Lagrangian submanifolds of the nearly Kähler S3 × S3 from minimal surfaces in S3 - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Proceedings of the Royal Society of Edinburgh: Section A, Mathematics Année : 2019

Lagrangian submanifolds of the nearly Kähler S3 × S3 from minimal surfaces in S3

Résumé

We study non-totally geodesic Lagrangian submanifolds of the nearly Kähler S3 × S3 for which the projection on the first component is nowhere of maximal rank. We show that this property can be expressed in terms of the so-called angle functions and that such Lagrangian submanifolds are closely related to minimal surfaces in S3. Indeed, starting from an arbitrary minimal surface, we can construct locally a large family of such Lagrangian immersions, including one exceptional example. We also show that locally all such Lagrangian submanifolds can be obtained in this way.
Fichier principal
Vignette du fichier
Lagrangian submanifolds.pdf (392.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03156184 , version 2 (05-07-2022)
hal-03156184 , version 1 (05-07-2022)

Identifiants

Citer

Burcu Bektaş, Marilena Moruz, Joeri van Der Veken, Luc Vrancken. Lagrangian submanifolds of the nearly Kähler S3 × S3 from minimal surfaces in S3. Proceedings of the Royal Society of Edinburgh: Section A, Mathematics, 2019, 149 (03), pp.655-689. ⟨10.1017/prm.2018.43⟩. ⟨hal-03156184v2⟩
51 Consultations
76 Téléchargements

Altmetric

Partager

More