Lagrangian submanifolds in the homogeneous nearly Kahler S3×S3 with constant sectional curvature - Université Polytechnique des Hauts-de-France
Communication Dans Un Congrès Année : 2018

Lagrangian submanifolds in the homogeneous nearly Kahler S3×S3 with constant sectional curvature

Résumé

In this paper, we investigate Lagrangian submanifolds in the homogeneous nearly Kähler S3 × S3. We introduce and make use of a triplet of angle functions to describe the geometry of a Lagrangian submanifold in S3 × S3. We construct a new example of a flat Lagrangian torus and give a complete classification of all the Lagrangian immersions of spaces of constant sectional curvature. As a corollary of our main result, we obtain that the radius of a round Lagrangian sphere in the homogeneous nearly Kähler S3 × S3 can only be 2/√3 or 4/√3.
Fichier non déposé

Dates et versions

hal-03155933 , version 1 (02-03-2021)

Identifiants

  • HAL Id : hal-03155933 , version 1

Citer

Luc Vrancken. Lagrangian submanifolds in the homogeneous nearly Kahler S3×S3 with constant sectional curvature. XIX Geometrical Seminar, Aug 2016, Zlatibor, Serbia. ⟨hal-03155933⟩
21 Consultations
0 Téléchargements

Partager

More