A hybrid quantum particle swarm optimization for the Multidimensional Knapsack Problem - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Engineering Applications of Artificial Intelligence Année : 2016

A hybrid quantum particle swarm optimization for the Multidimensional Knapsack Problem

Résumé

In this paper we propose a new hybrid heuristic approach that combines the Quantum Particle Swarm Optimization technique with a local search method to solve the Multidimensional Knapsack Problem. The approach also incorporates a heuristic repair operator that uses problem-specific knowledge instead of the penalty function technique commonly used for constrained problems. Experimental results obtained on a wide set of benchmark problems clearly demonstrate the competitiveness of the proposed method compared to the state-of-the-art heuristic methods.
Fichier non déposé

Dates et versions

hal-03400781 , version 1 (23-01-2023)

Identifiants

Citer

Boukthir Haddar, Mahdi Khemakhem, Said Hanafi, Christophe Wilbaut. A hybrid quantum particle swarm optimization for the Multidimensional Knapsack Problem. Engineering Applications of Artificial Intelligence, 2016, 55, pp.1-13. ⟨10.1016/j.engappai.2016.05.006⟩. ⟨hal-03400781⟩
30 Consultations
0 Téléchargements

Altmetric

Partager

More