An original approach for mechanical modelling of short-fibre reinforced composites with complex distributions of fibre orientation
Résumé
In this paper, an original and effective model of behaviour for short-fibre reinforced composites is presented. In particular, complex fibre distributions of orientation can be dealt with in a very easy way, without orientation averaging or additional homogenisation steps. The matrix material has elastoplastic damage behaviour with non-isochoric plastic flow. Ductile damage can be fully anisotropic depending on the reinforcement characteristics. The model is validated for the case of a polypropylene reinforced with short flax fibres. In addition, simulations are performed to investigate the influence of key parameters like fibre length and interfacial shear strength, as well as the impact of progressive debonding at the fibre tips.