Polynomial stabilization of some dissipative hyperbolic systems - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2014

Polynomial stabilization of some dissipative hyperbolic systems

Kaïs Ammari
  • Fonction : Auteur
E. Feireisl
  • Fonction : Auteur

Résumé

We study the problem of stabilization for the acoustic system with a spatially distributed damping. Imposing various hypotheses on the structural properties of the damping term, we identify either exponential or polynomial decay of solutions with growing time. Exponential decay rate is shown by means of a time domain approach, reducing the problem to an observability inequality to be verified for solutions of the associated conservative problem. In addition, we show a polynomial stabilization result, where the proof uses a frequency domain method and combines a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.
Fichier principal
Vignette du fichier
1208.4485.pdf (201.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03138443 , version 1 (05-07-2022)

Identifiants

Citer

Kaïs Ammari, E. Feireisl, Serge Nicaise. Polynomial stabilization of some dissipative hyperbolic systems. Discrete and Continuous Dynamical Systems - Series A, 2014, 34 (11), pp.4371-4388. ⟨10.3934/dcds.2014.34.4371⟩. ⟨hal-03138443⟩
19 Consultations
35 Téléchargements

Altmetric

Partager

More