A real time data mining rules selection model for the Job Shop Scheduling Problem - Université Polytechnique des Hauts-de-France
Communication Dans Un Congrès Année : 2015

A real time data mining rules selection model for the Job Shop Scheduling Problem

Mohamed Habib Zahmani
  • Fonction : Auteur
Baghdad Atmani
  • Fonction : Auteur
Nassima Aissani
  • Fonction : Auteur
  • PersonId : 888490

Résumé

Finding the best Dispatching Rule for a Job Shop Scheduling Problem is a tedious task, both time and cost consuming. Since there is no rule that can outperform the others, in this paper we propose an approach able to affect in real-time a different Dispatching Rule for each machine while minimizing makespan. This approach is based on simulation and Data Mining. Experimentations show that the proposed system returns good results in both makespan and processing time needs.
Fichier non déposé

Dates et versions

hal-03659568 , version 1 (05-05-2022)

Identifiants

  • HAL Id : hal-03659568 , version 1

Citer

Mohamed Habib Zahmani, Baghdad Atmani, Abdelghani Bekrar, Nassima Aissani. A real time data mining rules selection model for the Job Shop Scheduling Problem. CIE 45: 2015 International Conference on Computers and Industrial Engineering, Oct 2015, Metz, France. ⟨hal-03659568⟩
18 Consultations
0 Téléchargements

Partager

More