Understanding soft evidence as probabilistic evidence : illustration with several use cases - Université Polytechnique des Hauts-de-France Access content directly
Conference Papers Year : 2013

Understanding soft evidence as probabilistic evidence : illustration with several use cases

Abstract

This paper aims to get a better understanding of the notions of evidence, probabilistic evidence and likelihood evidence in Bayesian Networks. Evidence comes from an observation of one or several variables. Soft evidence is probabilistic evidence, since the observation consists in a local probability distribution on a subset of variables that has to replace any former belief on these variables. It has to be clearly distinguished from likelihood evidence, also called virtual evidence, for which the evidence is specified as a likelihood ratio. Since the notion of soft evidence is not yet widely understood, most of the Bayesian Networks engines do not propose related propagation functions and the terms used to describe such evidence are not stabilised. First, we present the different types of evidence on a simple example with an illustrative context. Then, we discuss the understanding of both notions in terms of knowledge and observation. Next, we propose to use soft evidence to represent certain evidence on a continuous variable, after fuzzy discretization.
No file

Dates and versions

hal-03577156 , version 1 (16-02-2022)

Identifiers

Cite

Ali Ben Mrad, Véronique Delcroix, Sylvain Piechowiak, Mohamed-Amine Maalej, Mohamed Abid. Understanding soft evidence as probabilistic evidence : illustration with several use cases. 5th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO’2013, Apr 2013, Hammamet, Tunisia. ⟨10.1109/ICMSAO.2013.6552583⟩. ⟨hal-03577156⟩
16 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More