The BEM with graded meshes for the electric field integral equation on polyhedral surfaces - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Numerische Mathematik Année : 2016

The BEM with graded meshes for the electric field integral equation on polyhedral surfaces

Résumé

We consider the variational formulation of the electric field integral equation on a Lipschitz polyhedral surface \(\Gamma \). We study the Galerkin boundary element discretisations based on the lowest-order Raviart–Thomas surface elements on a sequence of anisotropic meshes algebraically graded towards the edges of \(\Gamma \). We establish quasi-optimal convergence of Galerkin solutions under a mild restriction on the strength of grading. The key ingredient of our convergence analysis are new componentwise stability properties of the Raviart–Thomas interpolant on anisotropic elements.
Fichier principal
Vignette du fichier
1504.02647.pdf (390.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03135588 , version 1 (05-07-2022)

Identifiants

Citer

A. Bespalov, Serge Nicaise. The BEM with graded meshes for the electric field integral equation on polyhedral surfaces. Numerische Mathematik, 2016, 132 (4), pp.631-655. ⟨10.1007/s00211-015-0736-3⟩. ⟨hal-03135588⟩
30 Consultations
28 Téléchargements

Altmetric

Partager

More