The Dirichlet problem for a prescribed anisotropic mean curvature equation - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Journal of Differential Equations Année : 2016

The Dirichlet problem for a prescribed anisotropic mean curvature equation

Résumé

We discuss existence, uniqueness, regularity and boundary behaviour of solutions of the Dirichlet problem for the prescribed anisotropic mean curvature equation −div(∇u/1+|∇u|2)=−au+b/1+|∇u|2, where a,b>0 are given parameters and Ω is a bounded Lipschitz domain in RN. This equation appears in the modeling theory of capillarity phenomena for compressible fluids and in the description of the geometry of the human cornea.

Dates et versions

hal-03135815 , version 1 (09-02-2021)

Identifiants

Citer

Chiara Corsato, Colette De Coster, Pierpaolo Omari. The Dirichlet problem for a prescribed anisotropic mean curvature equation. Journal of Differential Equations, 2016, 260 (5), pp.4572-4618. ⟨10.1016/j.jde.2015.11.024⟩. ⟨hal-03135815⟩
27 Consultations
0 Téléchargements

Altmetric

Partager

More