Derivatives in noncommutative calculus and deformation property of quantum algebras - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Journal of Noncommutative Geometry Année : 2016

Derivatives in noncommutative calculus and deformation property of quantum algebras

Résumé

The aim of the paper is twofold. First, we introduce analogs of (partial) derivatives on certain noncommutative algebras, including some enveloping algebras and their “braided counterparts” — the so-called modified Reflection Equation algebras. With the use of the mentioned derivatives we construct an analog of the de Rham complex on these algebras. Second, we discuss deformation property of some quantum algebras and show that contrary to a commonly held view, in the so-called q-Witt algebra there is no analog of the PBW property. In this connection, we discuss different forms of the Jacobi condition related to quadratic-linear algebras.
Fichier principal
Vignette du fichier
1412.4014.pdf (248.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03165320 , version 1 (05-07-2022)

Identifiants

Citer

Dimitri Gurevich, Pavel Saponov. Derivatives in noncommutative calculus and deformation property of quantum algebras. Journal of Noncommutative Geometry, 2016, 10 (4), pp.1215-1241. ⟨10.4171/JNCG/258⟩. ⟨hal-03165320⟩
26 Consultations
52 Téléchargements

Altmetric

Partager

More