Razumikhin-type Theorems on Practical Stability of Dynamic Equations on Time Scales
Résumé
In this work, we investigate some Razumikhin-type criteria for the uniform global practical asymptotic stability on arbitrary time domains, for time-varying dynamic equations. Using Lyapunov-type functions on time scales, we develop appropriate inequalities ensuring that trajectories decay to the neighborhood of the trivial solution asymptotically. Some numerical examples are discussed to illustrate our results