Design Space Exploration for Customized Asymmetric Heterogeneous MPSoC.
Résumé
Modern FPGA allows the design of very complex System-on-Chips (SoC). To fulfil modern application requirements, in terms of performance/energy consumption ratio, Heterogeneous Multiprocessor System-on-Chip (Ht- MPSoC) architectures represent a promising solution. In such systems, the processor instruction set is enhanced by application-specific custom instructions implemented on reconfigurable fabrics, namely FPGA. To increase area utilization and guarantee application constraint respect, we propose a new Ht-MPSoC architecture where hardware accelerators (HW accelerators) are shared among different processors in an intelligent manner. In this paper, we extend existing Ht-MPSoC architectures by considering asymmetric (AHt-MPSoC). In these architectures, cores have different resources that may share in different manners. Depending on the running applications and their needs in processing, private and shared HW accelerators are attached to the different cores. On a 8-core AHt-MPSoC we obtained a speed of 2.6 with a reduced number of HW accelerators for our benchmarks.