Contribution to Robot System Identification: Noise Reduction using a State Observer - Université Polytechnique des Hauts-de-France
Communication Dans Un Congrès Année : 2022

Contribution to Robot System Identification: Noise Reduction using a State Observer

Résumé

Conventional identification approach based on the inverse dynamic identification model using least-squares and direct and inverse dynamic identification techniques has been effectively used to identify inertial and friction parameters of robots. However these methods require a well-tuned filtering of the observation matrix and the measured torque to avoid bias in identification results. Meanwhile, the cutoff frequency of the lowpass filter f c must be well chosen, which is not always easy to do. In this paper, we propose to use a Kalman filter to reduce the noise of the observation matrix and the output torque signal of the PID controller.
Fichier principal
Vignette du fichier
ICINCO_2022_93_CR.pdf (1.26 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03788153 , version 1 (26-09-2022)

Identifiants

Citer

Bilal Tout, Jason Chevrie, Laurent Vermeiren, Antoine Dequidt. Contribution to Robot System Identification: Noise Reduction using a State Observer. 19th International Conference on Informatics in Control, Automation and Robotics, Jul 2022, Lisbon, Portugal. pp.695-702, ⟨10.5220/0011322600003271⟩. ⟨hal-03788153⟩
80 Consultations
98 Téléchargements

Altmetric

Partager

More