Flat Almost Complex Surfaces in the Homogeneous Nearly Kähler S3×S3 - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Results in mathematics = Resultate der Mathematik Année : 2018

Flat Almost Complex Surfaces in the Homogeneous Nearly Kähler S3×S3

Résumé

By employing a nice adapted frame we prove a Bonnet-type existence and uniqueness theorem for almost complex surfaces in the homogeneous nearly Kähler manifold S3×S3. The proof uses a local correspondence between almost complex surfaces in S3×S3 and surfaces in R3 that satisfy the Wente H-surface equation. Furthermore we give a complete classification of flat almost complex surfaces in the homogeneous nearly Kähler S3×S3.
Fichier principal
Vignette du fichier
flatsurfacesS3S310.pdf (404 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03148536 , version 1 (13-07-2022)

Identifiants

Citer

Bart Dioos, Haizhong Li, Hui Ma, Luc Vrancken. Flat Almost Complex Surfaces in the Homogeneous Nearly Kähler S3×S3. Results in mathematics = Resultate der Mathematik, 2018, 73 (1), 24 pp. ⟨10.1007/s00025-018-0784-y⟩. ⟨hal-03148536⟩
44 Consultations
29 Téléchargements

Altmetric

Partager

More