Hermite interpolation by planar cubic-like ATPH - Archive ouverte HAL Access content directly
Journal Articles Advances in Computational Mathematics Year : 2022

Hermite interpolation by planar cubic-like ATPH

Interpolation de Hermite par des courbes ATPH pseudo-cubiques planes

(1) , (1) , (2)
1
2
Thierry Bay
  • Function : Author
  • PersonId : 1090226
Laura Saini
  • Function : Author
  • PersonId : 1125260

Abstract

This paper deals with the construction of the Algebraic Trigonometric Pythagorean Hodograph (ATPH) cubic Hermite interpolant and analyzes the existence and characterizations of solutions according to the tangents at both ends and a global shape parameter denoted α. Since this degree of freedom can be used for adjustments, we study how the curve evolves with respect to α. As an example of the use of this parameter, a simple fitting method is proposed to determine the unique ATPH curve passing through a given point in addition to the Hermite constraints.
Fichier principal
Vignette du fichier
Cubic_like_ATPH 2.pdf (2.08 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03556981 , version 1 (04-02-2022)

Identifiers

  • HAL Id : hal-03556981 , version 1

Cite

Thierry Bay, Isabelle Cattiaux-Huillard, Laura Saini. Hermite interpolation by planar cubic-like ATPH. Advances in Computational Mathematics, In press. ⟨hal-03556981⟩
20 View
16 Download

Share

Gmail Facebook Twitter LinkedIn More