A Nervousness Regulator Framework for Dynamic Hybrid Control Architectures
Résumé
Dynamic hybrid control architectures are a powerful paradigm that addresses the challenges of achieving both performance optimality and operations reactivity in discrete systems. This approach presents a dynamic mechanism that changes the control solution subject to continuous environment changes. However, these changes might cause nervousness behaviour and the system might fail to reach a stabilized-state. This paper proposes a framework of a nervousness regulator that handles the nervousness behaviour based on the defined nervousness-state. An example of this regulator mechanism is applied to an emulation of a flexible manufacturing system located at the University of Valenciennes. The results show the need for a nervousness mechanism in dynamic hybrid control architectures and explore the idea of setting the regulator mechanism according to the nervousness behaviour state.