

Every centroaffine Tchebychev hyperovaloid is ellipsoid

Xiuxiu Cheng
  • Fonction : Auteur
Zejun Hu
  • Fonction : Auteur

Résumé

We study locally strongly convex Tchebychev hypersurfaces, namely the centroaffine totally umbilical hypersurfaces, in the (n+1)-dimensional affine space Rn+1. We first make an ordinary-looking observation that such hypersurfaces are characterized by having a Riemannian structure admitting a canonically defined closed conformal vector field. Then, by taking advantage of properties about Riemannian manifolds with closed conformal vector fields, we show that the ellipsoids are the only centroaffine Tchebychev hyperovaloids. This solves the longstanding problem of trying to generalize the classical theorem of Blaschke and Deicke on affine hyperspheres in equiaffine differential geometry to that in centroaffine differential geometry.
Fichier principal
Vignette du fichier
1911.05222.pdf (216.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03722505 , version 1 (13-07-2022)

Identifiants

Citer

Xiuxiu Cheng, Zejun Hu, Luc Vrancken. Every centroaffine Tchebychev hyperovaloid is ellipsoid. Pacific Journal of Mathematics, 2021, 315 (1), pp.27-44. ⟨10.2140/pjm.2021.315.27⟩. ⟨hal-03722505⟩
27 Consultations
61 Téléchargements

Altmetric

Partager

More