Taylor-Couette-Poiseuille flow and heat transfer in an annular channel with a slotted rotor - Université Polytechnique des Hauts-de-France Accéder directement au contenu
Article Dans Une Revue International Journal of Thermal Sciences Année : 2017

Taylor-Couette-Poiseuille flow and heat transfer in an annular channel with a slotted rotor

Résumé

This paper investigates a Taylor-Couette-Poiseuille flow in an annular channel of a slotted rotating inner cylinder, corresponding to a salient pole hydrogenerator. The purpose of this study is to improve the understanding of flow and thermal phenomena in electrical machines using a simplified scale model. The validation of the numerical model for a specific configuration is first shown by comparing the results with the experimental data. A parametric study is also performed to investigate all main flow regimes and to derive correlations in terms of the Nusselt number distribution on the rotor pole face and sides. The results show that the Nusselt number is proportional to the tangential Reynolds number to the power 1/7 in the pole and inductive faces trailing side. This relationship is similar to the one encountered in classical Taylor-Couette-Poiseuille flows between two concentric and smooth cylinders.
Fichier non déposé

Dates et versions

hal-03451964 , version 1 (26-11-2021)

Identifiants

Citer

Nicolas Lancial, Federico Torriano, François Beaubert, Souad Harmand, Gilles Rolland. Taylor-Couette-Poiseuille flow and heat transfer in an annular channel with a slotted rotor. International Journal of Thermal Sciences, 2017, 112, pp.92-103. ⟨10.1016/j.ijthermalsci.2016.09.022⟩. ⟨hal-03451964⟩
9 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More