Existence and multiplicity for elliptic p-Laplacian problems with critical growth in the gradient - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Calculus of Variations and Partial Differential Equations Année : 2018

Existence and multiplicity for elliptic p-Laplacian problems with critical growth in the gradient

Résumé

We consider the boundary value problem (Pλ) −∆pu = λc(x)|u| p−2u + µ(x)|∇u| p + h(x) , u ∈ W1,p 0 (Ω) ∩ L∞(Ω) , where Ω ⊂ RN , N ≥ 2, is a bounded domain with smooth boundary. We assume c, h ∈ Lq (Ω) for some q > max{N/p, 1} with c 0 and µ ∈ L∞(Ω). We prove existence and uniqueness results in the coercive case λ ≤ 0 and existence and multiplicity results in the non-coercive case λ > 0. Also, considering stronger assumptions on the coefficients, we clarify the structure of the set of solutions in the non-coercive case.
Fichier principal
Vignette du fichier
1801.04155.pdf (500.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03137670 , version 1 (04-07-2022)

Identifiants

Citer

Colette De Coster, Antonio J. Fernández Sánchez. Existence and multiplicity for elliptic p-Laplacian problems with critical growth in the gradient. Calculus of Variations and Partial Differential Equations, 2018, 57 (3), 42 p. ⟨10.1007/s00526-018-1346-6⟩. ⟨hal-03137670⟩
43 Consultations
44 Téléchargements

Altmetric

Partager

More