Unknown input estimation for nonlinear descriptor systems via LMIs and Takagi-Sugeno models - Université Polytechnique des Hauts-de-France
Communication Dans Un Congrès Année : 2015

Unknown input estimation for nonlinear descriptor systems via LMIs and Takagi-Sugeno models

Résumé

This paper presents an unknown inputs observer for nonlinear descriptor systems. The approach uses the Takagi-Sugeno representation of the nonlinear model. In order to obtain strict linear matrix inequalities a novel observer structure is given. Thus the conditions can be efficiently solved via convex optimization techniques. A numerical example is provided to illustrate the performance of the proposed approach.
Fichier non déposé

Dates et versions

hal-03411796 , version 1 (02-11-2021)

Identifiants

Citer

Víctor Estrada Manzo, Zsofia Lendek, Thierry-Marie Guerra. Unknown input estimation for nonlinear descriptor systems via LMIs and Takagi-Sugeno models. 2015 54th IEEE Conference on Decision and Control (CDC), Dec 2015, Osaka, Japan. pp.6349-6354, ⟨10.1109/CDC.2015.7403219⟩. ⟨hal-03411796⟩
13 Consultations
0 Téléchargements

Altmetric

Partager

More