Spectral analysis of a generalized buckling problem on a ball - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Positivity Année : 2017

Spectral analysis of a generalized buckling problem on a ball

Résumé

In this paper, the spectrum of the following fourth order problem (Formula Presented.)where D1 is the unit ball in RN, is determined for ν< 0 as well as the nodal properties of the corresponding eigenfunctions. In particular, we show that the first eigenvalue is simple and that the corresponding eigenfunction is radial and (up to a multiplicative factor) positive and decreasing with respect to the radius. This completes earlier results obtained for ν⩾ 0 (see Coster et al. in Positivity 19:843–875, 2015) and for ν< 0 (see Laurençot and Walker in J Anal Math 127:69–89, 2014).
Fichier principal
Vignette du fichier
1610.04840.pdf (4.8 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03163589 , version 1 (05-07-2022)

Identifiants

Citer

Colette De Coster, Serge Nicaise, Christophe Troestler. Spectral analysis of a generalized buckling problem on a ball. Positivity, 2017, 21 (4), pp.1319-1340. ⟨10.1007/s11117-017-0469-x⟩. ⟨hal-03163589⟩
36 Consultations
45 Téléchargements

Altmetric

Partager

More