A comparative study between compressive sensing and conventional speech conding methods
Résumé
Speech coding is an essential procedure in public switched telephone system (PSTN), digital cellular communications, videoconferencing systems, and emerging voice over Internet applications. Compressed sensing is an original signal processing tool for efficiently acquiring and reconstructing a signal, by exploiting its compressibility. In this paper, compressive sensing is employed for speech coding. Particularly in this work and in order to demonstrate its efficiency in speech coding, we propose a comparative study between this method and optimal existing methods, namely, Code-excited linear prediction and LIoyd-Max quantization algorithm. Experimental results indicate that CS method achieve a significant improvements in performances with respect to the aforementioned methods.