Automatic Age Estimation And Gender Classification In The Wild - Université Polytechnique des Hauts-de-France
Communication Dans Un Congrès Année : 2015

Automatic Age Estimation And Gender Classification In The Wild

Salah Eddine Bekhouche
Abdelkrim Ouafi
  • Fonction : Auteur
Azeddine Benlamoudi
Abdenour Hadid

Résumé

Automatic age estimation and gender classification throughfacial images are attractive topics in computer vision. Theycan be used in many real-life applications such as face recog-nition and internet safety for minors. In this paper, we presenta novel approach for age estimation and gender classificationunder uncontrolled conditions following the standard proto-cols for fair comparaison. Our proposed approach is based onMulti Level Local Binary Pattern (ML-LBP) features whichare extracted from normalized face images. Two differentSupport Vector Machines (SVM) models are used to predictthe age group and the gender of a person. The experimen-tal results on benchmark Image of Groups dataset showed thesuperiority of our approach compared to that of the state-of-the-art methods
Fichier non déposé

Dates et versions

hal-03412445 , version 1 (03-11-2021)

Identifiants

  • HAL Id : hal-03412445 , version 1

Citer

Salah Eddine Bekhouche, Abdelkrim Ouafi, Azeddine Benlamoudi, Abdelmalik Taleb-Ahmed, Abdenour Hadid. Automatic Age Estimation And Gender Classification In The Wild. International Conference on Automatic control, Telecommunications and Signals (ICATS15), Nov 2015, Annaba, Algeria. ⟨hal-03412445⟩
16 Consultations
0 Téléchargements

Partager

More