Well-posedness and spectral properties of heat and wave equations with non-local conditions - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Journal of Differential Equations Année : 2014

Well-posedness and spectral properties of heat and wave equations with non-local conditions

Résumé

We consider the one-dimensional heat and wave equations but – instead of boundary conditions – we impose on the solution certain non-local, integral constraints. An appropriate Hilbert setting leads to an integration-by-parts formula in Sobolev spaces of negative order and eventually allows us to use semigroup theory leading to analytic well-posedness, hence sharpening regularity results previously obtained by other authors. In doing so we introduce a parametrization of such integral conditions that includes known cases but also shows the connection with more usual boundary conditions, like periodic ones. In the self-adjoint case, we even obtain eigenvalue asymptotics of so-called Weylʼs type.
Fichier principal
Vignette du fichier
1112.0415.pdf (323.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03163703 , version 1 (05-07-2022)

Identifiants

Citer

Delio Mugnolo, Serge Nicaise. Well-posedness and spectral properties of heat and wave equations with non-local conditions. Journal of Differential Equations, 2014, 256 (7), pp.2115-2151. ⟨10.1016/j.jde.2013.12.016⟩. ⟨hal-03163703⟩
36 Consultations
33 Téléchargements

Altmetric

Partager

More