Classification of δ(2,n − 2)-ideal Lagrangian submanifolds in n-dimensional complex space forms - Université Polytechnique des Hauts-de-France
Article Dans Une Revue Journal of Mathematical Analysis and Applications Année : 2018

Classification of δ(2,n − 2)-ideal Lagrangian submanifolds in n-dimensional complex space forms

Résumé

It was proven in [4] that every Lagrangian submanifold M of a complex space form M˜n(4c) of constant holomorphic sectional curvature 4c satisfies the following optimal inequality: δ(2,n−2)≤[Formula presented]H2+2(n−2)c, where H2 is the squared mean curvature and δ(2,n−2) is a δ-invariant on M. In this paper we classify Lagrangian submanifolds of complex space forms M˜n(4c), n≥5, which satisfy the equality case of this improved inequality at every point.
Fichier principal
Vignette du fichier
CDVV.pdf (436.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03233923 , version 1 (16-01-2024)

Identifiants

Citer

Bang-Yen Chen, Franki Dillen, Joeri van Der Veken, Luc Vrancken. Classification of δ(2,n − 2)-ideal Lagrangian submanifolds in n-dimensional complex space forms. Journal of Mathematical Analysis and Applications, 2018, 458 (2), pp.1456-1485. ⟨10.1016/j.jmaa.2017.10.044⟩. ⟨hal-03233923⟩
15 Consultations
6 Téléchargements

Altmetric

Partager

More